Skip to main content

Neurobiophysics

  • Chapter
Biophysics

Abstract

It has been pointed out in Chap. 12.3 that between the exterior and the interior side of a living cell an electrical potential exists, the membrane potential. This membrane potential usually has a value of—50 to —100 mV; i.e., by means of a microelectrode which, starting from a zero potential in the outside medium, is inserted into the cell, a negative potential is measured at the inner side of the cell membrane. This potential mostly is relatively constant and is named “resting potential”. As discussed in detail in Chap. 12.3, it is caused by the unequal distribution of the different species of ions inside and outside the cell, as well as by a rather selective permeability of the cell membrane for different ions. The resting potential itself influences the distribution of ions across the cell membrane, and also the manifold transport processes for charged molecules. The value of the resting potential also can have a regulatory action on the amplitude of a certain transport process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Selected References

  • Jaenicke, L. (Ed.): Biochemistry of sensory functions. 25. Colloquium der Gesellschaft für Biologische Chemie, Mosbach 1974. Berlin-Heidelberg-New York: Springer 1975.

    Google Scholar 

  • Loewenstein, W.R. (Ed.): Principles of receptor physiology. Handbook of Sensory Physiology, Vol. I. Berlin-Heidelberg-New York: Springer 1971.

    Google Scholar 

  • Thurm, U.: General organization of sensory receptors. In: Reichardt, W. (Ed.): Processing of optical data by organism and by machines pp. 44–68, London: Academic Press 1969.

    Google Scholar 

  • Thurm, U., Küppers, I.: Epithelial physiology of insect sensilla. In: Locke, M., Smith, D. (Eds.): Insect biology in the future. London, New York: Academic Press 1980.

    Google Scholar 

  • Corey, D.P., Hudspeth, A.J.: Response latency of vertebrate hair cells. Biophys. J. 26, 499–506 (1979).

    Article  Google Scholar 

  • Hodgkin, A., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952).

    Google Scholar 

  • Hudspeth, A.J., Corey, D.P.: Sensitivity, polarity, and conductance change in the response of vertebrate hair cells to controlled mechanical stimuli. Proc. Natl. Acad. Sci. USA 74, 2.407–2.411 (1977).

    Google Scholar 

  • Møller, A. (Ed.): Basic mechanisms in hearing. New York: Academic Press 1973.

    Google Scholar 

  • Thurm, U.: An insect mechanoreceptor. I. Fine structure and adequate stimulus. II. Receptor potentials. Cold Spring Harbor Symp. Quant. Biol. 30, 75–94 (1965).

    Google Scholar 

  • Békésy, G. von: Experiments in Hearing. New York: McGraw-Hill 1960.

    Google Scholar 

  • Brink, G. van den, Bilsen, F.A.: Psychophysical, Physiological and Behavioural Studies in Hearing. Delft: University Press 1980.

    Google Scholar 

  • Dallos, P.: The Auditory Periphery: Biophysics and Physiology. New York: Academic Press 1973.

    Google Scholar 

  • Evans, E.F., Wilson, J.P.: Psychophysics and Physiology of Hearing. London: Academic Press 1977.

    Google Scholar 

  • Plomp, R., Smoorenburg, G.F.: Frequency Analysis and Periodicity Detection in Hearing. Leiden: Sijthoff 1970.

    Google Scholar 

  • Zwicker, E.: Psychoakustik. Berlin-Heidelberg-New York: Springer 1982.

    Google Scholar 

  • Zwicker, E., Terhardt, E.: Facts and Models in Hearing. Berlin-Heidelberg-New York: Springer 1974.

    Book  Google Scholar 

  • Busnel, R.G., Fish, J. (Eds.): Biosonar Systems Symposium Jersey. New York: Plenum Press 1980.

    Google Scholar 

  • Glaser, W.: Zur Hypothese des Optimalempfangs bei der Fledermausortung. J. Comp. Physiol. 94, 227–248 (1974).

    Article  Google Scholar 

  • Griffin, D.R.: Listening in the dark. New Haven: Yale University Press 1958.

    Google Scholar 

  • Neuweiler, G.: Die Echoortung der Fledermäuse. Vortr. Rheinisch-Westfäl. Akad. Wiss. N 272, 57–82 (1978).

    Google Scholar 

  • Schnitzler, H. U.: Die Echoortung der Fledermäuse und ihre hörphysiologischen Grundlagen. Fortschr. Zool. 21, 136–186 (1973).

    Google Scholar 

  • Simmons, J.A., Howell, D.J., Suga, N.: Information content of bat sonar echoes. Am. Sci. 63, 204–215 (1975).

    ADS  Google Scholar 

  • Beidler, L.M. (Ed.): Handbook of sensory physiology. Vol.IV/1. Chemical senses (olfaction); IV/2 (Taste). Berlin-Heidelberg-New York: Springer 1971.

    Google Scholar 

  • Bossert, W.H., Wilson, E.O.: The analysis of olfactory communication among animals. J. Theoret. Biol. 5, 443–469 (1963).

    Article  Google Scholar 

  • Hazelbauer, G.L. (Ed.): Receptors and recognition, Ser.B, Vol.5. Taxis and Behavior. London: Chapman and Hall 1978.

    Google Scholar 

  • Jaenicke, L. (Ed.): Biochemistry of sensory functions. 25. Mosbacher Colloquium, Gesellsch. Biol. Chemie. Berlin-Heidelberg-New York: Springer 1974.

    Google Scholar 

  • Richards, W.G.: Quantum pharmacology. London-Boston: Butterworth 1977.

    Google Scholar 

  • Ritter, F.J. (Ed.): Chemical ecology: odour communication in animals. Amsterdam: Elsevier, North-Holland 1979.

    Google Scholar 

  • Triggle, D.J. (Ed.): Neurotransmitter-receptor interactions. London-New York: Academic Press 1971.

    Google Scholar 

  • Barlow, H.B., Fatt, P. (Ed.): Vertebrate photoreception. London-New York-San Francisco: Academic Press 1977.

    Google Scholar 

  • Bazan, N.G., Lolley, R.N. (Ed.): Neurochemistry of the retina. Oxford-New York: Pergamon Press (in press) (1980).

    Google Scholar 

  • Hagins, W.A.: The visual process: excitatory mechanisms in the primary receptor cells. Annu. Rev. Biophys. Bioeng. 1, 131–158 (1972).

    Article  Google Scholar 

  • Handbook of sensory physiology, Vols. VII/1, VII/2 (1972), Vol. VII/6A (1979): Berlin-Heidelberg-New York: Springer.

    Google Scholar 

  • Hildebrand, E.: Comparative discussion of photoreception in lower and higher organisms. Structural and functional aspects. Proceedings of NATO-ASI. “Photoreception and Sensory Transduction in Aneural Organisms”. London: Plenum Publ. Comp. Ltd. (in press) 1980.

    Google Scholar 

  • Ostroy, S.E.: Rhodopsin and the visual process. Biochim. Biophys. Acta 463, 91–125 (1977)

    Google Scholar 

  • Stieve, H.: Charge separation by rhodopsin-containing photosensory membranes. In: Gerischer, H., Katz, J.J. (Ed.): Light-induced charge separation in biology and chemistry, pp. 503–523. Berlin: Dahlem Konferenzen 1979.

    Google Scholar 

  • Stieve, H.: The roles of calcium in visual transduction of invertebrates. In: Sense Organs (ed. M.S. Laverack, D.J. Cosens), Blackie a. Son Ltd. Glasglow a. London (1981) pp. 163–185

    Google Scholar 

  • Wald, G.: The molecular basis of visual excitation. Nature (London) 219, 800–807 (1968).

    Article  ADS  Google Scholar 

  • Since the printing of this article, great advances have been made in our understanding of the phototransduction mechanism. These are summarized in: Stieve, H.: Transduction of light energy to electrical signal in photoreceptor cells. Proc. of Symp.: The Biology of Photoreceptors, Norwich, Sept. 1981, Publ. by Cambridge Univ. Press (in press) and Biophys. Struct. Mech. (1983) 9/4.

    Google Scholar 

  • Born, M., Wolf, E.: Principles of Optics. Oxford: Pergamon Press 1965.

    Google Scholar 

  • Dartnall, H. J. A. (Ed.): Photochemistry of Vision. In: H. Autrum et al. (Eds.) Handbook of Sensory Physiology, Vol. VII/1. Berlin-Heidelberg-New York: Springer 1972.

    Google Scholar 

  • Marcuse, D.: Theory of dielectric waveguides. New York: Academic Press 1973.

    Google Scholar 

  • Snyder, A.W., Menzel, R. (Eds.): Photoreceptor Optics. Berlin-Heidelberg-New York: Springer 1975.

    Google Scholar 

  • Snyder, A.W.: Physics of Vision in Compound Eyes. In: H. J. Autrum (Ed.) Handbook of Sensory Physiology, Vol. VII/6 A. Berlin-Heidelberg-New York: Springer 1979

    Google Scholar 

  • Cleland, B.G., Dubin, M.W., Levick, W.R.: Sustained and transient neurones in the cat’s retina and lateral geniculate nucleus. J. Physioi. (Lond.) 217, 473–496 (1971).

    Google Scholar 

  • Cornsweet, T.N.: Visual perception. New York-London: Academic Press 1970.

    Google Scholar 

  • Creutzfeldt, O.D.: Transfer function of the retina. In: Cordeau, J.-P., Gloor, P. (Eds.): EEG Clin. Neurophysiol., Suppl.31: Recent contributions to neurophysiology, pp. 159–169. Amsterdam: Elsevier Publ. Comp. 1972.

    Google Scholar 

  • Creuzfeldt, O.: Repräsentation der visuellen Umwelt im Gehirn. Verh. Dtsch. Zool. Ges. 1979. Stuttgart: Gustav Fischer Verlag 1979, S. 5–19.

    Google Scholar 

  • Creutzfeldt, O.: Cortex cerebri. Berlin, Heidelberg, New York, Tokyo: Springer Verlag, 1983.

    Google Scholar 

  • Creutzfeldt, O.D., Lee, B.B., Elepfandt, A.: A quantitative study of chromatic organization and receptive fields of cells in the lateral geniculate body of the Rhesus monkey. Exp. Brain Res. 35, 527–545 (1979).

    Article  Google Scholar 

  • Creutzfeldt, O.D., Sakmann, B.: Neurophysiology of vision. Ann. Rev. Physiol. 31, 499–544 (1969).

    Article  Google Scholar 

  • Ditchburn, R.W.: Eye movements and visual perception. Oxford: Clarendon Press 1973.

    Google Scholar 

  • Fukuda, Y., Stone, J.: Retinal distribution and central projections of y-, x- and w-cells of the cat’s retina. J. Neurophysiol. 37, 749–772 (1974).

    Google Scholar 

  • Gazzaniga, M.S.: The bisected brain. 172 pp. New York: Appleton Century-Crofts 1970.

    Google Scholar 

  • Hubel, D.H., Wiesel, T.N.: Receptive fields and functional architecture of monkey’s striate cortex. J. Physiol. (Lond.) 195, 215–243 (1968).

    Google Scholar 

  • Hubel, D., Wiesel, T.: Sequence, regularity and geometry of orientation columns in the monkey striate cortex. J. Comp. Neurol. 158, 267–294(1974).

    Google Scholar 

  • Humphrey, N.K., Weiskrantz, L.: Vision in monkeys after removal of the striate cortex. Nature 215, 595–597 (1967).

    Article  ADS  Google Scholar 

  • Jung, R. (Ed.): Central Visual Information. Handbook of Sensory Physiology Vol. VII, Teil 3 (A und B). Berlin-Heidelberg-New York: Springer 1973.

    Google Scholar 

  • Peters, A., Proskauer, Ch.C., Feldman, M.L., Kimerer, L.: The projection of the lateral geniculate nucleus to area 17 of the rat cerebral cortex, J. Neurocytol. 8, 331–357 (1980)

    Article  Google Scholar 

  • Polyak, St.: The vertebrate visual system. Chicago: University of Chicago Press 1957.

    Google Scholar 

  • Ratliff, F.: Mach Bands: Quantitative studies on neural networks in the retina. San Francisco-London-Amsterdam: Holden-Day 1965.

    Google Scholar 

  • Rodieck, R.W.: The vertebrate retina. Principles of structure and function. San Francisco: W.H.Freeman 1973.

    Google Scholar 

  • Rushton, W.A.H.: Visual adaptation. The Ferrier lecture, 1962. Proc. Roy. Soc. B162, 20–46 (1962).

    ADS  Google Scholar 

  • Sakmann, B., Creutzfeldt, O.: Scotopic and mesopic light adaptation in the cat’s retina. Pflügers Arch. Ges. Physiol. 313, 168–185 (1969).

    Article  Google Scholar 

  • Sperry, R.W.: Hemisphere disconnection and unity of conscious awareness. Am. Psychologist 23, 723–733 (1968).

    Article  Google Scholar 

  • Yarbus, A.: Eye movements and vision. New York: Plenum Press 1967.

    Google Scholar 

  • Bennett, M.V.L.: Electric organs. In: Fish physiology, Vol. V. Hoar, W.S., Randall, D.J. (Eds.). London-New York: Academic Press 1971, pp. 347–491.

    Google Scholar 

  • Bullock, T.H., Hamstra, R.H., Jr., Scheich, H.: The jamming avoidance response of high frequency electric fish, I and II. J. Comp. Physiol. 77, 1–48 (1972).

    Article  Google Scholar 

  • Bullock, T.H.: Electroception. Ann. Rev. Neurosci. 5, 212–170 (1982).

    Article  Google Scholar 

  • Heiligenberg, W.: Principles of electrolocation and jamming avoidance response. Studies of brain function. Berlin-Heidelberg-New York: Springer 1977.

    Google Scholar 

  • Kalmijn, A.J.: The detection of electric fields from inanimate and animate sources other than electric organs. In: Handbook of sensory physiology, Vol. III/3. Fessard, A. (Ed.). Berlin-Heidelberg-New York: Springer 1974, pp. 147–200.

    Google Scholar 

  • Scheich, H.: Neural basis of communication in the high frequency electric fish, Eigenmannia virescens (jamming avoidance response), I—III. J. Comp. Physiol. 113, 181–255 (1977).

    Article  Google Scholar 

  • Scheich, H., Bullock, T.H.: The detection of electric fields from electric organs. In: Handbook of sensory physiology, Vol. III/3. Fessard, A. (Ed.). Berlin-Heidelberg-New York: Springer 1974, pp. 201–256.

    Google Scholar 

  • Szabo, T.: Anatomy of the specialized lateral line organs of electroreception. In: Handbook of sensory physiology, Vol. III/3. Fessard, A. (Ed.). Berlin-Heidelberg-New York: Springer 1974, pp. 13–58.

    Google Scholar 

  • Adey, W.R., Bawin, S.M.: Brain interactions with weak electric and magnetic fields. Neurosci. Res. Prog. Bull. 15 (1) 1–129 (1977).

    Google Scholar 

  • Barnothy, M.F. (Ed.): Biological Effects of Magnetic Fields, 2 Vol. New York: Plenum Press 1964, 1969.

    Google Scholar 

  • Blakemore, R.P., Frankel, R.B.: Magnetic navigation in bacteria. Sci. Amer. 245 (6) 42–49 (1981).

    Article  Google Scholar 

  • Calvin, M., Gazenko, O.G. (Eds.): Foundations of Space Biology and Medicine. 3 Vol. Washington: NASA 1975.

    Google Scholar 

  • Dubrov, A.P.: The Geomagnetic Field and Life. New York: Plenum Press 1978.

    Google Scholar 

  • Gordon, S.A., Cohen, M.J. (Eds.): Gravity and the Organism. Chicago: Univ. Chicago Press 1971.

    Google Scholar 

  • Hochachka, P.W., Somero, G.N.: Strategies of Biochemical Adaptation. Philadelphia: Saunders 1973

    Google Scholar 

  • Martin, H., Lindauer, M.: Der Einfluß des Erdmagnetfeldes auf die Schwereorientierung der Honigbiene (Apis mellifica). J. Comp. Physiol. 122, 145–187 (1977).

    Article  Google Scholar 

  • Reite, M., Zimmerman, J.: Magnetic phenomena of the central nervous system. Ann. Rev. Biophys. Bioeng. 7, 167–188 (1978).

    Article  Google Scholar 

  • Schmidt-Koenig, K., Keeton, W.T. (Eds.): Animal Migration, Navigation, and Homing. Berlin, Heidelberg, New York: Springer 1978.

    Google Scholar 

  • The Effects of Pressure on Organisms. Symp. Soc. Exp. Biol. XXVI. Cambridge: Cambridge Univ. Press 1972.

    Google Scholar 

  • Tributsch, H.: Wenn die Schlangen erwachen. Stuttgart: Deutsche Verlagsanstalt 1978.

    Google Scholar 

  • Zimmermann, U.: Physics of turgor- and osmoregulation. Annu. Rev. Plant Physiol. 29, 121–148 (1978)

    Article  Google Scholar 

Textbooks

  • Kuffler, S.W., Nicholls, J.G.: From neuron to brain. Sunderland (Mass.): Sinauer Assoc. 1976.

    Google Scholar 

  • Ruch, Th.C., Patton, H.D.: Physiology and biophysics, 20th edn., Vol. I. Philadelphia: Saunders 1975.

    Google Scholar 

  • Schmidt, R. F., Thews, G. (Ed.): Human Physiology. Berlin-Heidelberg-New York: Springer 1983.

    Google Scholar 

Compilation of important original papers

  • Cooke, I., Lipkin, M.: Cellular neurophysiology. New York: Holt, Rinehart, Winston 1972.

    Google Scholar 

Orignal papers

  • Colquhoun, D., Dreyer, F., Sheridan, R.E.: The actions of tubocurarin at the frog neuromuscular junction. J. Physiol. (London) 293, 247–284 (1979).

    Google Scholar 

  • Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (London) 117, 500–544 (1952).

    Google Scholar 

  • Neher, A., Sakmann, B., Steinbach, J.H.: The extracellular patch clamp: A method for resolving currents through individual open channels in biological membranes. Pflugers Arch. 375, 219–228 (1978).

    Article  Google Scholar 

  • Neher, E., Stevens, C.F.: Conductance fluctuations and ionic pores in membranes. Annu. Rev. Biophys. Bioeng. 6, 345–381 (1977).

    Article  Google Scholar 

  • Ulbricht, W.: Ionic channels and gating currents in excitable membranes. Annu. Rev. Biophys. Bioeng. 6, 7–31 (1977).

    Article  Google Scholar 

  • Wernig, A.: Estimates of statistical release parameters from crayfish and frog neuromuscular junctions. J. Physiol. (London) 244, 207–221 (1975).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dudel, J. et al. (1983). Neurobiophysics. In: Hoppe, W., Lohmann, W., Markl, H., Ziegler, H. (eds) Biophysics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68877-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68877-5_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68879-9

  • Online ISBN: 978-3-642-68877-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics