Biophysics pp 207-264 | Cite as

Intra- and Intermolecular Interactions

  • G. Ludwig Hofacker


Phenomena in a world capable of supporting living organisms are determined by a hierarchy of physical and chemical principles. In this chapter we will investigate how and to what extent the molecular aspects of biology are reflected by the lowest grade of this hierarchy, i.e., the fundamental laws of atomic and molecular structure and interactions, expressed in the language of quantum theory. It should be borne in mind, however, that one of the main objectives of this treatise, the detailed understanding of structure-function relationships of biomolecules, is based on those principles of the hierarchy mentioned which inform about the relative probabilities of the many molecular states permitted by quantum theory.


Intermolecular Interaction Lone Pair Double Helix Triple Helix Orbital Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Selected References

  1. Brant, D.A.: Ann. Rev. Biophys. Bioeng. 1 (1972).Google Scholar
  2. Dewar, M.: Molecular Orbitals. Fortschr. Chem. Forsch. 23 (1971).Google Scholar
  3. England, W., Salmon, L. S., Ruedenberg, K.: Molecular Orbitals. Fortschr. Chem. Forsch. 23 (1971).Google Scholar
  4. Gould, R: F. (ed.): Bioinorganic Chemistry. Washington: Am. Chem. Soc. Publ. 1971.Google Scholar
  5. Jaffe, H.H; Orchin, M.: Symmetry in Chemistry. New York: Wiley 1965.Google Scholar
  6. Ladik, L.: Quantenbiochemie fur Chemiker und Biologen. Stuttgart: Enke 1972.Google Scholar
  7. Pauling, L.: The Nature of the Chemical Bond. Ithaca: Cornell University Press 1967.Google Scholar
  8. Pauling, L., Wilson, E. B.: Introduction to Quantum Mechanics New York: McGraw-Hill 1935.Google Scholar
  9. Pilar, F.L.: Elementary Quantum Chemistry. New York: McGrawHill 1968.Google Scholar
  10. Pimentel, C.G., McClellan, A.L.: The Hydrogen Bond. San Francisco: Freeman 1960 (Supplement 1971).Google Scholar
  11. Poland, D., Scheraga, H. A.: Theory of Helix-Coil Transitions in Biopolymers. New York: Academic Press 1970.Google Scholar
  12. Pullman, A.: Stereo- and theoretical chemistry. Fortschr. Chem. Forsch. 31 (1972).Google Scholar
  13. Hoffmann, T. A., Ladik, J.: In: Advan. Chem. Phys. J.Duchesne (Hrsg.), Bd. VII, S. 84–158. New York-London: Academic Press 1964.CrossRefGoogle Scholar
  14. Ladik, L.: Quantenchemie. Stuttgart: Enke 1973.Google Scholar
  15. Mulliken, R.S.: J. Am. Chem. Soc. 74, 811 (1952). J. Phys. Chem. 56, 801 (1952).Google Scholar
  16. Otto, P., Suhai, S., Ladik, L.: Int. J. Quant. Chem. QBS 4, 451 (1977).Google Scholar
  17. Pullman, B., Pullman, A.: Quantum Biochemistry. New York-London: Interscience 1963.Google Scholar
  18. Rein, R., Ladik, J.: J. Chem. Phys. 40, 2466 (1964).ADSCrossRefGoogle Scholar
  19. Slifkin, M. A.: Charge Transfer Interactions of Biomolecules. New York-London: Academic Press 1971.Google Scholar
  20. Szent-Gyorgyi, A.: Bioenergetics. New York-London: Academic Press 1957.Google Scholar
  21. Szent-Gyorgyi, A.: Introduction to Submolecular Biology. New York-London: Academic Press 1961.Google Scholar
  22. Szent-Gyorgyi, A.: Bioelectronics. New York-London: Academic Press 1968.Google Scholar
  23. Szent-Gyorgyi, A.: Electronic Biology and Cancer. New YorkBasel:Dekker 1976.Google Scholar
  24. Szent-Gyorgyi, A.: The Living State and Cancer. New York-Basel: Dekker 1978Google Scholar
  25. Bächinger, H.P., Bruckner, P., Timpl, R., Engel, J. (1978): The Role of Cis-Trans Isomerization of Peptide Bonds in the Coil ee Triple Helix Conversion of Collagen. Eur. J. Biochem. 90, 605–613.CrossRefGoogle Scholar
  26. Brandts, J.F., Halverson, H.R., Brennan, M. (1975): Consideration of the Possibility that the Slow Step in Protein Denaturation Reactions Is Due to Cis-Trans Isomerism of Proline Residues. Biochemistry 14, 4953–4963.CrossRefGoogle Scholar
  27. Creighton, T. E. (1978): Experimental Studies of Protein Folding and Unfolding. Progress Biophys. Mol. BioI. 33, 231–297.Google Scholar
  28. Engel, J., Schwarz, G. (1969): Cooperative Conformational Transitions in Linear Biopolymers. Angew. Chem. 82, 468–479. Angew. Chem. intern at. Edit. 9, 389–400.CrossRefGoogle Scholar
  29. Hagerman, P.J., Baldwin, R.L. (1976): A Quantitative Treatment of the Kinetics of the Folding Transition of Ribonuclease A. Biochemistry 15, 1462–1473.CrossRefGoogle Scholar
  30. R. Jaenicke (ed.) (1980): Protein Folding, Proceedings of the 28th Conference of the German Biochemical Society, Elsevier North Holland Biomedical Press, Amsterdam.Google Scholar
  31. Nemethy, G. (1975): Molecular Interactions and Allosteric Effects. In Timasheff, S.N., Fasman, G. D. (eds.): Subunits in Biological Systems, Part C. Marcel Dekker, New York, Basel, p. 1–83.Google Scholar
  32. Poland, D. (1978): Cooperative Equilibria in Physical Biochemistry, Clarendon Press, Oxford.Google Scholar
  33. Pörschke, D. (1977): Elementary Steps of Base Recognition and Helix-Coil Transition in Nucleic Acids. In Pecht I, Rigler, R. (eds.): Chemical Relaxation in Molecular Biology. Springer, Berlin, Heidelberg, New York, S. 191–216.Google Scholar
  34. Privalov, P.L., Khechinashvili, N.N. (1974): A Thermodynamic Approach to the Problem of Stabilization of Globular Protein Structure: A Calorimetric Study. J. Mol. Biol. 86, 665–684.CrossRefGoogle Scholar
  35. Schwarz, G., Engel, J. (1972): Kinetics of Cooperative Confor-mational Transitions of Linear Biopolymers. Angew. Chem. 84, 615–623. Angew. Chem. internat. Edit. 11, 568–575.CrossRefGoogle Scholar
  36. Ambrose, E.J., Elliot, A.: Proc. Roy. Soc. A205, 47–60 (1951); A 208, 75–90 (1951).ADSGoogle Scholar
  37. Brügel, W.: Einführung in die Ultrarotspektroskopie, Darmstadt: Steinkopff, 1962.Google Scholar
  38. Harrick, N.J.: Internal Reflexion Spectroscopy, Interscience Publ., New York 1967.Google Scholar
  39. Hofmann, K.P., Zundel, G.: Rev. Sci. Instr. 42, 1726 (1971).ADSCrossRefGoogle Scholar
