Skip to main content

Generalized Subgradients in Mathematical Programming

  • Chapter

Abstract

Mathematical programming problems, and the techniques used in solving them, naturally involve functions that may well fail to be differentiable. Such functions often have “subdifferential” properties of a sort not covered in classical analysis, but which provide much information about local behavior. This paper outlines the fundamentals of a recently developed theory of generalized directional derivatives and subgradients.

Research supported in part by the Air Force Office of Scientific Research, United States Air Force, under grant no. F4960-82-K-0012.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. P. Aubin, “Gradients généralisés de Clarke”, Annales des Sciences Mathématiques Québec 2 (1978) 197–252.

    MathSciNet  MATH  Google Scholar 

  2. J. P. Aubin, “Further properties of Lagrange multipliers in nonsmooth optimization”, Applied Mathematics and Optimization 6 (1980) 79–80.

    Article  MathSciNet  MATH  Google Scholar 

  3. J. P. Aubin, “Locally Lipschitzian cooperative games”, Journal of Mathematical Economics 8 (1981) 241 - 262.

    Article  MathSciNet  MATH  Google Scholar 

  4. J. P. Aubin and F. H. Clarke, “Multiplicateurs de Lagrange en optimisation non convexe et applications”, Comptes Rendus de l’Academie des Sciences Paris 285 (1977) 451–454.

    MathSciNet  MATH  Google Scholar 

  5. J. P. Aubin and F. H. Clarke, “Shadow prices and duality for a class of optimal control problems”, SIAM Journal on Control and Optimization 17 (1979) 567–586.

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Auslender, “Stabilité différentiable en programmation non convexe nondifférentiable”, Comptes Rendus de l’Academie des Sciences Paris 286.

    Google Scholar 

  7. A. Auslender, “Differential stability in nonconvex and nondifferentiable programming”, Mathematical Programming Study 10 (1978).

    Google Scholar 

  8. A. Auslender, “Minimisation de fonctions localement lipschitziennes: Applications a la programmation mi-convex, mi-differentiable”, in: O. L. Mangasarian et al., éd., Nonlinear Programming 3 ( Academic Press, New York, 1978 ) 429–460.

    Google Scholar 

  9. R. W. Chaney, “Second-order sufficiency conditions for nondifferentiable programming problems”, SIAM Journal on Control and Optimization 20 (1982) 20–33.

    Article  MathSciNet  MATH  Google Scholar 

  10. R. W. Chaney and A. A. Goldstein, “An extension of the method of subgradients”, in C. Lemarechal and R. Mifflin, eds., Nonsmooth Optimization ( Pergamon Press, New York, 1978 ).

    Google Scholar 

  11. S. M. Chung, “Exact penalty algorithms for nonlinear programming”, in: O. L. Mangasarian et al., éd., Nonlinear Programming 3 ( Academic Press, New York, 1978 ) 197–224.

    Google Scholar 

  12. A. R. Conn, “Constrained optimization using a nondifferentiable penalty function”, SIAM Journal on Numerical Analysis 10 (1973) 760–784.

    Article  MathSciNet  MATH  Google Scholar 

  13. F. H. Clarke, “Generalized gradients and applications”, Transactions of the American Mathematical Society 205 (1975) 247–262.

    Article  MathSciNet  MATH  Google Scholar 

  14. F. H. Clarke, “Generalized gradients of Lipschitz functionals”, Advances in Mathematics 40 (1981) 52–67.

    Article  MathSciNet  MATH  Google Scholar 

  15. F. H. Clarke, “On the inverse function theorem”, Pacific Journal of Mathematics 67 (1976) 97–102.

    Google Scholar 

  16. F. H. Clarke, “The Euler-Lagrange differential inclusion”, Journal of Differential Equations 19 (1975) 80–90.

    Article  MathSciNet  MATH  Google Scholar 

  17. F. H. Clarke, “La condition hamiltonienne d’optimalité”, Comptes Rendus de VAcademie des Sciences Paris 280 (1975) 1205–1207.

    MATH  Google Scholar 

  18. F. H. Clarke, “Optimal solutions to differential inclusions”, Journal of Optimization Theory and Applications 19 (1976) 469–478.

    Article  MathSciNet  MATH  Google Scholar 

  19. F. H. Clarke, “The generalized problem of Bolza”, SIAM Journal on Control and Optimization 14 (1976) 682–699.

    Article  MathSciNet  MATH  Google Scholar 

  20. F. H. Clarke, “The maximum principle under minimal hypotheses”, SIAM Journal on Control and Optimization 14 (1976) 1078–1091.

    Article  MathSciNet  MATH  Google Scholar 

  21. F. H. Clarke, “Inequality constraints in the calculus of variations”, Canadian Journal of Mathematics 39 (1977) 528–540.

    Article  Google Scholar 

  22. F. H. Clarke, “A new approach to Lagrange multipliers”, Mathematics of Operations Research 1 (1976) 165–174.

    Article  MathSciNet  MATH  Google Scholar 

  23. B. Cornet, “Regularity properties of normal and tangent cones”, forthcoming.

    Google Scholar 

  24. J. M. Danskin, The theory of max-min and its application to weapons allocations problems ( Springer-Verlag, New York, 1967 ).

    Google Scholar 

  25. R. J. Duffin, E. L. Peterson and C. Zener, Geometric programming ( Wiley, New York, 1967 ).

    MATH  Google Scholar 

  26. J. Gauvin, “The generalized gradient of a marginal function in mathematical programming”, Mathematics of Operations Research 4 (1979) 458–463.

    Article  MathSciNet  MATH  Google Scholar 

  27. J. Gauvin and F. Dubeau, “Differential properties of the marginal value function in mathematical programming”, Mathematical Programming Studies, forthcoming.

    Google Scholar 

  28. A. A. Goldstein, “Optimization of Lipschitz continuous functions”, Mathematical Programming 13 (1977) 14–22.

    Article  MathSciNet  MATH  Google Scholar 

  29. M. Held, P. Wolfe and H. P. Crowder, “Validation of subgradient optimization”, Mathematical Programming 6 (1974) 62–88.

    Article  MathSciNet  MATH  Google Scholar 

  30. J.-B. Hiriart-Urruty, “Tangent cones, generalized gradients and mathematical programming in Banach spaces”, Mathematics of Operations Research 4 (1979) 79–97.

    Article  MathSciNet  MATH  Google Scholar 

  31. J.-B. Hiriart-Urruty, “On optimality conditions in nondifferentiable programming”, Mathematical Programming, forthcoming.

    Google Scholar 

  32. J.-B. Hiriart-Urruty, “Gradients généralisés de fonctions marginales”, SIAM Journal on Control and Optimization 16 (1978) 301–316.

    Article  MathSciNet  MATH  Google Scholar 

  33. J.-B. Hiriart-Urruty, “Conditions nécessaires d’optimalité pour un programme stochastique avec recours”, SIAM Journal on Control and Optimization 16 (1978) 317– 329.

    Google Scholar 

  34. J.-B. Hiriart-Urruty, “Refinements of necessary optimality conditions in nondifferentiable programming, I”, Applied Mathematics and Optimization 5 (1979) 63–82.

    Article  MathSciNet  MATH  Google Scholar 

  35. J.-B. Hiriart-Urruty, “Extension of Lipschitz functions”, Journal of Mathematical Analysis and Applications 11 (1980) 539–554.

    Google Scholar 

  36. S. Howe, “New conditions for the exactness of a simple penalty function”, SIAM Journal on Control and Optimization 11 (1973) 378–381.

    Article  MathSciNet  MATH  Google Scholar 

  37. G. Lebourg, “Valeur moyenne pour gradient généralisé”, Comptes Rendus de l’Academie des Sciences Paris 281 (1975) 795–797.

    MathSciNet  MATH  Google Scholar 

  38. R. Mifflin, “Semismooth and semiconvex functions in constrained optimization”, SIAM Journal on Control and Optimization 15 (1977) 959–972.

    Article  MathSciNet  MATH  Google Scholar 

  39. R. Mifflin, “An algorithm for constrained optimization with semismooth functions”, Mathematics of Operations Research 2 (1977) 191–207.

    Article  MathSciNet  MATH  Google Scholar 

  40. R. Mifflin, V. H. Nguyen and J. J. Strodiot, “On conditions to have bounded multipliers in locally Lipschitz programming”, Mathematical Programming 18 (1980) 100–106.

    Article  MathSciNet  MATH  Google Scholar 

  41. T. Petrzykowski, “An exact potential method for constrained maxima”, SIAM Journal on Numerical Analysis 6 (1969) 299–304.

    Article  MathSciNet  Google Scholar 

  42. C. Pomerol, “The Lagrange multiplier set and the generalized gradient set of the marginal function of a differentiable program in a Banach space”, Journal of Optimization Theory and Applications, forthcoming.

    Google Scholar 

  43. R. T. Rockafellar, Convex analysis ( Princeton University Press, Princeton, NJ, 1970 ).

    MATH  Google Scholar 

  44. R. T. Rockafellar, “Clarke’s tangent cones and the boundaries of closed sets in Rn”, Nonlinear Analysis: Theory, Methods and Applications 3 (1979) 145–154.

    Article  MathSciNet  MATH  Google Scholar 

  45. R. T. Rockafellar, “Generalized directional derivatives and subgradients of nonconvex functions”, Canadian Journal of Mathematics 32 (1980) 257–280.

    Article  MathSciNet  MATH  Google Scholar 

  46. R. T. Rockafellar, “Directionally Lipschitzian functions and subdifferential calculus”, Proceedings of the London Mathematical Society 39 (1979) 331–355.

    Article  MathSciNet  MATH  Google Scholar 

  47. R. T. Rockafellar, “Proximal subgradients, marginal values and augmented Lagrangians in nonconvex optimization”, Mathematics of Operations Research 6 (1981) 424–436.

    Article  MathSciNet  MATH  Google Scholar 

  48. R. T. Rockafellar, “Lagrange multipliers and subderivatives of optimal value functions in nonlinear programming”, Mathematical Programming Study 17 (1982) 28– 66.

    Google Scholar 

  49. R. T. Rockafellar, “The theory of subgradients and its applications to problems of optimization: convex and nonconvex functions” ( Heldermann-Verlag, West-Berlin, 1981 ).

    MATH  Google Scholar 

  50. R. T. Rockafellar, “Augmented Lagrangians and marginal values in parameterized optimization problems”, in: A. Wierzbicki, ed., Generalized Lagrangian methods in optimization ( Pergamon Press, New York, 1982 ).

    Google Scholar 

  51. R. T. Rockafellar, “Favorable classes of Lipschitz continuous functions in subgradient optimization”, in: E. Nurminski, ed., Nondifferentiable Optimization ( Pergamon Press, New York, 1982 ).

    Google Scholar 

  52. R. T. Rockafellar, “Proximal subgradients, marginal values, and augmented Lagrangians in nonconvex optimization”, Mathematics of Operations Research 6 (1981) 427–437.

    Article  MathSciNet  Google Scholar 

  53. R. T. Rockafellar, “Marginal values and second-order necessary conditions for optimally”, Mathematical Programming, to appear.

    Google Scholar 

  54. R. T. Rockafellar, “Directional differentiability of the optimal value function in a nonlinear programming problem”, Mathematical Programming Studies, to appear.

    Google Scholar 

  55. R. T. Rockafellar, “Augmented Lagrange multiplier functions and duality in non-convex programming”, SIAM Journal on Control 12 (1974) 268–285.

    Article  MathSciNet  MATH  Google Scholar 

  56. S. Saks, “Theory of the integral” ( Hafner Publishing Co., New York, 1937 ).

    Google Scholar 

  57. L. Thibault, “Problème de Bolza dans un espace de Banach séparable”, Compes de VAcademie des Sciences Paris 282 (1976) 1303–1306.

    MathSciNet  MATH  Google Scholar 

  58. L. Thibault, “Subdifferentials of compactly Lipschitzian vector-valued functions”, Annali di Matematica Pura e Applicata 125 (1980) 157–192.

    Article  MathSciNet  MATH  Google Scholar 

  59. L. Thibault, “On generalized differentials and subdifferentials of Lipschitz vector-valued functions”, Nonlinear Analysis: Theory, Methods and Applications, forthcoming.

    Google Scholar 

  60. L. Thibault, “Subdifferentials of nonconvex vector-valued functions”, Journal of Mathematical Analysis and Applications, forthcoming.

    Google Scholar 

  61. J. Treiman, “Characterization of Clarke’s tangent and normal cones in finite and infinite dimensions”, Nonlinear Analysis: Theory, Methods and Applications, forthcoming.

    Google Scholar 

  62. W. I. Zangwill, “Nonlinear programming via penalty functions”, Management Science 13 (1961) 34–358.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rockafellar, R.T. (1983). Generalized Subgradients in Mathematical Programming. In: Bachem, A., Korte, B., Grötschel, M. (eds) Mathematical Programming The State of the Art. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68874-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68874-4_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68876-8

  • Online ISBN: 978-3-642-68874-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics