Electrical Measuring Techniques

  • P. L. F. Hemment
Part of the Springer Series in Electrophysics book series (SSEP, volume 10)

Abstract

The purpose of this paper is to review the electrical measuring techniques which may be used after implantation to determine the areal density of the implanted impurities and their uniformity laterally across the sample. In addition, depth profiling methods will be considered as these can yield valuable information regarding the energy and purity of the ion beam. The techniques are discussed mainly with respect to measurements on implanted silicon wafers but they may be applied more generally to any semiconductor.

Keywords

Phosphorus Carbide Europe Ethylene Glycol Tungsten 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Dearnaley, J.H. Freeman, R.S. Nelson, and J. Stephens, Ion Implantation ( North Holland, Amsterdam 1973 )Google Scholar
  2. 2.
    G. Carter, J.N. Baruah, and W.A. Grant, Rad. Effects 16, 107 (1972) and Rad.Effects 16, 101 (1972)Google Scholar
  3. 3.
    J. Bottiger, J.A. Davies, W.A. Grant, and K.B. Winterbon, Rad. Effects 11, 61, 69 (1971) J. Bflttiger, H. Wolder Jongensen, and K.B. Winterbon, Rad. Effects JU, 133 (1971)Google Scholar
  4. 4.
    J.H. Freeman, in: Applications of Ion Beams to Materials, Warwick, 1975. Inst. of Phys. Conf. Ser. No. 28.Google Scholar
  5. 5.
    P.L.F. Hemment, Proc. of Second Inter. Conf. on Low-Energy Ion Beams, Bath, 1980. Inst, of Phys. Conf. Ser. No. 54.Google Scholar
  6. 6.
    J.E.E. Baglin, in: Proc. Conf. on Ion Beam Surface Layer Analysis (Plenum Press, New York) Vol. 1, p. 313, 1976.Google Scholar
  7. 7.
    J. L’Ecuyer, J.A. Davies, and N. Matsunami, Nucl. Instr. and Meth. 160, 337 (1979)ADSCrossRefGoogle Scholar
  8. 8.
    D.S.Perloff, F.E.Wall, and J. Conragon, J.Electrochem. Soc. 124, 582 (1977)CrossRefGoogle Scholar
  9. 9.
    P.L.F. Hemment, in: Applications of Ion Beams to Materials, Warwick, 1975, Inst, of Phys. Conf. Ser. No. 28.Google Scholar
  10. 10.
    B.J. Smith and J. Stephen, Theoretical Calculations of Resistance of n- and p-Type Implantations in Silicon, AERE-R7097.Google Scholar
  11. 11.
    J.F. Gibbons, W.S. Johnson, and S.W. Mylroie, Projected Range Statistics ( 2nd Edition, Halsted Press, Wiley, NY 1975 ) B. Smith, Ion-Implanted Range Data for Si and Ge Device Technology, Research Studies 1978.Google Scholar
  12. 12.
    S.M. Sze, Physics of Semiconductor Devices (2nd Edition, Wiley-Interscience 1981 )Google Scholar
  13. 13.
    F.M. Smits, Bell Syst. Tech.. J. 37, 711 (1958) Burger and Donovan, Fundamentals of Silicon Integrated Device Technology, Vol. 1, p.319 Prentice Hall 1967. W.M.Bullis, Standard Measurements of the Resistivity of Silicon by the Four-Probe Method, NBSIR 74-496, August 1974. Measuring Resistivity of Silicon Slices with a Colinear Pour-Probe Array, ASTM F84 - 73.Google Scholar
  14. 14.
    M.A. Logan, Bell Syst. Tech. J. 40, 885 (1961)Google Scholar
  15. 15.
    L.J. Swartzendruber, NBS, Tech. Note 199 (1964)Google Scholar
  16. 16.
    R. Rymaszewski, J. Phys. E, 2, 2, 170 (1969)ADSCrossRefGoogle Scholar
  17. 17.
    L.B. Valdes, Proc. Inst. Radio Engrs. 42, 420 (1954)Google Scholar
  18. 18.
    D.J. Perloff, J. Electrochem. Soc. 123, 1745 (1976)CrossRefGoogle Scholar
  19. 19.
    F.E. Wahl, and D.J. Perloff, Proc. 8th Int. Conf. on Electron & Ion Beam Science & Technology, Seattle, WA., May 1978.Google Scholar
  20. 20.
    B.J. Smith, and J. Stephen, Revue de Phys. Appl. 12, 493 (1977)Google Scholar
  21. 21.
    B.J. Smith, J. Stephen, and 6.W. Hinder, Measurement of Doping Uniformity in Semiconductor Wafers, AERE-R7085.Google Scholar
  22. 22.
    as Ref. 19.Google Scholar
  23. 23.
    D.S. Perloff, F.E. Wahl, and J.T. Kerr, Proc. Seventh Int. Conf. Electron and Ion Beam Science and Technology, 1976. D.S. Perloff, F.E. Wahl, and J.D. Reimer, Solid State Technol. 20, 31 (Feb. 1977)Google Scholar
  24. 24.
    L.J. Van der Pauw, Philips Res. Repts. 13, 1 (1958)Google Scholar
  25. 25.
    W. Versnel, Solid-State Electr. 21, 1261 (1978)ADSCrossRefGoogle Scholar
  26. 26.
    J.M. David, Nat. Bur. Stand. Spec. Publ. 400 - 19, 44 (April 1976)Google Scholar
  27. 27.
    R. G. Mazur and D. H. Dickey, J. Electrochem. Soc. 113, 255 (1966) J. Kudoh, J. Electrochem. Soc. 123, 1751 (1976). Proc. NBS Spreading Resistance Sympos. NBS Spec. Publ. 400 - 10 (1974)CrossRefGoogle Scholar
  28. 28.
    R. W. Bicknell, J. Phys. D 9, 1953 (1976)ADSCrossRefGoogle Scholar
  29. 29.
    H. Glawischnig, K. Hoerschelmann, W. Holtschmidt, and W. Wenzig, Nucl. Inst. S Meth. 89, 291 (1981)CrossRefGoogle Scholar
  30. 30.
    As Ref. 2.Google Scholar
  31. 31.
    As Ref. 4.Google Scholar
  32. 32.
    B.G. Streetman, Solid State Electronic Devices, Prentice-Hall, New Jersey 1980.Google Scholar
  33. 33.
    P.D. Scovell, private communication.Google Scholar
  34. 34.
    G.E. Schmid, Nucl. Inst. fi Meth. 189, 219 (1981)ADSCrossRefGoogle Scholar
  35. 35.
    S.M. Sze, Physics of Semiconductor Devices (2nd Edition, John Wiley 1981 ), p. 477Google Scholar
  36. 36.
    A.C. Glaccum, private communication.Google Scholar
  37. 37.
    A.W. Livingstone, P.A. Leigh, N. Mclntyre, I.P. Hall, J. A. Bowie, and P.J. Smith, Solid-State Electronics, to be published.Google Scholar
  38. 38.
    C.W. White, and W.H.Christie, Sol. Stat. Tech. 23, 109 (Sept. 1980)CrossRefGoogle Scholar
  39. 39.
    W.K.Chu, J. W. Mayer, and M.A. Nicolet, Backscattering Spectrometry ( Academic Press, New York 1978 )Google Scholar
  40. 40.
    O.A. Jamba, Nucl. Inst. & Meth. 189, 253 (1981)ADSCrossRefGoogle Scholar
  41. 41.
    R.C. Goodfellow, A. C. Carter, R. Davis, and C. Hill. Electr. Lett. 14, 328 (1978)CrossRefGoogle Scholar
  42. 42.
    RTL. Petritz, Phys. Rev. 110, 1254 (1958)ADSCrossRefGoogle Scholar
  43. 43.
    N.G.E. Johansson, J.W. Mayer, and O.J. March, Solid-State Electr. 13, 317 (1970)ADSCrossRefGoogle Scholar
  44. 44.
    H.D. Barber, H.B. Lo, and J.E. Jones, J. Electrochem. Soc. 123, 1404 (1976)CrossRefGoogle Scholar
  45. 45.
    A. Yamamoto and C. Memura, Electr. Lett. 18, 63 (1982)CrossRefGoogle Scholar
  46. 46.
    A. Smith, Electr. Lett. 4, 332 (1968)CrossRefGoogle Scholar
  47. 47.
    J. Hilibrand and R.D. Gold, RCA Rev. 21, 245 (1960)Google Scholar
  48. 48.
    J. A. Copeland, IEEE Trans. Electron Devices ED-16, 445 (1969)Google Scholar
  49. 49.
    G.L. Miller, IEEE. Trans. Electron Devices, ED-19, 1103 (1972)Google Scholar
  50. 50.
    C.P. Wu, E.C. Douglas, and C.W. Mueller, IEEE Trans. Electron. Devices ED-22, 319 (1975)Google Scholar
  51. 51.
    E.H. Rhoderick, Metal-Semiconductor Contacts (Oxford University Press 1978 )Google Scholar
  52. 52.
    B.J. Gordon, IEEE Trans. Electron Devices ED-27, 2268 (1980)Google Scholar
  53. 53.
    T. Ambridge and M.M. Faktor, Electr. Lett. 10, 10, May (1974)Google Scholar
  54. 54.
    B.J. Smith, J. Stephen, D. Chivers, and M. Fisher, Annealing of Ion Implanted Silicon, AERE-R-9868.Google Scholar
  55. 55.
    P.D. Scovell, private communication.Google Scholar
  56. 56.
    P.D. Scovell, ESSDERC 81, Toulouse 1981.Google Scholar
  57. 57.
    D.S. Perloff and M.J. Markert, Microelectronic Measurement Technology Seminar, San Jose, CA, March 1981.Google Scholar
  58. 58.
    J.N. Gan and D.S. Perloff, Nucl. Inst, and Meth. 189, 265 (1981)ADSCrossRefGoogle Scholar
  59. 59.
    K.H. Nicholas, Acta Electrónica 19, 95 (1976)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1982

Authors and Affiliations

  • P. L. F. Hemment
    • 1
  1. 1.Department of Electronic and Electrical EngineeringUniversity of SurreyGuildford, SurreyUK

Personalised recommendations