  40. Holbrook, St.R., Sussman, J.L., Warrant, R.W., Church, G.M., Kim, S.-H.: Nucleic Acid. Res. 4, 2811–2820 (1977).CrossRefGoogle Scholar
  41. Huber, R., Bode, W.: Accounts of Chem. Res., 11, 114–122 (1978).CrossRefGoogle Scholar
  42. Kyogoku, Y., Lord, R. C., Rich, A.: Science 154, 518 (1966), J. Amer. Chem. Soc. 89, 496 (1967).ADSGoogle Scholar
  43. Matthies, M., Zundel, G.: J. Bioinorg. Chem. 10, 109–123 (1979).Google Scholar
  44. Merz, H., Zundel, G.: Biochim. Biophys. Res. Commun. 101, 540–546 (1981).CrossRefGoogle Scholar
  45. Ovchinnikov, Y.Y., Abdulaev, N.G., Feigina, M.J., Kiselev, A.V., Lobanov, N.A.: FEBS Lett. 100, 219–224 (1979).CrossRefGoogle Scholar
  46. Parker, F.S.: Application of Infrared Spectroscopy in Biochemistry, Biology and Medicine, London: Hilger, 1971.Google Scholar
  47. Pullman, B., Pullman, A., Berthod, H., Gresh, N.: Theor. Chim. Acta, 40, 93–111 (1975).CrossRefGoogle Scholar
  48. Rabin, B.R., Evans, N., Rashed, R.: in: Enzymes and Isoenzymes, Vol. 18, Shugar D. ed., Academic Press, New York 1970.Google Scholar
  49. Rüterjans, H., Witzel, H.: European J. Biochem. 9, 118–127 (1969).CrossRefGoogle Scholar
  50. Schulte, C., Morrison, C.A., Garrett, R.A.: Biochemistry 13, 1032–1037, (1974).CrossRefGoogle Scholar
  51. Shimanouchi, T., Tsuboi, M., Kyogoku, Y.: in: Advances in Chemical Physics, Vol. VII, New York: Interscience Publ., 1964.Google Scholar
  52. Shulman, R. G.: Ann. Proc. New York, Acad. Sci. 158, 96–99 (1969).ADSCrossRefGoogle Scholar
  53. Zundel, G.: Hydration and Intermolecular Interaction, New York: Academic Press, 1969, Moscow: Mir 1972.Google Scholar
  54. Zundel, G., in: The Hydrogen Bond, Recent Developments in Theory and Experiments. Schuster, P., Zundel, G., Sandorfy, C. (eds.). Vol. II, Amsterdam: North Holland 1976.Google Scholar
  55. Debye P., Htickel, E.: Phys. Z. 24, 305 (1923).Google Scholar
  56. Debye, P., Htickel, E.: Phys. Z. 25, 49 (1924).Google Scholar
  57. Debye, P., Hticke1, E.: Trans. Faraday Soc. 23, 334 (1927).CrossRefGoogle Scholar
  58. Diercksen, G.H.F., Kraemer, W.P.: Theoret. Chim. Acta 23, 387 (1972).CrossRefGoogle Scholar
  59. Glasstone, S.: Textbook of Physical Chemistry. Princeton-TorontoNew York-London: Van Nostrand 1958.Google Scholar
  60. Hirschfelder, J.P., Curtis, C.F., Bird, R.B.: Molecular Theory of Gases and Liquids. New York-London-Sidney: Wiley-Interscience 1954.MATHGoogle Scholar
  61. Kistenmacher, H., Lie, G.C., Popkie, H., Clementi, E.: J. Chem. Phys. 61, 546 (1974).ADSCrossRefGoogle Scholar
  62. Kraemer, W.P., Diercksen, G.H.F.: Theoret. Chim. Acta 23, 393 (1972).CrossRefGoogle Scholar
  63. Onsager, L.: Phys. Z. 27, 388 (1926).Google Scholar
  64. Onsager, L.: Phys. Z. 28, 277 (1927a).Google Scholar
  65. Onsager, L.: Trans. Faraday Soc. 23, 341 (1927b).CrossRefGoogle Scholar
  66. Otto, P., Ladik, J.: Chem. Phys. 8, 192 (1975), 19, 209 (1977); Otto, P.: Chem. Phys. 33, 407 (1978).ADSCrossRefGoogle Scholar
  67. Port, G.N.J., Pullman, A.: Int. J. Quant. Chem. Quant. Biol, Symp.1, 21 (1974).Google Scholar
  68. Schuster, P., Preuss, H.-W.: Chem. Phys. Letters 11, 35 (1971).ADSCrossRefGoogle Scholar
  69. Slater, J.C., Wilson, T.M., Wood, J.H.: Phys. Rev. 179, 28 (1969).ADSCrossRefGoogle Scholar
  70. Eigen, M., Schuster, P.: Naturwissenschaften 64, 541 (1977); 65, 7 (1978).ADSCrossRefGoogle Scholar
  71. Eigen, M., Winkler, A.: Das Spiel. München: Piper 1975.Google Scholar
  72. Fritzsche, H., Kittler, L., Lober, G., Reinert, K.E., Tresselt, D., Triebel, H., Zimmer, Ch.: Strukturuntersuchungen an Biopolymeren mit spektroskopischen und hydrodynamischen Methoden. Berlin: Akademie Verlag 1976.Google Scholar
  73. Guschlbauer, W.: Nucleic Acid Structure. Berlin, Heidelberg, New York: Springer 1976.Google Scholar
  74. Hippel, P. von, Peticolas, V., Schack, L., Karlson, L.: Biochemistry 12, 1256 (1973).CrossRefGoogle Scholar
  75. Jehring, H.: Elektrosorptionsanalyse mit der Wechselstrompolarographie. Berlin: Akad. Verlag 1974.Google Scholar
  76. Lifson, S.: J. Chem. Phys. 40, 3705 (1964).ADSCrossRefGoogle Scholar
  77. Manning, G.: Q. Rev. Biophys. 11, 179 (1978).CrossRefGoogle Scholar
  78. Mikac-Dadic, V., Pravdic, V., Rupprecht, A.: Bioelectrochem. Bioenerg.1, 364 (1974).CrossRefGoogle Scholar
  79. Milazzo, G.: Topics in Bioelectrochemistry and Bioenergetics. Vols. I, II, III, IV. New York: J. Wiley 1976/1978/1980/1981Google Scholar
  80. Mirzabekov, A., Rich, A.: Proc. Natl. Acad. Sci. USA 76, 1118 (1979).ADSCrossRefGoogle Scholar
  81. Oosawa, F.: Polyelectrolytes. New York: Marcel Dekker 1971.Google Scholar
  82. Record, Th., Anderson, Ch., Lohman, T.: Q. Rev. Biophys. 11, 103 (1978).CrossRefGoogle Scholar
  83. Revzin, A., Hippel, P. V.: Biochemistry 16, 4769 (1977).CrossRefGoogle Scholar
  84. Scatchard, G.: Ann. N.Y. Acad. Sci. 51, 660 (1949).ADSCrossRefGoogle Scholar
  85. Schellmann, J.: Biopolymers 14, 999 (1975).CrossRefGoogle Scholar
  86. Schutz, H., Gollmick, F.A., Stutter, E.: Stud. Biophys. 75, 147 (1979).Google Scholar
  87. Silberberg, A.: Ions in Macromolecular and Biological Systems (29. Colston Symp.) Everett, D., Vincent, B. (Eds.). Bristol 1978, p. l.Google Scholar
  88. Stutter, E., Forster, W.: Stud. Biophys. 75, 199 (1979).Google Scholar
  89. Zinke, M.: Stud. Biophys. 75, 107 (1979); Bioelectrochem. Bioenerg. 8, 189 (1981).Google Scholar
  90. Anderson, C., Record, M., Hart, P.: Biophys. Chem. 7, 301 (1978).CrossRefGoogle Scholar
  91. Berg, H.: Stud. Biophys. 75, 209 (1979).Google Scholar
  92. Berg, H.: Experientia 36, 1247 (1980).CrossRefGoogle Scholar
  93. Berg, H., Horn, G.: Bioelectrochem. Bioenerg. 8, 167 (1981).CrossRefGoogle Scholar
  94. Berg, H., Eckhardt, K.: Z. Naturforsch. 25b, 362 (1970).Google Scholar
  95. Bloomfield, V., Crothers, D., Tinoco, I.: Physical Chemistry of Nucleic Acids. New York: Harper and Row 1974.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1982

Authors and Affiliations

  • G. Ludwig Hofacker

There are no affiliations available

Personalised recommendations