Skip to main content

Glucagon and Amino Acid Metabolism

  • Chapter
Glucagon I

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 66 / 1))

Abstract

Glucagon is thought to play two major metabolic roles (UNGER and ORCI 1981). One, as shown over 30 years ago by Sutherland and associates (Sutherland 1950; Sutherland et al. 1968), is to increase blood glucose levels by initiating hepatic glycogenolysis. The other is to promote gluconeogenesis, thus serving to maintain glucose production, even in the face of increased insulin levels, such as after a high protein meal when insulin and glucagon are both increased. Therefore, glucagon has a very significant metabolic role, especially in carbohydrate deficiency, be it in the fed or in the fasted state. Glucagon has also been found to decrease amino acid levels after its infusion in humans (Fig. 1) and experimental animals (Helmer et al. 1957; Weinges 1959; Landau and Lugibihl 1960; Bromer and Chance 1969; Marliss et al. 1970; Aoki et al. 1974). This effect is apparent in subjects with glucagon-producing tumors, who have been found to have strikingly low concentrations of all or almost all amino acids (Mallinson et al. 1974; Holst 1978, 1979; Kessinger et al. 1977; Boden et al. 1978; Riddle et al. 1978; Holst et al. 1979; Stacpoole et al. 1981; Bhathena et al. 1981). This response could result both from increased hepatic amino acid trapping and, possibly, from a global effect of glucagon in regulating the gradients of amino acids across all cells, or even in regulating protein synthesis and breakdown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adibi SA (1968) Influence of dietary deprivation on plasma concentration of free amino acids of man. J Appl Physiol 25: 52–57

    PubMed  CAS  Google Scholar 

  • Aikawa T, Matsutaka H, Takezawa K, Ishikawa E (1972) Gluconeogenesis and amino acid metabolism. I. Comparison of various precursors for hepatic gluconeogenesis in vivo. Biochim Biophys Acta 279: 234–244

    PubMed  CAS  Google Scholar 

  • Aoki TT, Müller WA, Brennan MF, Cahill GF Jr (1974) Effect of glucagon on amino acid and nitrogen metabolism in fasting man. Metabolism 23: 805–814

    PubMed  CAS  Google Scholar 

  • Aoki TT, Toews CJ, Rossini AA, Ruderman NB, Cahill GF Jr (1975) Gluconeogenic substrate levels in fasting man. Adv Enzyme Regul 13: 329–336

    PubMed  CAS  Google Scholar 

  • Ashford TP, Porter KR (1962) Cytoplasmic components in hepatic cell lysosomes. J Cell Biol 12: 198–202

    PubMed  CAS  Google Scholar 

  • Askanazi J, Fürst P, Michelson CB, Elwyn DH, Vinnars E, Gump FE, Stinchfield FE, Kinney JM ( 1980 a) Muscle and plasma amino acids after injury. Hypocaloric glucose vs. amino acid infusion. Ann Surg 191: 465–472

    PubMed  CAS  Google Scholar 

  • Askanazi J, Carpentier YA, Michelsen CB, Elwyn DH, Fürst P, Kantrowitz LR, Gump FE, Kinney JM ( 1980 b) Muscle and plasma amino acids following injury. Influence of intercurrent infection. Ann Surg 192: 78–85

    PubMed  CAS  Google Scholar 

  • Beatty CH, Peterson RD, Bocek RM, Craig NC, Weleber R (1963) Effect of glucagon on incorporation of glycine-C14 into protein of voluntary skeletal muscle. Endocrinology 73: 721–726

    PubMed  CAS  Google Scholar 

  • Bergstrom J, Fürst P, Noree L-O, Vinnars E (1974) The intracellular free amino acid con-centration in human muscle tissue. J Appl Physiol 36: 693–697

    PubMed  CAS  Google Scholar 

  • Bhathena SJ, Higgins GA, Recant L (1981) Glucagonoma and glucagonoma syndrome. In: Unger RH, Orci L (eds) Glucagon. Elsevier/North Holland, Amsterdam Oxford New York, pp 413–438

    Google Scholar 

  • Boden G, Owen OE (1977) Familial hyperglucagonemia - an autosomal dominant disorder. N Engl J Med 296: 53–538

    Google Scholar 

  • Boden G, Owen OE, Rezvani I, Elfenbein EI, Quickel KE (1977) An islet cell carcinoma containing glucagon and insulin. Chronic glucagon excess and glucose homeostasis. Diabetes 26: 128–137

    PubMed  CAS  Google Scholar 

  • Boden G, Wilson RM, Owen OE (1978) Effects of chronic glucagon excess on hepatic metabolism. Diabetes 27: 643–648

    PubMed  CAS  Google Scholar 

  • Boden G, Master RW, Rezvani I, Palmer JP, Lobe TE, Owen OE (1980) Glucagon deficiency and hyperaminocidemia after total pancreatectomy. J Clin Invest 65: 706–716

    PubMed  CAS  Google Scholar 

  • Bromer WW, Chance RE (1969) Zinc glucagon depression of blood amino acids in rabbits. Diabetes 18: 748–754

    PubMed  CAS  Google Scholar 

  • Buse MG, Biggers JF, Drier C, Buse JF (1973) The effect of epinephrine, glucagon, and the nutritional state on the oxidation of branched chain amino acids and pyruvate by isolated hearts and diaphragms of the rat. J Biol Chem 248: 697–706

    PubMed  CAS  Google Scholar 

  • Cahill GF Jr (1971) Physiology of insulin in man. Diabetes 20: 785–799

    PubMed  CAS  Google Scholar 

  • Cahill GF Jr, Owen OE (1968) Some observations on carbohydrate metabolism in man. In: Dickens F, Randle PJ, Whelan WJ (eds) Carbohydrate metabolism and its disorders, chap 16. Academic Press, New York London, pp 497–556

    Google Scholar 

  • Cahill GF Jr, Felig P, Marliss EB (1970) Some physiological principles of parenteral nutrition. In: Fox CL Jr, Nahas GG (eds) Fluid replacement in the surgical patient: a symposium, 1969. Grune and Stratton, New York, pp 286–295

    Google Scholar 

  • Cahill GF Jr, Marliss EB, Aoki TT (1972) Insulin and muscle protein. In: Steiner DF, Freinkel N (eds) Endocrinology. American Physiology Society, Washington, DC (Handbook of physiology, sect 7, vol 1, pp 563–577 )

    Google Scholar 

  • Cahill GF Jr, Aoki TT, Smith RJ (1981) Amino acid cycles in man. Curr Top Cell Regul 18: 389–400

    PubMed  CAS  Google Scholar 

  • Carlsten A, Hallgren B, Jagenburg R, Svanborg A, Werko L (1966) Amino acids in plasma in diabetes. I. The effect of insulin on arterial levels. Acta Med Scand 179: 361–370

    PubMed  CAS  Google Scholar 

  • Chambers JW, Georg RH, Bass AD (1968) Effects of catecholamines and glucagon on amino acid transport in the liver. Endocrinology 83: 1185–1192

    PubMed  CAS  Google Scholar 

  • Christensen HN (1973) On the development of amino acid transport systems. Fed Proc 2: 19–28

    Google Scholar 

  • Christensen HN (1979) Exploiting amino acid structure to learn about membrane transport. Adv Enzymol 49: 41–101

    PubMed  CAS  Google Scholar 

  • Christensen HN (1981) Membrane domination of biological energy exchanges: a message of the 1978 Nobel award in chemistry. Perspect Biol Med 24: 358–373

    PubMed  CAS  Google Scholar 

  • Crofford DB, Felts PW, Lacy WW (1964) Effect of glucose infusion on the individual free amino acids in man. Proc Soc Exp Biol Med 117: 11–14

    PubMed  CAS  Google Scholar 

  • Cuthbertson DP (1932) Observations on the disturbance of metabolism produced by injury to the limbs. Biochem J 25: 233–246

    Google Scholar 

  • Deri JJ, Williams PE, Steiner KE, Cherrington AD (1981) Altered ability of the liver to produce glucose following a period of glucagon deficiency. Diabetes 30: 490–495

    PubMed  CAS  Google Scholar 

  • DeRosa G, Swick RW (1975) Metabolic implications of the distribution of the alanine aminotransferase isozymes. J Biol Chem 250: 7961–7967

    PubMed  CAS  Google Scholar 

  • Deuel HJ Jr, Sandiford K, Sandiford I, Boothby WM (1926) Deposit protein: the effect of thyroxin on the deposit protein after reduction of the nitrogen excretion to a minimal level by a prolonged protein-free diet. J Biol Chem 67:XXIII–XXIV

    Google Scholar 

  • Dieterle PM, Brawand F, Moser UK, Walter P (1978) Alanine metabolism in rat liver mitochondria. Eur J Biochem 88: 467–473

    PubMed  CAS  Google Scholar 

  • Exton JH (1972) Gluconeogenesis. Metabolism 21: 945–990

    PubMed  CAS  Google Scholar 

  • Exton JH, Park CR (1967) Control of gluconeogenesis in liver. I. General features of gluconeogenesis in the perfused livers of rats. J Biol Chem 242: 2622–2636

    PubMed  CAS  Google Scholar 

  • Exton JH, Park CR (1968) Control of gluconeogenesis in liver. II. Effects of glucagon, cat-echolamines, and adenosine 3’,5’-monophosphate on gluconeogenesis in the perfused rat liver. J Biol Chem 243: 4189–4196

    PubMed  CAS  Google Scholar 

  • Exton JH, Park CR (1969) Control of gluconeogenesis in liver. III. Effects of lactate, pyruvate, fructose, glucagon, epinephrine and adenosine 3’,5’-monophosphate on gluconeogenic intermediates in the perfused rat liver. J Biol Chem 244: 1424–1433

    PubMed  CAS  Google Scholar 

  • Farah A, Tuttle R (1960) Studies on the pharmacology of glucagon. J Pharmacol Exp Ther 129: 49–55

    PubMed  CAS  Google Scholar 

  • Fehlmann M, LeCam A, Kitabgi P, Rey J-F, Freychet P ( 1979 a) Regulation of amino acid transport in the liver. Emergence of a high affinity transport system in isolated hepatocytes from fasting rats. J Biol Chem 254: 401–407

    PubMed  CAS  Google Scholar 

  • Fehlmann M, LeCam A, Freychet P ( 1979 b) Insulin and glucagon stimulation of amino acid transport in isolated rat hepatocytes. Synthesis of a high affinity component of transport. J Biol Chem 254: 10431–10437

    PubMed  CAS  Google Scholar 

  • Fehlmann M, Samson M, Koch KS, Leffert HL, Freychet P (1981) The effect of amiloride on hormonal regulation of amino acid transport in isolated and cultured adult rat hepatocytes. Biochim Biophys Acta 642: 88–95

    PubMed  CAS  Google Scholar 

  • Felig P (1975) Amino acid metabolism in man. Annu Rev Biochem 44: 933–955

    PubMed  CAS  Google Scholar 

  • Felig P, Owen OE, Wahren J, Cahill GF Jr (1969) Amino acid metabolism during prolonged starvation. J Clin Invest 48: 584–594

    PubMed  CAS  Google Scholar 

  • Felig P, Marliss E, Ohman J, Cahill GF Jr (1970) Plasma amino acid levels in diabetic ketoacidosis. Diabetes 19: 727–729

    PubMed  CAS  Google Scholar 

  • Foa PP, Dunbar JC, Klein SP, Levy SH, Malik MA, Campbell BB, Foa NL (1980) Reactive hypoglycemia and A-cell (“pancreatic”) glucagon deficiency in the adult. JAMA 244: 2281–2285

    PubMed  CAS  Google Scholar 

  • Freychet P, LeCam A (1977) Amino acid transport in isolated hepatocytes: effect of glucagon. Ciba Found Symp 55: 247–262

    PubMed  Google Scholar 

  • Fürst P, Bergstrom J, Chao L, Larsson J, Liljedahl SO, Neuhauser M, Schildt B, Vinnars E (1979) Influence of amino acid supply on nitrogen and amino acid metabolism in severe trauma. Acta Chir Scand [Suppl] 494: 136–141

    Google Scholar 

  • Gerich JE, Lorenzi M, Bier DM, Schneider V, Tsalikian E, Karam JH, Forsham PH (1975) Prevention of human diabetic keotacidosis by somatostatin. Evidence for an essential role of glucagon. N Engl J Med 292: 985–989

    PubMed  CAS  Google Scholar 

  • Gotlin RW, Silver HK (1970) Neonatal hypoglycemia, hyperinsulinism and absence of pancreatic alpha cells. Lancet 1: 1346

    Google Scholar 

  • Grey N, McGuigan JE, Kipnis DM (1970) Neutralization of endogenous glucagon by high titer glucagon antiserum. Endocrinology 86: 1383–1388

    PubMed  CAS  Google Scholar 

  • Guder W, Hepp KD, Wieland O (1970) The catabolic action of glucagon in rat liver. Biochim Biophys Acta 222: 593

    PubMed  CAS  Google Scholar 

  • Hait G, Kypson J, Massik R (1972) Amino acid incorporation into myocardium: effect of insulin, glucagon, and dibutyryl 3’,5’-AMP. Am J Physiol 222: 40–408

    Google Scholar 

  • Helmer OM, Kirtley WR, Ridolfo AS (1957) Clinical and metabolic changes induced by glucagon in patients with rheumatoid arthritis. J Lab Clin Med 50: 824

    Google Scholar 

  • Hinton P, Allison SP, Littlejohn S, Lloyd J (1971) Insulin and glucose to reduce catabolic response to injury in burned patients. Lancet 1: 767–769

    PubMed  CAS  Google Scholar 

  • Hoist J J (1978) Glucagonomas. In: Bloom SR (ed) Gut hormones. Churchill Livingstone, Edinburgh London, pp 599–694

    Google Scholar 

  • Hoist JJ (1979) Gut endocrine tumour syndromes. Clin Endocrinol Metab 8: 413–432

    Google Scholar 

  • Hoist JJ, Helland S, Ingemannson S, Pedersen NB, Von Schenk H (1979) Functional studies in patients with the glucagonoma syndrome. Diabetologia 17: 151–156

    Google Scholar 

  • Kessinger A, Lemon HM, Foley JF (1977) The glucagonoma syndrome and its management. J Surg Oncol 9: 419–424

    PubMed  CAS  Google Scholar 

  • Kilberg MS, Neuhaus OW (1977) Hormonal regulation of hepatic amino acid transport. J Supramol Struct 6: 191–204

    PubMed  CAS  Google Scholar 

  • Kinney JM, Felig P (1979) The metabolic response to injury and infection. In: DeGroot LJ et al. (eds) Endocrinology. Grune and Stratton, New York, pp 1963–1986

    Google Scholar 

  • Kinney JM, Long CL, Gump FE, Duke JH Jr (1968) Tissue composition of surgical patients. I. Elective operation. Ann Surg 168: 459–474

    Google Scholar 

  • Koerker DJ, Ruch W, Chideckel E, Palmer J, Goodner CJ, Ensinck J, Gale CC (1974) Somatostatin: hypothalamic inhibitor of the endocrine pancreas. Science 184: 482–484

    PubMed  CAS  Google Scholar 

  • Kollee LA, Monnens LA, Cejka V, Wilms RH (1978) Persistent neonatal hypoglycemia due to glucagon deficiency. Arch Dis Child 53: 422–424

    PubMed  CAS  Google Scholar 

  • Krebs HA (1969) The role of equilibria in the regulation of metabolism. Curr Top Cell Regul 6: 45–55

    Google Scholar 

  • Kruty F, Gvozdjak A, Bada V, Niederland TR, Gvozdjak J, Kaplan M (1978) The effect of glucagon on the heart muscle: relation between metabolic processes and contractility. Biochem Pharmacol 27: 2153–2155

    PubMed  CAS  Google Scholar 

  • Landau RL, Lugibihl K (1960) Effect of glucagon on concentration of several free amino acids in plasma. Metabolism 18: 265–276

    Google Scholar 

  • Lawson LJ (1965) Parenteral nutrition in surgery. Br J Surg 52: 795–799

    PubMed  CAS  Google Scholar 

  • LeCam A, Freychet P (1976) Glucagon stimulates the A system for neutral amino acid transport in isolated hepatocytes of the adult rat. Biochem Biophys Res Commun 72: 893–901

    CAS  Google Scholar 

  • Levey GS, Epstein SE (1969) Activation of adenyl cyclase by glucagon in cat and human heart. Circ Res 24: 151–156

    PubMed  CAS  Google Scholar 

  • Levy LJ, Zarowitz H, Bleicher SJ, Spergel G (1969) Possible combined alpha and beta cell deficiency. Clin Res 17: 590

    Google Scholar 

  • Long CL, Spencer JL, Kinney JM, Geiger JW (1971) Carbohydrate metabolism in man: effects of elective operations and major injury. J Appl Physiol 31: 110–116

    PubMed  CAS  Google Scholar 

  • Loreti L, Klein SP, Foa PP (1974) Hypoglycemia associated with glucagon insufficiency. Clin Res 22: 475

    Google Scholar 

  • MacDonald M, Neufeldt N, Park BN, Berger M, Ruderman NB (1976) Alanine metabolism and gluconeogenesis in the rat. Am J Physiol 231: 619–625

    PubMed  CAS  Google Scholar 

  • Mallinson CH, Bloom SR, Warin AP, Salmon PR, Cox B (1974) A glucagonoma syndrome. Lancet 2: 1–5

    PubMed  CAS  Google Scholar 

  • Manchester KL (1970) Control by insulin of amino acid accumulation in muscle. Biochem J 117: 457–465

    PubMed  CAS  Google Scholar 

  • Marliss EB, Aoki TT, Unger RH, Soeldner JS, Cahill GF Jr (1970) Glucagon levels and metabolic effects in fasting man. J Clin Invest 49: 2256–2270

    PubMed  CAS  Google Scholar 

  • Marliss EB, Aoki TT, Toews CJ, Felig P, Connon JJ, Kyner J, Huckabee WE, Cahill GF Jr (1972) Amino acid metabolism in lactic acidosis. Am J Med 52: 474–481

    PubMed  CAS  Google Scholar 

  • McGavran MH, Unger RH, Recant L, Polk HC, Kilo C, Levin ME (1966) A glucagon-secreting alpha-cell carcinoma of the pancreas. N Engl J Med 274: 1408–1413

    PubMed  CAS  Google Scholar 

  • Mialhe P (1958) Glucagon, insuline, et regulation endocrine de la glycemie chez le canard. Acta Endocrinol (Copenh) 28:(36)139

    Google Scholar 

  • Mikami SI, Ono K (1962) Glucagon deficiency induced by extirpation of alpha islets of the fowl pancreas. Endocrinology 71: 464–475

    PubMed  CAS  Google Scholar 

  • Mortimer CH, Carr D, Lind T, Bloom SR, Mallinson CN, Schally AV, Tunbridge WMG, Yeomans L, Coy DH, Kastin A, Besser GM, Hale R (1974) Effects of growth-hormone release-inhibiting hormone on circulating glucagon, insulin, and growth hormone in normal, diabetic, acromegalic, and hypopituitary patients. Lancet 1: 697–701

    PubMed  CAS  Google Scholar 

  • Müller WA, Berger M, Suter P, Cuppers HJ, Reiter J, Wyss T, Berchtold P, Schmidt F, Assal J-P, Renold AE (1979) Glucagon immunoreactivities and amino acid profile in plasma of duodenopancreatectomized patients. J Clin Invest 53: 820–827

    Google Scholar 

  • Munro HN (1964) General aspects of the regulation of protein metabolism by diet and by hormones. In: Munro HN, Allison JB (eds) Mammalian protein metabolism, vol 1. Academic, New York London, p 406

    Google Scholar 

  • Munro HN, Thomson WST (1953) Influence of glucose on amino acid metabolism. Metabolism 2: 354–361

    PubMed  CAS  Google Scholar 

  • Norton J A, Kahn CR, Schiebinger R, Gorschboth C, Brennan MF (1979) Amino acid deficiency and the skin rash associated with glucagonoma. Ann Intern Med 91: 213–215

    PubMed  CAS  Google Scholar 

  • Oxender DL, Christensen HN (1963) Distinct mediating systems for the transport of neutral amino acids by the Ehrlich cell. J Biol Chem 238: 3686–3699

    PubMed  CAS  Google Scholar 

  • Parilla R, Jimenez M-K, Ayuso-Parrilla MS (1975) Glucagon and insulin control of gluconeogenesis in the perfused isolated rat liver. Effects on cellular metabolite distribution. Eur J Biochem 56: 375–383

    Google Scholar 

  • Parilla R, Jimenez M-K, Ayuso-Parrila MS (1976) Cellular redistribution of metabolites during glucagon and insulin control of gluconeogenesis in the isolated perfused rat liver. Arch Biochem Biophys 174: 1–12

    Google Scholar 

  • Peterson RD, Beatty CH, Bocek RM (1963) Effects of insulin and glucagon on carbohydrate and protein metabolism of adductor muscle and diaphragm. Endocrinology 72: 71–77

    PubMed  CAS  Google Scholar 

  • Pozefsky T, Felig P, Soeldner JS, Cahill GF Jr (1968) Insulin blockade of amino acid release by human forearm tissues. Trans Assoc Am Physicians 82: 258–264

    Google Scholar 

  • Pozefsky T, Tancredi RG, Moxley RT, Dupre J, Tobin JD (1976) Metabolism in forearm tissues in man. Studies with glucagon. Diabetes 25: 125–128

    Google Scholar 

  • Pryor J, Berthet J (1960) The action of adenosine 3’,5’-monophosphate on the incorporation of leucine into liver proteins. Biochim Biophys Acta 43: 556–557

    PubMed  CAS  Google Scholar 

  • Richards JR (1980) Current concepts in the metabolic responses in injury, infection and starvation. Proc Nutr Soc 39: 113–123

    PubMed  CAS  Google Scholar 

  • Riddle MC, Golper TA, Fletcher WS, Ensinck JW, Smith PH (1978) Glucagonoma syndrome in a 19 year old woman. West J Med 129: 68–72

    PubMed  CAS  Google Scholar 

  • Robison GA, Butcher RW, Sutherland EW (1971) Cyclic AMP. Academic, New York London, pp 232–284

    Google Scholar 

  • Rosa F (1971) Ultrastructural changes produced by glucagon, cyclic 3’,5’-AMP and epi-nephrine on perfused rat livers. Ultrastruc Res 34: 205

    CAS  Google Scholar 

  • Ross BD, Hems R, Krebs HA (1967) The rate of gluconeogenesis from various precursors in the perfused rat liver. Biochem J 102: 942–951

    PubMed  CAS  Google Scholar 

  • Russell RCG, Walker CJ, Bloom SR (1975) Hyperglucagonemia in the surgical patient. Br Med J 1: 10–12

    PubMed  CAS  Google Scholar 

  • Schimassek H, Gerok W (1965) Control of the levels of free amino acids in plasma by the liver. Biochem Z 342: 407–415

    Google Scholar 

  • Schimke RT (1970) Regulation of protein degradation in mammalian tissues. In: Munro HN, Allison JB (eds) Mammalian protein metabolism. Academic, New York London, pp 177–228

    Google Scholar 

  • Schworer CM, Mortimore GE (1979) Glucagon-induced autophagy and proteolysis in rat liver: mediation by selective deprivation of intracellular amino acids. Proc Natl Acad Sci USA 76: 3169–3173

    PubMed  CAS  Google Scholar 

  • Sherwin RS, Tamborlane W, Hendler R, Sacca L, DeFronzo RA, Felig P (1977) Influence of glucagon replacement on the hyperglycemic and hyperketonemic response to prolonged somatostatin infusion in normal man. J Clin Endocrinol Metab 45: 1104–1107

    PubMed  CAS  Google Scholar 

  • Siess EA, Wieland OH (1978) Glucagon-induced stimulation of 2-oxoglutarate metabolism in mitochondria from rat liver. FEBS Lett 93: 301–306

    PubMed  CAS  Google Scholar 

  • Siess EA, Brocks DG, Lattke HK, Wieland OH (1977) Effect of glucagon on metabolite compartmentation in isolated rat liver cells during gluconeogenesis from lactate. Biochem J 166: 225–235

    PubMed  CAS  Google Scholar 

  • Smith SR, Pozefsky T, Chhetri MK (1974) Nitrogen and amino acid metabolism in adults with protein-calorie malnutrition. Metabolism 23: 603–618

    PubMed  CAS  Google Scholar 

  • Snodgrass PJ, Lin RC, Muller WA, Aoki TT (1978) Induction of urea cycle enzymes of rat liver by glucagon. J Biol Chem 253: 2748–2753

    PubMed  CAS  Google Scholar 

  • Stacpoole PW, Jaspan J, Kasselberg AG, Halter SA, Polonsky K, Gluck FW, Liljenquist JE, Rabin D (1981) A familial glucagonoma syndrome. Genetic, clinical and biochemical features. Am J Med 70: 1017–1026

    PubMed  CAS  Google Scholar 

  • Sutherland EW (1970) The effect of the hyperglycemic factor of the pancreas and of epinephrine on glycogenolysis. Recent Prog Horm Res 5: 441–463

    Google Scholar 

  • Sutherland EW, Robison GA (1969) The role of cyclic AMP in the control of carbohydrate metabolism. Diabetes 18: 797–819

    PubMed  CAS  Google Scholar 

  • Sutherland EW, Robison GA, Butcher RW (1968) Some aspects of the biological role of adenosine 3’,5’-monophosphate (cyclic AMP). Circulation 37: 279–306

    CAS  Google Scholar 

  • Tews JK, Woodcock NH, Harper AE (1970) Stimulation of amino acid transport in rat liver slices by epinephrine, glucagon and adenosine–3’,5’-monophosphate. J Biol Chem 245: 3026–3032

    PubMed  CAS  Google Scholar 

  • Tolbert MEM, Fain JN (1974) Studies on the regulation of gluconeogenesis in isolated rat liver cells by epinephrine and glucagon. J Biol Chem 249: 1162–1166

    PubMed  CAS  Google Scholar 

  • Unger RH (1976) Diabetes and the alpha cell. The Banting Memorial Lecture 1975. Diabetes 25: 136–151

    PubMed  CAS  Google Scholar 

  • Unger RH, Aguilar-Parada E, Muller WA, Eisentraut AM (1970) Studies of pancreatic alpha-cell function in normal and diabetic subjects. J Clin Invest 49: 837–848

    PubMed  CAS  Google Scholar 

  • Unger RH, Dobbs RE, Orci L (1978) Insulin, glucagon, and somatostatin secretion in the regulation of metabolism. Annu Rev Physiol 40: 307–343

    PubMed  CAS  Google Scholar 

  • Vidnes J (1976) Persistent hereditary neonatal hypoglycemia caused by glucagon deficiency. Pediatr Res 10: 881

    Google Scholar 

  • Vinnars E, Bergstrom J, Fürst P (1975) Influence of postoperative state on the intracellular free amino acids in human muscle tissue. Ann Surg 182: 665–671

    PubMed  CAS  Google Scholar 

  • Wagner T, Spranger J, Brunck HJ (1969) Kongenitaler Alpha-Zellmangel als Ursache einer chronischen infantilen Hypoglykamie. Monatsschr Kinderheilk 117: 236–238

    CAS  Google Scholar 

  • Wahren J, Felig P (1976) Influence of somatostatin on carbohydrate disposal and absorption in diabetes mellitus. Lancet 2: 1213–1216

    PubMed  CAS  Google Scholar 

  • Weinges KF (1959) Action of glucagon on the total amino acids in the serum. Arch Exp Pathol Pharmacol 237: 17–21

    CAS  Google Scholar 

  • Williamson JR (1967) Effects of fatty acids, glucagon and anti-insulin serum on the control of gluconeogenesis and ketogenesis in rat liver. Adv Enzyme Regul 5: 229–255

    PubMed  CAS  Google Scholar 

  • Woodside KH, Mortimore GE (1970) Control of proteolysis in the perfused rat liver: influence of amino acids, insulin and glucagon ( Abstr ). Fed Proc 29: 379

    Google Scholar 

  • Young VR, Scrimshaw NS (1968) Endogenous nitrogen metabolism and plasma free amino acids in young adults given a protein-free diet. Br J Nutr 22: 9–20

    PubMed  CAS  Google Scholar 

  • Zuppinger KA (1975) Hypoglycemia in childhood. Evaluation of diagnostic procedures. Monogr Paediatr 4. Karger, Basel

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cahill, G.F., Aoki, T.T., Smith, R.J. (1983). Glucagon and Amino Acid Metabolism. In: Lefèbvre, P.J. (eds) Glucagon I. Handbook of Experimental Pharmacology, vol 66 / 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68866-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68866-9_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68868-3

  • Online ISBN: 978-3-642-68866-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics