Skip to main content

Glucagon and Liver Glycogen Metabolism

  • Chapter
Glucagon I

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 66 / 1))

Abstract

The stimulatory effect of glucagon on the conversion of liver glycogen to blood glucose was the first documented property of glucagon, the “hyperglycemic glycogenolytic factor” discovered as a contaminant in some commercial preparations of insulin. Sutherland (1950) has reviewed the early evidence that indicated the hormonal nature of glucagon, distinct from insulin, and that established the liver as the target for the hormone’s action. By the analysis of serial blood and liver samples from anesthetized dogs, Cahill et al. (1957) were able to link directly the glucagon-induced hyperglycemia with hepatic glycogenolysis. The effects of glucagon to increase both glucose output and glycogen breakdown in various isolated liver preparations may be well known; as experimental sophistication has grown over the years, such effects have been demonstrated in rabbit liver slices (Sutherland 1950), isolated perfused rat liver (SOKAL et al. 1964), isolated hepatocytes (Garrison and Haynes 1973; Seglen 1973; Wagle and Ingebretsen 1973), and liver cells in primary culture (Gerschenson and Casanello 1968; Walker and Grindle 1977). Numerous reports have stated similar observations, usually with liver preparations from rats or rabbits, but occasionally also from mice (Assimaco-poulos-Jeannet et al. 1973; Müller et al. 1976).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andia-Waltenbaugh AM, Tate CA, Friedmann NK (1981) The effect of glucagon on the kinetics of hepatic mitochondrial calcium-uptake. Mol Cell Biochem 36: 177–184

    Article  PubMed  CAS  Google Scholar 

  • Assimacopoulos-Jeannet F, Exton JH, Jeanrenaud B (1973) Control of gluconeogenesis and glycogenolysis in perfused livers of normal mice. Am J Physiol 225: 25–32

    PubMed  CAS  Google Scholar 

  • Assimacopoulos-Jeannet FD, Blackmore PF, Exton JH (1977) Studies on α-adrenergic ac-tivation of hepatic glucose output. Studies on role of calcium in α-adrenergic activation of phosphorylase. J Biol Chem 252: 2662–2669

    PubMed  CAS  Google Scholar 

  • Bergen SS, Hilton JG, Van Itallie TB (1966) Glycogenolytic effect of adenosine 3’,5’-monophosphate in the canine liver. Endocrinology 79: 1065–1068

    Article  PubMed  CAS  Google Scholar 

  • Berthet J, Jacques P, Hers HG, de Duve C (1956) Influence de l’insuline et du glucagon sur la synthese du glycogene hepatique. Biochim Biophys Acta 20: 190–200

    CAS  Google Scholar 

  • Birnbaum MJ, Fain JN (1977) Activation of protein kinase and glycogen phosphorylase in isolated rat liver cells by glucagon and catecholamines. J Biol Chem 252: 528–535

    PubMed  CAS  Google Scholar 

  • Bishop JS (1970) Inability of insulin to activate liver glycogen transferase D phosphatase in the diabetic pancreatectomized dog. Biochim Biophys Acta 208: 208–218

    Article  PubMed  CAS  Google Scholar 

  • Bishop JS, Larner J (1967) Rapid activation-inactivation of liver uridine diphosphate glucose-glycogen transferase and phosphorylase by insulin and glucagon in vivo. J Biol Chem 242: 1355–1356

    Google Scholar 

  • Bowness JM (1966) Epinephrine: cascade reactions and glycogenolytic effect. Science 152: 1370–1371

    Article  PubMed  CAS  Google Scholar 

  • Buschiazzo H, Exton JH, Park CR (1970) Effects of glucose on glycogen synthetase, phosphorylase, and glycogen deposition in the perfused rat liver. Proc Natl Acad Sci USA 65: 383–387

    Article  PubMed  CAS  Google Scholar 

  • Byus CV, Hayes JS, Brendel K, Russell DH (1976) Correlation between cAMP, activation of cAMP-dependent protein kinase(s), and rate of glycogenolysis in isolated rat hepatocytes. Life Sci 19: 329–335

    Article  PubMed  CAS  Google Scholar 

  • Cahill GF, Zottu S, Earle AS (1957) In vivo effects of glucagon on hepatic glycogen, phosphorylase, and glucose-6-phosphatase. Endocrinology 60: 265–269

    Article  PubMed  CAS  Google Scholar 

  • Chan TM, Steiner KE, Exton JH ( 1979 b) Effects of adrenalectomy on hormone action on hepatic glucose metabolism. Impaired glucagon activation of glycogen phosphorylase in hepatocytes from adrenalectomized rats. J Biol Chem 254: 11374–11378

    PubMed  CAS  Google Scholar 

  • Cherrington AD, Exton JH (1976) Studies on the role of cAMP-dependent protein kinase in the actions of glucagon and catecholamines on liver glycogen metabolism. Metabolism 25: 1351–1354

    Article  PubMed  CAS  Google Scholar 

  • Cherrington AD, Assimacopoulos FD, Harper SC, Corbin JD, Park CR, Exton JH (1976) Studies on the α-adrenergic activation of hepatic glucose output. II. Investigation of the roles of adenosine 3’:5’-monophosphate and adenosine 3’:5’-monophosphate-dependent protein kinase in the actions of phenylephrine in isolated hepatocytes. J Biol Chem 251: 5209–5218

    PubMed  CAS  Google Scholar 

  • Cherrington AD, Hundley RF, Dolgin S, Exton JH (1977) Studies of the role of β-adren-ergic receptors in the activation of phosphorylase in rat hepatocytes by catecholamines. J Cyclic Nucleotide Res 3: 263–273

    PubMed  CAS  Google Scholar 

  • Chrisman TD, Vandenheede JR, Khandelwal RL, Gella FJ, Upton JD, Krebs EG (1980) Purification and regulatory properties of liver phosphorylase kinase. Adv Enzyme Regul 18: 145–159

    Article  PubMed  CAS  Google Scholar 

  • Christoffersen T, Berg T (1974) Glucagon control of cyclic AMP accumulation in isolated intact rat liver parenchymal cells in vitro. Biochim Biophys Acta 338: 408–417

    Article  CAS  Google Scholar 

  • Corbin JD, Keely SL, Park CR (1975) The distribution and dissociation of cyclic adenosine 3’:5’-monophosphate-dependent protein kinases in adipose, cardiac and other tissues. J Biol Chem 250: 218–225

    PubMed  CAS  Google Scholar 

  • Cornblath M (1955) Reactivation of rabbit liver phosphorylase by epinephrine, glucagon and ephedrine. Am J Physiol 183: 240–244

    PubMed  CAS  Google Scholar 

  • Cote TE, Epand RM (1979) Na-trinitrophenyl glucagon: an inhibitor of glucagon-stimulated cyclic AMP production and its effects on glycogenolysis. Biochim Biophys Acta 582: 295–306

    Article  PubMed  CAS  Google Scholar 

  • Curnow RT, Rayfield EJ, George DT, Zenser TV, De Rubertis F (1975) Control of hepatic glycogen metabolism in the rhesus monkey: effect of glucose, insulin, and glucagon administration. Am J Physiol 228: 80–87

    PubMed  CAS  Google Scholar 

  • de Barsy T, Lederer B (1980) Type VI glycogenosis: identification of subgroups. In: Burman D, Holton JB, Pennock CA (eds) Inherited disorders of carbohydrate metabolism. MTP Press, Lancaster, pp 369–380

    Chapter  Google Scholar 

  • Defreyn G, Goris J, Merlevede W (1977) A deinhibitor protein neutralizing the effect of the protein inhibitors on dog liver phosphorylase phosphatase. FEBS Lett 79: 125–128

    Article  PubMed  CAS  Google Scholar 

  • Devos P, Hers HG (1980) Random, presumably hydrolytic, and lysosomal glycogenolysis in the livers of rats treated with phlorizin and of newborn rats. Biochem J 192: 177–181

    PubMed  CAS  Google Scholar 

  • De Wulf H, Hers HG (1968) The role of glucose, glucagon and glucocorticoids in the regulation of liver glycogen synthesis. Eur J Biochem 6: 558–564

    Article  PubMed  Google Scholar 

  • De Wulf H, Keppens S, Vandenheede JR, Haustraete F, Proost C, Carton H (1980) Cyclic AMP-independent regulation of liver glycogenolysis. In: Dumont J, Nunez J (eds) Hormones and cell regulation, vol 4. Elsevier/North Holland Biomedical, Amsterdam Oxford New York, pp 47–71

    Google Scholar 

  • Doorneweerd DD, Gilboe DP, Nuttall FQ (1981) An assay specific for the active form of liver phosphorylase kinase. Anal Biochem 113: 271–276

    Article  PubMed  CAS  Google Scholar 

  • Doperé F, Vanstapel F, Stalmans W ( 1980 b) Glycogen-synthase phosphatase activity in rat liver. Two protein components and their requirement for the activation of different types of substrate. Eur J Biochem 104: 137–146

    Article  PubMed  Google Scholar 

  • Exton JH, Robison GA, Sutherland EW, Park CR (1971) Studies on the role of adenosine 3’,4’-monophosphate in the hepatic actions of glucagon and catecholamines. J Biol Chem 246: 6166–6177

    PubMed  CAS  Google Scholar 

  • Felig P, Sherwin RS, Soman V, Wahren J, Hendler R, Sacca L, Eigler N, Goldberg D, Walesky M (1979) Hormonal interactions in the regulation of blood glucose. Recent Prog Horm Res 35: 501–532

    PubMed  CAS  Google Scholar 

  • Fischer EH, Heilmeyer LMG, Haschke RH (1971) Phosphorylase and the control of glycogen degradation. Curr Top Cell Regul 4: 211–251

    CAS  Google Scholar 

  • Foulkes JG, Cohen P (1979) The hormonal control of glycogen metabolism. Phosphorylation of protein phosphatase inhibitor-1 in vivo in response to adrenaline. Eur J Biochem 97: 251–256

    Article  PubMed  CAS  Google Scholar 

  • Friedmann N, Park CR (1968) Early effects of 3’,5’-adenosine monophosphate on the fluxes of calcium and potassium in the perfused liver of normal and adrenalectomized rats. Proc Natl Acad Sci USA 61: 504–508

    Article  PubMed  CAS  Google Scholar 

  • Garrison JC (1978) The effects of glucagon, catecholamines, and the calcium ionophore A 23187 on the phosphorylation of rat hepatocyte cytosolic proteins. J Biol Chem 253: 7091–7100

    PubMed  CAS  Google Scholar 

  • Garrison JC, Haynes RC (1973) Hormonal control of glycogenolysis and gluconeogenesis in isolated rat liver cells. J Biol Chem 248: 5333–5343

    PubMed  CAS  Google Scholar 

  • Garrison JC, Borland MK, Florio VA, Twible DA (1979) The role of calcium ion as a mediator of the effects of angiotensin II, catecholamines, and vasopressin on the phosphorylation and activity of enzymes in isolated hepatocytes. J Biol Chem 254: 7147–7156

    PubMed  CAS  Google Scholar 

  • Gerschenson LE, Casanello D (1968) Metabolism of rat liver cells cultured in suspension: insulin and glucagon effects on glycogen level. Biochem Biophys Res Commun 33: 584–589

    Article  PubMed  CAS  Google Scholar 

  • Gilboe DP, Nuttall FQ (1978) In vivo glucose-, glucagon-, and cAMP-induced changes in liver glycogen synthase phosphatase activity. J Biol Chem 253: 4078–4081

    PubMed  CAS  Google Scholar 

  • Glinsmann WH, Hern EP (1969) Inactivation of rat liver glycogen synthetase by 3’:5’-cyclic nucleotides. Biochem Biophys Res Commun 36: 931–936

    Article  PubMed  CAS  Google Scholar 

  • Glinsmann W, Pauk G, Hern E (1970) Control of rat liver glycogen synthetase and phosphorylase activities by glucose. Biochem Biophys Res Commun 39: 774–782

    Article  PubMed  CAS  Google Scholar 

  • Goris J, Defreyn G, Vandenheede JR, Merlevede W (1978) Protein inhibitors of dog-liver phosphorylase phosphatase dependent on an independent of protein kinase. Eur J Biochem 91: 457–464

    Article  PubMed  CAS  Google Scholar 

  • Hems DA, Whitton PD, Ma GY (1975) Metabolic actions of vasopressin, glucagon and adrenalin in the intact rat. Biochim Biophys Acta 411: 155–164

    Article  PubMed  CAS  Google Scholar 

  • Hue L, Feliu JE, Hers HG (1978) Control of gluconeogenesis and of enzymes of glycogen metabolism in isolated rat hepatocytes. A parallel study of the effect of phenylephrine and of glucagon. Biochem J 176: 791–797

    PubMed  CAS  Google Scholar 

  • Hughes BP, Barritt GJ (1978) Effects of glucagon and Af602’-dibutyryladenosine 3’:5’-cyclic monophosphate on calcium transport in isolated rat liver mitochondria. Biochem J 176: 295–304

    PubMed  CAS  Google Scholar 

  • Hutson NJ, Brumley FT, Assimacopoulos FD, Harper SC, Exton JH (1976) Studies on the α-adrenergic activation of hepatic glucose output. I. Studies on the α-adrenergic activation of phosphorylase and gluconeogenesis and inactivation of glycogen synthase in isolated rat liver parenchymal cells. J Biol Chem 251: 5200–5208

    PubMed  CAS  Google Scholar 

  • Ingebretsen C, Clark JF, Allen DO, Ashmore J (1974) Effect of glucagon, dibutyryl adenosine 3’,5’-cyclic monophosphate and phosphodiesterase inhibitors on rat liver phosphorylase activity and adenosine 3’,5’-cyclic monophosphate levels. Biochem Pharmacol 23: 2139–2146

    Article  PubMed  CAS  Google Scholar 

  • Itarte E, Mor MA, Salavert A, Pena JM, Bertomeu JF, Guinovart J J (1981) Purification and characterization of two cyclic AMP-independent casein/glycogen synthase kinases from rat liver cytosol. Biochim Biophys Acta 658: 334–347

    PubMed  CAS  Google Scholar 

  • Jakob A, Diem S (1974) Activation of glycogenolysis in perfused rat livers by glucagon and metabolic inhibitors. Biochim Biophys Acta 362: 469–479

    Article  PubMed  CAS  Google Scholar 

  • Jett MF, Hers HG (1981) Latent phosphorylase phosphatases from rat liver: relationship with the heat-stable inhibitory protein. Eur J Biochem 118: 283–288

    Article  PubMed  CAS  Google Scholar 

  • Jett MF, Soderling TR (1979) Purification and phosphorylation of rat liver glycogen synthase. J Biol Chem 254: 6739–6745

    PubMed  CAS  Google Scholar 

  • Kaslow HR (1980) Apparent phosphorylation of glycogen synthase in mammalian cells lacking cyclic AMP-dependent protein kinase. FEBS Lett 117: 219–223

    Article  PubMed  CAS  Google Scholar 

  • Keppens S, Vandenheede JR, De Wulf H (1977) On the role of calcium as second messenger in liver for the hormonally induced activation of glycogen phosphorylase. Biochim Biophys Acta 496: 448–457

    Article  PubMed  CAS  Google Scholar 

  • Krebs EG, Beavo JA (1979) Phosphorylation-dephosphorylation of enzymes. Annu Rev Biochem 48: 923–959

    Article  PubMed  CAS  Google Scholar 

  • Laloux M, Hers HG (1979) The role of phosphorylase in the inhibitory effect of EDTA and ATP on liver glycogen synthase phosphatase. Biochem Biophys Res Commun 86: 762–768

    Article  PubMed  CAS  Google Scholar 

  • Laloux M, Stalmans W, Hers HG (1978) Native and latent forms of liver phosphorylase phosphatase. The non-identity of native phosphorylase phosphatase and synthase phosphatase. Eur J Biochem 92: 15–24

    Google Scholar 

  • Levine RA (1965) Effect of glycogenolytic agents on phosphorylase activity of perfused rat liver. Am J Physiol 208: 317–323

    PubMed  CAS  Google Scholar 

  • Makman MH, Sutherland EW (1964) Use of liver adenyl cyclase for assay of glucagon in human gastro-intestinal tract and pancreas. Endocrinology 75: 127–134

    Article  PubMed  CAS  Google Scholar 

  • Malthus R, Clark DG, Watts C, Sneyd JGT (1980) Glycogen-storage disease in rats, a genetically determined deficiency of liver phosphorylase kinase. Biochem J 188: 99–106

    PubMed  CAS  Google Scholar 

  • Massague J, Guinovart JJ (1977) Insulin control of rat hepatocyte glycogen synthase and phosphorylase in the absence of glucose. FEBS Lett 82: 317–320

    Article  PubMed  CAS  Google Scholar 

  • Miller TB, Garnache A, Vicalvi JJ (1981) Hormonal regulation of hepatic glycogen synthase phosphatase. J Biol Chem 256: 2851–2855

    PubMed  CAS  Google Scholar 

  • Müller P, Singh A, Orci L, Jeanrenaud B (1976) Secretory processes, carbohydrate and lipid metabolism in isolated mouse hepatocytes. Aspects of regulation by glucagon and insulin. Biochim Biophys Acta 428: 480–494

    Google Scholar 

  • Murphy E, Coll K, Rich TL, Williamson JR (1980) Hormonal effects on calcium homeostasis in isolated hepatocytes. J Biol Chem 255: 6600–6608

    PubMed  CAS  Google Scholar 

  • Newman JD, Armstrong JM (1978) On the activities of glycogen phosphorylase and glycogen synthase in the liver of the rat. Biochim Biophys Acta 544: 225–233

    Article  PubMed  CAS  Google Scholar 

  • Northrop G, Parks RE (1964) Studies on epinephrine and 3’,5’-AMP induced hyperglycemia employing the isolated perfused rat liver preparation. J Pharmacol Exp Ther 145: 135–141

    PubMed  CAS  Google Scholar 

  • Nuttall FQ, Gilboe DP (1980) Liver glycogen synthase phosphatase and phosphorylase phosphatase activities in vitro following glucose and glucagon administration. Arch Biochem Biophys 203: 483–486

    Article  PubMed  CAS  Google Scholar 

  • Okajima F, Ui M (1976) Lack of correlation between hormonal effects on cyclic AMP and glycogenolysis in rat liver. Arch Biochem Biophys 175: 549–557

    Article  PubMed  CAS  Google Scholar 

  • Palmer WK, McPherson JM, Walsh DA (1980) Critical controls in the evaluation of cAMP- dependent protein kinase activity ratios as indices of hormonal action. J Biol Chem 255: 2663–2666

    PubMed  CAS  Google Scholar 

  • Payne EM, Soderling TR (1980) Calmodulin-dependent glycogen synthase kinase. J Biol Chem 255: 8054–8056

    PubMed  CAS  Google Scholar 

  • Pilkis SJ, Claus TH, Johnson RA, Park CR (1975) Hormonal control of cyclic 3’:5’-AMP levels and gluconeogenesis in isolated hepatocytes from fed rats. J Biol Chem 250: 6328–6336

    PubMed  CAS  Google Scholar 

  • Pointer RH, Butcher FR, Fain JN (1976) Studies on the role of cyclic guanosine 3,:5’-mono- phosphate and extracellular Ca2 + in the regulation of glycogenolysis in rat liver cells. J Biol Chem 251: 2987–2992

    PubMed  CAS  Google Scholar 

  • Proost C, Carton H, De Wulf H (1979) The α-adrenergic control of rabbit liver glycogenolysis. Biochem Pharmacol 28: 2187–2191

    Article  PubMed  CAS  Google Scholar 

  • Prpić V, Bygrave FL (1980) On the inter-relationship between glucagon action, the oxidation-reduction state of pyridine nucleotides, and calcium retention by rat liver mitochondria. J Biol Chem 255: 6193–6199

    PubMed  Google Scholar 

  • Rall TW, Sutherland EW, Wosilait WD (1956) The relationship of epinephrine and glucagon to liver phosphorylase. III. Reactivation of liver phosphorylase in slices and in extracts. J Biol Chem 218: 483–495

    PubMed  CAS  Google Scholar 

  • Rannels SR, Corbin JD (1980) Two different intrachain cAMP binding sites of cAMP-de- pendent protein kinases. J Biol Chem 255: 7085–7088

    PubMed  CAS  Google Scholar 

  • Richter EA, Galbo H, Hoist J J, Sonne B (1981) Significance of glucagon for insulin secre-tion and hepatic glycogenolysis during exercise in rats. Horm Metab Res 13: 323–326

    Article  PubMed  CAS  Google Scholar 

  • Robison GA, Butcher RW, Sutherland EW (1971) Cyclic AMP, chap. 5. Academic Press, New York London

    Google Scholar 

  • Rosenfeld EL, Popova I A, Orlova VS (1971) Action of glucagon on y-amylase and some other enzymes involved in glycogen breakdown. Biochimie 53: 939–940

    Article  PubMed  CAS  Google Scholar 

  • Rutter WJ, Brosemer RW (1961) Glucose production by isolated rat liver cells. An amylase-oligoglucosidase pathway for glycogen breakdown. J Biol Chem 236: 1247–1252

    PubMed  CAS  Google Scholar 

  • Rutter WJ, Arnold M, Brosemer RW, Miller JA (1961) Liver amylase. II. Physiological role. J Biol Chem 236: 1259–1263

    PubMed  CAS  Google Scholar 

  • Saitoh Y, Ui M (1975) Activation and inactivation of phosphorylase and glycogen synthetase during perfusion of rat liver as influenced by epinephrine, glucagon and hydrocortisone. Biochim Biophys Acta 404: 7–17

    Article  PubMed  CAS  Google Scholar 

  • Schaeffer LD, Chenoweth M, Dunn A (1969) Adrenal corticosteroid involvement in the control of liver glycogen phosphorylase activitiy. Biochim Biophys Acta 192: 292–303

    Article  PubMed  CAS  Google Scholar 

  • Schwoch G (1978) Differential activation of type-I and type-II adenosine 3’:5’-cyclic mono- phosphate-dependent protein kinases in liver of glucagon-treated rats. Biochem J 170: 469–477

    PubMed  CAS  Google Scholar 

  • Schwoch G, Hilz H (1977) Protein-bound adenosine 3’:5’-monophosphate in liver of glucagon-treated rats. Determination of half-maximal binding in vivo and correlation with protein kinase activation. Eur J Biochem 76: 269–276

    Article  PubMed  CAS  Google Scholar 

  • Seglen PO (1973) Effects of anaerobiosis, glucose, insulin and glucagon on glycogen metabolism in isolated parenchymal rat liver cells. FEBS Lett 36: 309–312

    Article  PubMed  CAS  Google Scholar 

  • Seitz HJ, Miiller MJ, Krone W, Tarnowski W (1977) Coordinate control of intermediary metabolism in rat liver by the insulin/glucagon ratio during starvation and after glucose refeeding. Arch Biochem Biophys 183: 647–663

    Article  PubMed  CAS  Google Scholar 

  • Sharma RJ, Rodrigues LM, Whitton PD, Hems DA (1980) Control mechanisms in the acceleration of hepatic glycogen degradation during hypoxia. Biochim Biophys Acta 630: 414–424

    Article  PubMed  CAS  Google Scholar 

  • Shikama H, Yajima M, Ui M (1980) Glycogen metabolism in rat liver during transition from the fed to fasted states. Biochim Biophys Acta 631: 278–288

    Article  PubMed  CAS  Google Scholar 

  • Shimazu T, Amakawa A (1975) Regulation of glycogen metabolism in liver by the autonomic nervous system. VI. Possible mechanism of phosphorylase activation by the splanchnic nerve. Biochim Biophys Acta 385: 242–256

    Article  PubMed  CAS  Google Scholar 

  • Siddle K, Kane-Maguire B, Campbell AK (1973) The effects of glucagon and insulin on adenosine 3/:5/-cyclic monophosphate concentrations in an organ culture of mature rat liver. Biochem J 132: 765–773

    PubMed  CAS  Google Scholar 

  • Soderling TR, Sheorain VS, Ericsson LH (1979) Phosphorylation of glycogen synthase by phosphorylase kinase. Stoichiometry, specificity and site of phosphorylation. FEBS Lett 106: 181–184

    Article  PubMed  CAS  Google Scholar 

  • Sokal JE (1966) Glucagon - an essential hormone. Am J Med 41: 331 - 341

    Article  PubMed  CAS  Google Scholar 

  • Sokal JE, Sarcione EJ, Henderson AM (1964) Relative potency of glucagon and epinephrine as hepatic glycogenolytic agents: studies with the isolated perfused rat liver. Endocrinology 74: 930–938

    Article  PubMed  CAS  Google Scholar 

  • Stalmans W (1976) The role of the liver in the homeostasis of blood glucose. Curr Top Cell Regul 11: 51–97

    PubMed  CAS  Google Scholar 

  • Stalmans W, Gevers G (1981) The catalytic activity of phosphorylase b in the liver. With a note on the assay in the glycogenolytic direction. Biochem J 200: 327–336

    PubMed  CAS  Google Scholar 

  • Stalmans W, Hers HG (1973) Glycogen synthesis from UDPG. In: Boyer PD (ed) The enzymes, 3rd edn, vol 9. Academic, New York London, pp 309–361

    Chapter  Google Scholar 

  • Stalmans W, Hers HG (1975) The stimulation of liver phosphorylase b by AMP, fluoride and sulfate. A technical note on the specific determination of the a and b forms of liver glycogen phosphorylase. Eur J Biochem 54: 341–350

    Article  PubMed  CAS  Google Scholar 

  • Stalmans W, van de Werve G (1981) Regulation of glycogen metabolism by insulin. In: Hue L, van de Werve G (eds) Short-term regulation of liver metabolism. Elsevier/North Holland Biomedical, Amsterdam Oxford New York, pp 119–138

    Google Scholar 

  • Stalmans W, De Wulf H, Hers HG (1971) The control of liver glycogen synthetase phosphatase by phosphorylase. Eur J Biochem 18: 582–587

    Article  PubMed  CAS  Google Scholar 

  • Stalmans W, De Wulf H, Hue L, Hers HG (1974) The sequential inactivation of glycogen phosphorylase and activation of glycogen synthetase in liver after the administration of glucose to mice and rats. The mechanism of the hepatic threshold to glucose. Eur J Biochem 41: 127–134

    Article  CAS  Google Scholar 

  • Sudilovsky O (1974) In vivo regulation of hepatic protein kinase by adenosine 3’,5’-mono- phosphate mediated glucagon stimulation. Biochem Biophys Res Commun 58: 85–91

    Article  PubMed  CAS  Google Scholar 

  • Sugden PH, Corbin JD (1976) Adenosine 3’:5’-cyclic monophosphate-binding proteins in bovine and rat tissues. Biochem J 159: 423–437

    PubMed  CAS  Google Scholar 

  • Sutherland EW (1950) The effect of the hyperglycemic factor of the pancreas and of epinephrine on glycogenolysis. Recent Prog Horm Res 5: 441–459

    Google Scholar 

  • Sutherland EW (1971) An introduction. In: Robison GA, Butcher RW, Sutherland EW (eds) Cyclic AMP. Academic Press, New York London, pp 1–16

    Google Scholar 

  • Sutherland EW, Cori CF (1951) Effect of hyperglycemic-glycogenolytic factor and epinephrine on liver phosphorylase. J Biol Chem 188: 531–543

    PubMed  CAS  Google Scholar 

  • Takeda M, Ohga Y (1973) Adenosine 3/,5/-monophosphate and histone phosphorylation during enzyme induction by glucagon in rat liver. J Biochem 73: 621–629

    PubMed  CAS  Google Scholar 

  • Tiedgen M, Seitz HJ (1980) Dietary control of circadian variations in serum insulin, glucagon and hepatic cyclic AMP. J Nutr 110: 876–882

    PubMed  CAS  Google Scholar 

  • Van den Berghe G, De Wulf H, Hers HG (1970) Concentration of cyclic 3’:5’-adenosine monophosphate and glycogen metabolism in the liver. Eur J Biochem 16: 358–362

    Article  PubMed  Google Scholar 

  • Vandenheede JR, Keppens S, De Wulf H (1976) The activation of liver phosphorylase b kinase by glucagon. FEBS Lett 61: 213–217

    Article  PubMed  CAS  Google Scholar 

  • Vandenheede JR, Keppens S, De Wulf H (1977) Inactivation and reactivation of liver phosphorylase b kinase. Biochim Biophys Acta 481: 463–470

    PubMed  CAS  Google Scholar 

  • Vandenheede JR, De Wulf H, Merlevede W (1979) Liver phosphorylase b kinase. Cyclic- AMP-mediated activation and properties of the partially purified rat-liver enzyme. Eur J Biochem 101: 51–58

    Article  PubMed  CAS  Google Scholar 

  • Wagle SR (1975) Interrelationship of insulin and glucagon ratios on carbohydrate metabolism in isolated hepatocytes containing high glycogen. Biochem Biophys Res Commun 67: 1019–1027

    Article  PubMed  CAS  Google Scholar 

  • Wagle SR, Ingebretsen WR (1973) Stimulation of glycogenolysis by epinephrine and glucagon and its inhibition by insulin in isolated rat liver hepatocytes. Biochem Biophys Res Commun 52: 125–129

    Article  PubMed  CAS  Google Scholar 

  • Walker PR, Grindle MJ (1977) Effects of hormones and serum on glycogen metabolism in adult rat liver parenchymal cell primary cultures. J Cell Physiol 91: 181–191

    Article  PubMed  CAS  Google Scholar 

  • Walli AK, Siebler G, Zepf E, Schimassek H (1974) Glycogen metabolism in isolated perfused rat liver. Hoppe Seylers Z Physiol Chem 355: 353–362

    Article  PubMed  CAS  Google Scholar 

  • Weintraub B, Sarcione EJ, Sokal JE (1969) Effect of glucagon on phosphorylase activity of the isolated perfused liver. Am J Physiol 216: 521–526

    PubMed  CAS  Google Scholar 

  • Wosilait WD, Sutherland EW (1956) The relationship of epinephrine and glucagon to liver phosphorylase. II. Enzymatic inactivation of liver phosphorylase. J Biol Chem 218: 469–481

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stalmans, W. (1983). Glucagon and Liver Glycogen Metabolism. In: Lefèbvre, P.J. (eds) Glucagon I. Handbook of Experimental Pharmacology, vol 66 / 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68866-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68866-9_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68868-3

  • Online ISBN: 978-3-642-68866-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics