Skip to main content

Noise Scaling of Symbolic Dynamics Entropies

  • Conference paper
Evolution of Order and Chaos

Part of the book series: Springer Series in Synergetics ((SSSYN,volume 17))

Abstract

An increasing body of experimental evidence supports the belief that random behavior observed in a wide variety of physical systems is due to underlying deterministic dynamics on a low-dimensional chaotic attractor. The behavior exhibited by a chaotic attractor is predictable on short time scales and unpredictable (random) on long time scales. The unpredictability, and so the attractor’s degree of chaos, is effectively measured by the entropy. Symbolic dynamics is the application of information theory to dynamical systems. It provides experimentally applicable techniques to compute the entropy, and also makes precise the difficulty of constructing predictive models of chaotic behavior. Furthermore, symbolic dynamics offers methods to distinguish the features of different kinds of randomness that may be simultaneously present in any data set: chaotic dynamics, noise in the measurement process, and fluctuations in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.P. Crutchfield and N.H. Packard, Int’l J. Theo. Phys. 21, 433 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  2. C. Shannon and C. Weaver, The Mathematical Theory of Communication, University of Illinois Press, Urbana, Illinois, (1949)

    Google Scholar 

  3. A.N. Kolmogorov, Dokl. Akad. Nauk. 119, 754 (1959)

    Google Scholar 

  4. R. Shaw, Z. fur Naturforshung 36a, 80 (1981)

    MATH  Google Scholar 

  5. N.H. Packard, J.P. Crutchfield, J.D. Farmer, and R. Shaw, Phys. Rev. Let. 45, 712 (1980); and H. Froehling, J.P. Crutchfield, J.D. Farmer, N.H. Packard, R. Shaw, Physica 3D, 605 (1981)

    Google Scholar 

  6. R.L. Adler, A.G. Konheim, and M.H. McAndrew, Trans. Am. Math. Soc. 114, 309 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  7. B. Mandelbrot, Fractals: Form, Chance, and Dimension, W.H. Freeman, San Francisco, California (1977)

    Google Scholar 

  8. J.D. Farmer, in these proceedings

    Google Scholar 

  9. V.M. Alekseyev and M.V. Yakobson, Physics Reports (1981); and R. Shaw, in Order in Chaos, edited by H. Haken, Springer-Verlag, Berlin (1981)

    Google Scholar 

  10. P. Collet, J.P. Crutchfield, and J.-P. Eckmann, “Computing the Topological Entropy of Maps”, submitted to Physica 3D (1981)

    Google Scholar 

  11. G. Benettin, L. Galgani, and J.-M. Strelcyn, Phys. Rev. A 14, 2338 (1976); and I. Shimada and T. Nagashima, Prog. Théo. Phys. 1605 (1979)

    Google Scholar 

  12. I. Shimada, Prog. Théo. Phys. 62, 61 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  13. J. Curry, “On Computing the Entropy of the Henon Attractor”, IHES preprint.

    Google Scholar 

  14. R. Bowen and D. Ruelle, Inv. Math. 29, 181 (1975); D. Ruelle, Boll. Soc. Brasil. Math. 9, 331 (1978); and F. Ledrappier, Ergod. Th. & Dynam. Sys. 77 (1981)

    Google Scholar 

  15. J.P. Crutchfield and B.A. Huberman, Phys. Lett. 77A, 407 (1980); and J.P. Crutchfield, J.D. Farmer, and B.A. Huberman, to appear Physics Reports (1982)

    Google Scholar 

  16. H. Haken and G. Mayer-Kress, J. Stat. Phys. 26, 149 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  17. J.P. Crutchfield, M. Nauenberg, and J. Rudnick, Phys. Rev. Let. 46, 933 (1981); and B. Schraiman, G. Wayne, and P.C. Martin, Phys. Rev. Let. 46, 935 (1981)

    Article  MathSciNet  Google Scholar 

  18. N.H. Packard and J.P. Crutchfield, in the Proceedings of the Los Alamos Conference on Nonlinear Dynamics, 24–28 May (1982); and to appear in Physica 3D (1982)

    Google Scholar 

  19. H.E. Stanley, Introduction to Phase Transitions and Critical Phenomena, Oxford University Press, New York (1971)

    Google Scholar 

  20. R. Shaw, in the Proceedings of the Los Alamos Conference on Nonlinear Dynamics, 24–28 May (1982); and to appear in Physica 3D (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Crutchfield, J.P., Packard, N.H. (1982). Noise Scaling of Symbolic Dynamics Entropies. In: Haken, H. (eds) Evolution of Order and Chaos. Springer Series in Synergetics, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68808-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68808-9_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68810-2

  • Online ISBN: 978-3-642-68808-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics