Skip to main content

Abstract

This state of the art review starts with a discussion of the classical (Courant) penalty function and of the various theoretical results which can be proved. The function is used sequentially and numerical results are disappointing; the reasons for this are explained, and cannot be alleviated by extrapolation. These difficulties are apparently overcome by using the multiplier (augmented Lagrangian) penalty function, and the theoretical background and practical possibilities are described. However the current approach for forcing convergence has its disadvantages and there is scope for more research.

Most interest currently centres on exact penalty functions, and in particular the l 1 exact penalty function. This is a nonsmooth function so cannot be minimized adequately by current techniques for smooth functions. However it is very useful as a criterion function in association with other techniques such as sequential QP. A thorough description of the l 1 penalty function is given, which aims to clarify the first and second order conditions associated with the minimizing point. There are some disadvantages of using non-smooth penalty functions including the existence of curved grooves which can be difficult to follow, and the possibility of the Maratos effect occurring. Suggestions for alleviating these difficulties are discussed.

These effects have recently caused more emphasis in the search for suitable smooth exact penalty functions, and a survey of research in this area, and the theoretical and practical possibilities, is given.

Finally some of the many other ideas for penalty functions are discussed briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bandler J. W. and Charalambous C. (1972), “Practical least p-th optimization of networks”, IEEE Trans. Microwave Theo. Tech. (1972 Symposium Issue), 20, 834– 840.

    Google Scholar 

  • Bertsekas D. P. (1982), “Augmented Lagrangian and differentiable exact penalty methods”, in “Nonlinear Optimization 1981” ed. M. J. D. Powell, Academic Press, London.

    Google Scholar 

  • Boggs P. T. and Tolle J. W. (1980), “Augmented Lagrangians which are quadratic in the multiplier”, J. Opt. Theo. Applns., 31, 17–26.

    Article  MathSciNet  MATH  Google Scholar 

  • Boggs P. T. and Tolle J. W. (1981), “An implementation of a quasi-Newton method for constrained optimization”, University of N. Carolina at Chapel Hill, O. R. and Systems Analysis Report 81–3.

    Google Scholar 

  • Carroll C. W. (1961), “The created response surface technique for optimizing nonlinear restrained systems”, Operations Res., 9, 169–184.

    Article  MathSciNet  MATH  Google Scholar 

  • Chamberlain R. M., Lemarechal C., Pedersen H. C. and Powell M. J. D. (1982), “The watchdog technique for forcing convergence in algorithms for constrained optimization” in “Mathematical Programming Study 16, Algorithms for Constrained Minimization of Smooth Nonlinear Functions” eds. A. G. Buckley and J.-L. Goffin, North Holland, Amsterdam.

    Google Scholar 

  • Charalambous C. (1977), “Nonlinear least p-th optimization and nonlinear programming”, Math. Prog., 12, 195–225.

    Article  MathSciNet  MATH  Google Scholar 

  • Coleman T. F. and Conn A. R. (1980), “Nonlinear programming via an exact penalty function: Asymptotic analysis”, Univ. of Waterloo, Dept. of Comp. Sci. Report CS- 80–30.

    Google Scholar 

  • Coope I. D. and Fletcher R. (1980), “Some numerical experience with a globally convergent algorithm for nonlinearly constrained optimization”, J. Opt. Theo. Applns., 32, 1–16.

    Article  MathSciNet  MATH  Google Scholar 

  • Courant R. (1943), “Variational methods for the solution of problems of equilibrium and vibration”, Bull. Amer. Math. Soc., 49, 1–23.

    Article  MathSciNet  MATH  Google Scholar 

  • Di Pillo G. and Grippo L. (1979), “A new class of augmented Lagrangians in nonlinear programming” SIAM J. Control Opt., 17, 618–628.

    Article  MATH  Google Scholar 

  • Di Pillo G., Grippo L. and Lampariello F. (1981), “A class of algorithms for the solution of optimization problems with inequalities”, CNR Inst, di Anal, dei Sistemi ed Inf. Report R18.

    Google Scholar 

  • Fiacco A. V. and McCormick G. P. (1968), “Nonlinear Programming”, John Wiley, New York.

    MATH  Google Scholar 

  • Fletcher R. (1970), “A class of methods for nonlinear programming with termination and convergence properties”, in “Integer and Nonlinear Programming” ed. J. Aba-die, North Holland, Amsterdam.

    Google Scholar 

  • Fletcher R. (1972), “A class of methods for nonlinear programming, III Rates of convergence” in “Numerical Methods for Nonlinear Optimization”, ed. F. A. Lootsma, Academic Press, London.

    Google Scholar 

  • Fletcher R. (1973), “An exact penalty function for nonlinear programming with inequalities”, Math. Progr. 5, 129–150.

    Article  MathSciNet  MATH  Google Scholar 

  • Fletcher R. (1975), “An ideal penalty function for constrained optimization”, J. Inst. Maths. Applns., 7, 76–91.

    Article  MathSciNet  Google Scholar 

  • Fletcher R. (1981a), “Practical Methods of Optimization, Vol. 2, Constrained Optimization”, John Wiley, Chichester.

    Google Scholar 

  • Fletcher R. (1981b), “Numerical experiments with an exact penalty function method”, in “Nonlinear Programming 4”, eds. O. L. Mangasarian, R. R. Meyer and S. M. Robinson, Academic Press, New York.

    Google Scholar 

  • Fletcher R. (1982), “Second order corrections for nondifferentiable optimization”, in “Numerical Analysis Proceedings, Dundee 1981”, ed. G. A. Watson, Lecture Notes in Mathematics 912, Springer Verlag, Berlin.

    Google Scholar 

  • Fletcher R. and Lill S. A. (1972), “A class of methods for nonlinear programming, II Computational experience”, in “Nonlinear Programming”, eds. J. B. Rosen, O. L. Mangasarian and K. Ritter, Academic Press, New York.

    Google Scholar 

  • Frisch K. R. (1955), “The logarithmic potential method of convex programming”, Memo., Univ. Inst, of Economics, Oslo, May 1955.

    Google Scholar 

  • Gill P. E. and Murray W. (1976), “Nonlinear least squares and nonlinearly constrained optimization”, in “Numerical Analysis, Dundee 1975”, ed. G. A. Watson, Lecture Notes in Mathematics 506, Springer Verlag, Berlin.

    Google Scholar 

  • Han S. P. (1977), “A globally convergent method for nonlinear programming”, J. Opt. Theo. Applns., 22, 297–309.

    Article  MATH  Google Scholar 

  • Han S. P. and Mangasarian O. L. (1981). L. (1981), “A dual differentiable exact penalty function”, Univ. of Wisconsin, Dept of Comp. Sci. Report 434, and in Math. Progr., 25, 293–306, (1983).

    Google Scholar 

  • Hestenes M. R. (1969), “Multiplier and gradient methods”, J. Opt. Theo. Applns., 4, 303–320.

    Article  MathSciNet  MATH  Google Scholar 

  • Lootsma F. A. (1972), “A survey of methods for solving constrained minimization problems via unconstrained minimization” in “Numerical Methods for Nonlinear Optimization”, ed. F. A. Lootsma, Academic Press, London.

    Google Scholar 

  • Mangasarian O. L. (1973), “Unconstrained Lagrangians in nonlinear programming”, Univ. of Wisconsin, Dept. of Comp. Sci. Report 174.

    Google Scholar 

  • Mayne D. Q. (1980), “On the use of exact penalty functions to determine step length in optimization algorithms” in “Numerical Analysis, Dundee 1979”, ed. G. A. Watson, Lecture Notes in Mathematics 773, Springer-Verlag, Berlin.

    Google Scholar 

  • Morrison D. D. (1968), “Optimization by least squares”, SIAM J. Num. Anal., 5, 83–88.

    Article  MathSciNet  MATH  Google Scholar 

  • Murray W. and Wright M. H. (1978), “Projected Lagrangian methods based on the trajectories of penalty and barrier functions”, Stanford Univ. Dept. of O. R. Report SOL 78–23.

    Google Scholar 

  • Osborne M. R. and Ryan D. M. (1972), “A hybrid algorithm for nonlinear programming” in “Numerical Methods for Nonlinear Optimization”, ed. F. A. Lootsma, Academic Press, London.

    Google Scholar 

  • Powell M. J. D. (1969), “A method for nonlinear constraints in minimization problems”, in “Optimization”, ed. R. Fletcher, Academic Press, London.

    Google Scholar 

  • Powell M. J. D. (1978), “A fast algorithm for nonlinearly constained optimization calculations”, in “Numerical Analysis, Dundee 1977”, ed. G. A. Watson, Lecture Notes in Mathematics 630, Springer Verlag, Berlin.

    Google Scholar 

  • Powell M. J. D. (ed.) (1982), “Nonlinear Optimization 1981”, Academic Press, London.

    MATH  Google Scholar 

  • Rockafellar R. T. (1974), “Augmented Lagrange multiplier functions and duality in non-convex programming”, SIAM J. Control, 12, 268–285.

    MathSciNet  MATH  Google Scholar 

  • Schittkowski K. (1980), “Nonlinear Programming Codes”, Lecture Notes in Economics and Mathematical Systems 183, Springer-Verlag, Berlin.

    Google Scholar 

  • Wilson R. B. (1963), “A simplicial algorithm for concave programming”, PhD dissertation, Harvard Univ. Grad. School of Business Admin.

    Google Scholar 

  • Wolfe P. (1965), “The composite simplex algorithm”, SIAM Rev., 7, 42–54.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fletcher, R. (1983). Penalty Functions. In: Bachem, A., Korte, B., Grötschel, M. (eds) Mathematical Programming The State of the Art. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68874-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68874-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68876-8

  • Online ISBN: 978-3-642-68874-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics