Skip to main content

Dimension, Fractal Measures, and Chaotic Dynamics

  • Conference paper
Evolution of Order and Chaos

Part of the book series: Springer Series in Synergetics ((SSSYN,volume 17))

Abstract

Dimension is an important concept to dynamics because it indicates the number of independent variables inherent in a motion. Assignment of a relevant dimension in chaotic dynamics is nontrivial since, not only do chaotic motions frequently lie on complicated “fractal” surfaces, but in addition, the natural probability measures associated with chaotic motion often possess an intricate microscopic structure that persists down to arbitrarily small length scales. I call such objects fractal measures;1 and arguing by example, conjecture that the typical chaotic attractor has a fractal measure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Henon, Comm. Math. Phys. 53 (1976) 69.

    Article  MathSciNet  Google Scholar 

  2. B. Mandelbrot, Fractals: Form, Chance, and Dimension, Freeman, San Francisco (1977).

    MATH  Google Scholar 

  3. J. D. Farmer, E. Ott, and J. Yorke, “An As Yet Untitled Paper on Dimension and Universal Probability Measures,” to appear in the Proceedings of the 1982 Los Alamos National Laboratory Conference on Order in Chaos, Physica D, D. Campbell, Ed.

    Google Scholar 

  4. R. Shaw, “Strange Attractors, Chaotic Behavior, and Information Flow,” Z. Naturforsch. 36a (1981) 80.

    MathSciNet  MATH  Google Scholar 

  5. J. D. Farmer, “Information Dimension and the Probabilistic Structure of Chaos,” to appear in the July or September 1982 issue of Z. Naturforsch.

    Google Scholar 

  6. W. Hurewicz and H. Wallman, Dimension Theory, Princeton (1948).

    Google Scholar 

  7. J. Balatoni and A. Renyi, Publications of the Math. Inst, of the Hungarian Acad, of Sci. 1 (1956) 9 (Hungarian). In English translation in The Selected Papers of A. Renyi, 1 558, Akademiai Budapest (1976). See also A. Renyi, Acta Mathamatica (Hungary), 10 (1975) 193.

    Google Scholar 

  8. J. Alexander and J. Yorke, “The Fat Baker’s Transformations,” U. of Maryland preprint.

    Google Scholar 

  9. J. D. Farmer, “Chaotic Attractors of an Infinite-Dimensional Dynamical System,” Physica 4D (1982) No. 3, p. 366.

    MathSciNet  MATH  Google Scholar 

  10. F. Ledrappier, “Some Relations Between Dimension and Lyapunov Exponents,” preprint.

    Google Scholar 

  11. P. Frederickson, J. Kaplan, E. Yorke, and J. Yorke, “The Lyapunov Dimension of Strange Attractors,” to appear in J. Diff. Eq. (1982).

    Google Scholar 

  12. L.-S. Young, “Dimension, Entropy, and Lyapunov Exponents,” Michigan State U. preprint.

    Google Scholar 

  13. F. Takens, “Invariants Related to Dimension and Entropy,” to appear in “Atas do 13° Colögnio Brasiliero de Mathemitica.”

    Google Scholar 

  14. T. Janssen and J. Tjon, “Bifurcations of Lattice Structure,” U. of Utrecht preprint.

    Google Scholar 

  15. P. Billingsley, Ergodic Theory and Information, Wiley and Sons, (1965).

    Google Scholar 

  16. Hausdorff, “Dimension und Außeres Maß,” Math. Annalen. 79 (1918) 157.

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Besicovitch, “On the Sum of Digits of Real Numbers Represented in the Dyadic System,” Math. Annalen. 110 (1934) 321.

    Article  MathSciNet  Google Scholar 

  18. B. Mandelbrot, The Fractal Geometry of Nature, W. H. Freeman & Co. (1982) 375.

    MATH  Google Scholar 

  19. J. Yorke, private communication. See also Ref. [8].

    Google Scholar 

  20. I would like to thank Ed Ott for pointing this out.

    Google Scholar 

  21. H. Froehling, J. Crutchfield, J. D. Farmer, N. Packard, and R. Shaw, “On Determining the Dimension of Chaotic Flows,” Physica 3D (1981) 605.

    MathSciNet  MATH  Google Scholar 

  22. H. Greenside, A. Wolf, J. Swift and T. Pignataro, “The Impracticality of a Box Counting Algorithm for Calculating the Dimensionality of Strange Attractors,” to appear in Physical Review, Rapid Communications.

    Google Scholar 

  23. V. Oseledec, “A Multiplicative Ergodic Theorem. Lyapunov Characteristic Numbers for Dynamical Systems”, Trans. Moscow Math. Soc. 19 (1968) 197.

    MathSciNet  Google Scholar 

  24. J. Kaplan and J. Yorke, Functional Differential Equations and Approximations of Fixed Points, H. O. Peitgen and H. O. Walthen, Eds., Springer-Verlag, Berlin, New York (1979) p. 228.

    Book  Google Scholar 

  25. D. Russel, J. Hanson and E. Ott, “The Dimension of Strange Attractors,” Phys. Rev. Lect. 45 (1980) 1175.

    Google Scholar 

  26. H. Mori, Prog. Theor. Phys. 63 (1980) 3.

    Google Scholar 

  27. M. Velarde and J. C. Antoranz, Prog. Theo. Phys. Lett. 66, No. 2 (1981). See also M. Velarde, Nonlinear Phenomena at Phase Transitions and Instabilities, T. Riste, Ed., Plenum Press (1981) 205.

    Google Scholar 

  28. E. Lorenz, “Deterministic Non-Periodic Flow,” J. Atmos. Sci. 2, (1963) 130.

    Article  Google Scholar 

  29. G. Brown and A. Roshko, “On Density Effects and Large Structure in Turbulent Mixing Layers,” J. Fluid Mech. 64 (1974) 775.

    Article  Google Scholar 

  30. C. D. Winant and F. K. Browand, “Vortex Pairing: The Mechanism of Turbulent Mixing Layer Growth at Moderate Reynolds Number,” J. Fluid Mech. 63 (1984) 237.

    Article  Google Scholar 

  31. F. K. Browand and P. D. Weidman, “Large Scales in the Developing Mixing Layer,” J. Fluid Mech. 76 (1976) 127.

    Article  Google Scholar 

  32. A. Roshko, “Structure of Turbulent Shear Flows: A New Look,” AIAA Journal 14 (1976) 1349.

    Google Scholar 

  33. M. Guevara and L. Glass, “A Theory for the Entrainment of Biological Oscillators and the Generation of Cardiac Disrhythemias,” submitted to J. Math. Biology.

    Google Scholar 

  34. L. Glass and M. C. Mackey, “Pathological Conditions Resulting from Instabilities in Physiological Control Systems,” Annals of the N.Y.A.S. 316 (1979) 214.

    Article  Google Scholar 

  35. E. Basar, R. Durusan, A. Gorder and P. Ungan, “Combined Dynamics of E.E.G. and Evoked Potential,” Biol. Cybernetics 34 (1979) 21.

    Article  Google Scholar 

  36. W. R. Adey, “Evidence for Cooperative Mechanisms in the Susceptibility of Cerebral Tissue to Environmental and Intrinsic Electric Fields,” Functional Linkage in Biomolecular Systems, F. O. Schmitt, D. M. Schneider, and D. M. Crothers, Eds., Raven Press, New York (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Farmer, J.D. (1982). Dimension, Fractal Measures, and Chaotic Dynamics. In: Haken, H. (eds) Evolution of Order and Chaos. Springer Series in Synergetics, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68808-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68808-9_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68810-2

  • Online ISBN: 978-3-642-68808-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics