Skip to main content

Spontaneous Biological Pattern Formation in the Three-Dimensional Sphere. Prepatterns in Mitosis and Cytokinesis

  • Conference paper
Evolution of Order and Chaos

Part of the book series: Springer Series in Synergetics ((SSSYN,volume 17))

Abstract

Spontaneous pattern formation may arise in (bio) chemical networks coupled to diffusion, i.e. an initial homogeneous distribution of certain chemical species may become unstable by changing variables such as enzyme activity or simply the size (radius) of the sphere. Hereby a new inhomogeneous, yet stable, concentration distribution is set up within the sphere, without any outside control imposing the geometry of the pattern, which is created spontaneously. Such spatial dissipative structures, or Turing structures, give rise to gradient- formation, i.e. high concentration at one (spontaneously created) pole and low at the opposite pole, a phenomenon of particular interest in the context of prepattern formation in blastulas. They also give rise to a bipolar concentration pattern, which should be an ideal prepattern for spindleformation and chromosome distribution in the process of mitosis (cell division).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.D. Billing and A. Hunding, Bifurcation analysis of nonlinear reaction-diffusion systems: Dissipative structures in a sphere, J.Chem.Phys. 69 (1978) 3603.

    Article  Google Scholar 

  2. A. Hunding, Dissipative structures in reaction-diffusion systems: Numerical determination of bifurcations in the sphere, J.Chem. Phys. 72 (1980) 5241.

    Article  MathSciNet  Google Scholar 

  3. A. Hunding and G.D. Billing, Secondary bifurcations in spherical reaction-diffusion systems, Chem.Phys. 45 (1980) 359.

    Article  MathSciNet  Google Scholar 

  4. A. Hunding, Possible prepatterns governing mitosis: The mechanism of spindle-free chromosome movement in Aulacantha scolymantha, J.Theor.Biol. 89 (1981) 353.

    Article  Google Scholar 

  5. A. Hunding and G.D. Billing, Spontaneous pattern formation in spherical nonlinear reaction-diffusion systems: Selection rules favor the bipolar “mitosis” pattern, J.Chem.Phys. 75. (1981) 486.

    Article  Google Scholar 

  6. S.P. Peterson and M.W. Berns, The Centriolar complex, Int. Rev. Cyt. 64 (1980) 81.

    Article  Google Scholar 

  7. J.D. Pickett-Heaps, The autonomy of the centriole: Fact or fallacy? Cytobios 3 (1971) 205.

    Google Scholar 

  8. P. Luykx, Cellular mechanisms of chromosome distribution, Int.Rev. Cyt. Suppl. 2 (1970).

    Google Scholar 

  9. D. Scölössi, P. Calarco and R.P. Donahue, Absence of centrioles in the first and second meiotic spindles of mouse oocytes, J.Cell. Sci. 11 (1972) 521.

    Google Scholar 

  10. R. Dietz, The dispensability of the centrioles in the spermatocytes divisions of Pales Ferruginea (Nematooera), Chromosomes Today 1 (1964) 161.

    Google Scholar 

  11. M.W. Berns and S.M. Richardson, Continuation of mitosis after selective laser microbeam destruction of the centriolar region, J.Cell.Biol. 75 (1977) 977.

    Google Scholar 

  12. J.B. Rattner and M.W. Berns, Distribution of microtubules during centriole separation in rat Kangaroo (Potorous) cells, Cytobios 15 (1976) 37.

    Google Scholar 

  13. J. E. Aubin, M. Osborn and K. Weber, Variations in the distribution and migration of centriole duplexes in mitotic PtK2 cells studied by the immunoflurescence microscopy, J. Cell. Sci. 43, (1980) 177.

    Google Scholar 

  14. P.G. Gandolfi, Die ultrastruktur der Chromosomen-Aufregulation in männlich determinierten eiern der gallmücke Heteropeza pygmaea, Biol. Zbl. 98 (1979) 409.

    Google Scholar 

  15. H. Bauer, R. Dietz and C. Röbbelen, Die spermatocytenteilungen der Tipuliden, Chromosoma 12 (1961) 116.

    Article  Google Scholar 

  16. R.L. Margolis, L. Wilson and B.I. Kiefer, Mitotic mechanism based on intrinsic microtubule behaviour, Nature 272 (1978) 450.

    Article  Google Scholar 

  17. A. Forer, Characterization of the mitotic traction system, and evidence that birefringent spindle fibers neither produce nor transmit force for chromosome movements, Chromosoma 19 (1966) 44.

    Article  Google Scholar 

  18. R.B. Nicklas, Chromosome movements: Facts and hypotheses, in Mitosis. Facts and Questions (Eds. M. Little, N. Paweletz, C. Petzelt, H. Ponstingl, D. Scroeter and H.-P. Zimmermann ), Springer-Verlag, Berlin 1977.

    Google Scholar 

  19. W.G. Whaley, M. Dauwalder and J.E. Kaphart, The Golgi apparatus and an early stage in cell plate formation, J.Ultrastr.Res. 15 (1966 ) 169.

    Google Scholar 

  20. T.E. Schroeder, Dynamics of the contractile ring, in Molecules and Cell Movement (Eds. S. Inoue and R.E. Stephens) Raven Press, New York 1975.

    Google Scholar 

  21. Y. Hiramoto, Cell division without mitotic apparatus in sea urchin eggs, Exp.Cell Res. 11 (1956 ) 630.

    Article  Google Scholar 

  22. R. Rapaport, Cytokinesis in Animal Cells, Int.Rev.Cyt. 31 (1971) 169.

    Article  Google Scholar 

  23. D.A. Marsland, A.M. Zimmerman and W. Auclair, Cell division: Experimental induction of cleavage furrows in the eggs of Arbacia punctu- lata, Exp.Cell Res. 21 (1 960 ) 179.

    Google Scholar 

  24. Y. Hiramoto, Further studies on cell division without mitotic apparatus in sea urchin eggs, J.Cell Biol. 25 (1965) 161.

    Google Scholar 

  25. A.C. Scott, Furrowing in flattened sea urchin eggs, Biol.Bull. 119 (1960) 246.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hunding, A. (1982). Spontaneous Biological Pattern Formation in the Three-Dimensional Sphere. Prepatterns in Mitosis and Cytokinesis. In: Haken, H. (eds) Evolution of Order and Chaos. Springer Series in Synergetics, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68808-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68808-9_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68810-2

  • Online ISBN: 978-3-642-68808-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics