Advertisement

The Human Epsilon Globin Gene — A Paradigm for Erythroid Differentiation

  • J. Paul
  • M. Allan
  • J. Grindlay
  • D. Spandidos
Conference paper
Part of the Colloquium der Gesellschaft für Biologische Chemie 25.–27. März 1982 in Mosbach/Baden book series (MOSBACH, volume 33)

Abstract

The fundamental unsolved problem of cell differentiation is how a common genome can be used to give a wide spectrum of cell types. Accumulated information has clearly shown that no simple mechanism is responsible. In individual cases differences in expression of a gene have been found to be due to gene loss, gene amplification, transposition of DNA, modification of DNA, transcription, processing, transport and stability of RNA or translation, modification or turnover of protein. It is not difficult to understand why teleological arguments, though not scientifically respectable, have an appeal because it would almost seem that a cell will exploit any available mechanism to achieve the best levels of expression of individual genes to meet the demands of the environment. In searching for some order in this process theories have varied from those which ascribe a predominant role to transcriptional control [1] to those like the cascade hypothesis [2] which envisage controls at all possible stages of expression.

Keywords

K562 Cell Thymidine Kinase Globin Gene Erythroid Cell Erythroid Differentiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Britten RJ, Davidson EH (1969) Science 165:349PubMedCrossRefGoogle Scholar
  2. 2.
    Scherrer K, Marcaud L (1968) J Cell Physiol 72:181PubMedCrossRefGoogle Scholar
  3. 3.
    Till JE, McCulloch EÄ (1980) Biochim Biophys Acta 605:431PubMedGoogle Scholar
  4. 4.
    Ploeg van der LHT, Flavell RA (1980) Cell 19:947PubMedCrossRefGoogle Scholar
  5. 5.
    Friend C, Scher W, Holland JG, Sato T (1971) Proc Natl Acad Sci USA 68:378PubMedGoogle Scholar
  6. 6.
    Anderson LC, Jokinen M, Gahmberg CG (1979) Nature (London) 278:364CrossRefGoogle Scholar
  7. 7.
    Weatherall DJ, Clegg JB (1979) Cell 16:467PubMedCrossRefGoogle Scholar
  8. 8.
    Proudfoot NJ, Baralle FE (1979) Proc Natl Acad Sci USA 76:5435PubMedCrossRefGoogle Scholar
  9. 9.
    Baralle FE, Shoulders CC, Proudfoot NJ (1980) Cell 21:621PubMedCrossRefGoogle Scholar
  10. 10.
    Coggins LW, Lanyon WG, Slater AA, Grindlay G.J, Paul J (1981) Biosci Rep 1:309PubMedCrossRefGoogle Scholar
  11. 11.
    Proudfoot NJ, Shander MHM, Manley JL, Gefter ML, Maniatis T (1980) Science 209:1329PubMedCrossRefGoogle Scholar
  12. 12.
    Curtis PJ, Weissmann C (1977) J Mol Biol 106:1061CrossRefGoogle Scholar
  13. 13.
    Bastos R, Aviv H (1977) Cell 11:641PubMedCrossRefGoogle Scholar
  14. 14.
    Reynaud C, Imaizumi-Scherrer M, Scherrer K (1980) J Mol Biol 140:481PubMedCrossRefGoogle Scholar
  15. 15.
    Shaul Y, Kaminchik J, Aviv H (1981) Eur J Biochem 116:461PubMedCrossRefGoogle Scholar
  16. 16.
    Berk AJ, Sharp PA (1978) Proc Natl Acad Sci USA 75:1274PubMedCrossRefGoogle Scholar
  17. 17.
    Hofer E, Darnell JE Jr (1981) Cell 20:585CrossRefGoogle Scholar
  18. 18.
    Shatkin AJ (1976) Cell 9:645PubMedCrossRefGoogle Scholar
  19. 19.
    Contreras R, Fiers W (1981) Nucleic Acids Res 9:215PubMedCrossRefGoogle Scholar
  20. 20.
    Abraham G, Rhodes DP, Bannerjee AJ (1975) Cell 5:518CrossRefGoogle Scholar
  21. 21.
    Hagenbuchle O, Tosi M, Schibier U, Bovey R, Wellauer PK, Young RA (1981) Nature (London) 289:643CrossRefGoogle Scholar
  22. 22.
    Young RA, Hagenbuchle O, Schibier U (1981) Cell 23:451PubMedCrossRefGoogle Scholar
  23. 23.
    Beyer AL, Bouton AH, Miller OL Jr (1981) Cell 26:155PubMedCrossRefGoogle Scholar
  24. 24.
    Laird CD, Chooi WY (1976) Chromosoma 58:193PubMedCrossRefGoogle Scholar
  25. 25.
    McKnight SL, Miller OL Jr (1976) Cell 8:305PubMedCrossRefGoogle Scholar
  26. 26.
    Weintraub H, Groudine M (1976) Science 193:848PubMedCrossRefGoogle Scholar
  27. 27.
    Stalder J, Groudine M, Dogson JB, Engel JD, Weintraub H (1980) Cell 19:973PubMedCrossRefGoogle Scholar
  28. 28.
    Weintraub H, Larsen A, Groudine M (1981) Cell 24:333PubMedCrossRefGoogle Scholar
  29. 29.
    McGhee JD, Wood WI, Dolan M, Engel JD, Felsenfeld G (1981) Cell 27:45PubMedCrossRefGoogle Scholar
  30. 30.
    Weisbrod S, Weintraub H (1979) Proc Natl Acad Sci USA 76:630PubMedCrossRefGoogle Scholar
  31. 31.
    Wold B, Wigler M, Lacy E, Maniatis T, Silverstein S, Axel R (1979) Proc Nati Acad Sci USA 76:5684CrossRefGoogle Scholar
  32. 32.
    Mantei N, Boll W, Weissmann C (1979) Nature (London) 281:40CrossRefGoogle Scholar
  33. 33.
    Wilkie NM, Clements JB, Boll W, Mantei N, Lonsdale D, Weissmann C (1979) Nucleic Acids Res 7:859PubMedCrossRefGoogle Scholar
  34. 34.
    Spandidos D, Paul J (1982) EMBO Journal 1:15PubMedGoogle Scholar
  35. 35.
    Spandidos DA, Harrison PR, Paul J (1981) Biosci Rep 1:911PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1982

Authors and Affiliations

  • J. Paul
  • M. Allan
  • J. Grindlay
  • D. Spandidos
    • 1
  1. 1.Garscube EstateThe Beatson Institute for Cancer ResearchBearsden, GlasgowGreat Britain

Personalised recommendations