Skip to main content

Annealing and Residual Damage

  • Conference paper
Ion Implantation Techniques

Part of the book series: Springer Series in Electrophysics ((SSEP,volume 10))

Abstract

This chapter describes aspects of ion implantation damage which are important for Si process technology. Primary damage consists of atomic displacements and amorphization of Si (except for B implantation). Annealing restores crystallinity and induces electrical activation of implanted dopant ions. It can also cause the formation of residual defects with well-defined crystallographic nature, for example stacking faults and dislocation loops. During prolonged annealing these defects change their sizes and configurations in response to climb forces. The climb forces are related to indiffusion of the implanted profile and to surface oxidation. Residual dislocations also respond to mechanical stresses which arise from the geometries of masking patterns used for defining active device areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.F. Gibbons, Proc. IEEE, 60, 1062 (1972).

    Article  Google Scholar 

  2. G. Dearnaley, J.H. Freeman, R.S. Nelson and J. Stephen: Ion Implantation, North-Holland, Amsterdam 1973.

    Google Scholar 

  3. A.H. Agajanian: Ion Implantation in Microelectronics, IFI Plenum, New York 1981.

    Google Scholar 

  4. Defects in Semiconductors, ed. by J. Narayan and T.Y. Tan, North-Holland, New York 1981.

    Google Scholar 

  5. Microscopy of Semiconducting Materials, 1981, ed. by A.G. Cullis and D.C. Joy, The Inst, of Phys., Bristol 1981.

    Google Scholar 

  6. Modern Diffraction and Imaging Techniques in Material Science, ed. by S. Amelinckx, R. Gevers, G. Remaut, and J. Van Landuyt, North-Holland, Amsterdam 1970.

    Google Scholar 

  7. W.K. Chu, J.W. Mayer, and M.A. Nicolet: Backscattering Spectrometry, Academic Press, New York 1978.

    Google Scholar 

  8. G. Foti et al., réf. 5, p. 79.

    Google Scholar 

  9. D.K. Sadana and J. Washburn, ref. 5, p. 301.

    Google Scholar 

  10. J.W. Corbett et al., réf. 4, p. 1.

    Google Scholar 

  11. J.R. Dennis and E.B. Hale, J. Appl. Phys. 49, 1119 (1978)

    Article  ADS  Google Scholar 

  12. J.F. Gibbons, W.S. Johnson, and S.W. Mylroie: Projected Range Statistics, Halstead Press, Stroudsburg 1975.

    Google Scholar 

  13. D.K. Bri ce: Ion Implantation Range and Energy Deposition Distribution, IFI Plenum, New York 1975.

    Google Scholar 

  14. U. Littmark and J.F. Ziegler: Handbook of Range Distributions for Energetic Ions in All Elements, Pergamon Press, New York 1975.

    Google Scholar 

  15. Laser and Electron Beam Processing of Materials, ed. by C.W. White and P.S. Peercy, Academic Press, New York 1980.

    Google Scholar 

  16. Laser and Electron-Beam Solid Interactions. and Materials Processing, ed. by J.F. Gibbons, L.D. Hess, and T.W. Sigmon, North-Holland, New York 1981.

    Google Scholar 

  17. R.T. Fulks, C.J. Russo, P.R. Hanley, and T.I. Kamins, Appi. Phys. Lett. 39, 604 (1981).

    Article  ADS  Google Scholar 

  18. L. Csepregi, E.F. Kennedy, T.J. Gallagher, J.W. Mayer, and T.W. Sigmon, J. Appi. Phys. 48, 4234 (1977).

    Article  ADS  Google Scholar 

  19. L. Csepregi, E.F. Kennedy, J.W. Mayer, and T.W. Sigmon, J. Appi. Phys. 43, 3906 (1978)

    Article  ADS  Google Scholar 

  20. S.A. Kokorowski, G.L. Olson, and L.D. Hess, J. Appi. Phys. 53, 921 (1982).

    Article  ADS  Google Scholar 

  21. J. Washburn, ref. 4, p. 209.

    Google Scholar 

  22. W.K; Wu and J. Washburn, J. Appi. Phys. 48, 3742 (1977).

    Article  ADS  Google Scholar 

  23. D. Nobili, A. Armigliatu, M. Finnetti, and S. Solmi, J. Appi. Phys. 53, 1484 (1982).

    Article  ADS  Google Scholar 

  24. D.A. Antoniadis and R.W. Dutton, in Process and Device Modelling for Integrated Circuit Design, ed. by F. van de Wiele, W.L. Engl and P.G. Jespers, Noordhoff, Leyden 1977, p. 837.

    Google Scholar 

  25. S. Mader and A.E. Michel, Phys. Stat. Sol. (a) 33, 793 (1979).

    Article  ADS  Google Scholar 

  26. S. Mader, J. Electron. Mater. 9, 963 (1980).

    Article  ADS  Google Scholar 

  27. U. Gösele and H. Strunk, Appi. Phys. 20, 265 (1979).

    Article  ADS  Google Scholar 

  28. S.M. Hu, ref. 4, p. 333.

    Google Scholar 

  29. M. Tamura, Phil. Mag. 35, 663 (1977).

    Article  ADS  Google Scholar 

  30. A. Schmitt and G. Schorer, Appi. Phys. 22, 137 (1980).

    Article  ADS  Google Scholar 

  31. B.J. Masters and E.F. Gorey, J. Appi. Phys. 49, 2717 (1978).

    Article  ADS  Google Scholar 

  32. T.Y. Tan et al., ref. 4, p. 179.

    Google Scholar 

  33. M. Kiritani, Y. Machara, and H. Takata, J. Phys. Soc. Japan 41, 1575 (1976).

    Article  ADS  Google Scholar 

  34. M.R. Ruehle, in Radiation-Induced Voids in Metals, ed. by J.W. Corbett and L.C. Ianniello, AEC Information Services 1972.

    Google Scholar 

  35. T.E. Seidel, R.L. Meek, and A.G. Cullis, J. Appl. Phys. 46, 600 (1975).

    Google Scholar 

  36. H.J. Geipel and W.K. Tice, Appl. Phys. Lett. 30, 325 (1977).

    Article  ADS  Google Scholar 

  37. A. Ourmaza et al., ref. 5, p. 63.

    Google Scholar 

  38. P. Ashburn, C. Bull, K.H. Nicholas, and G.R. Booker, Solid-St. Electron. 20, 731 (1977).

    Article  ADS  Google Scholar 

  39. C. Bull, P. Ashburn, G.R. Booker, and K.H. Nicholas, Solid-St. Electron. 22, 95 (1979).

    Article  ADS  Google Scholar 

  40. M. Tamura, N. Yoshihiro, and T. Tokuyama, Appl. Phys. 17, 31 (1978).

    Article  ADS  Google Scholar 

  41. T. Koji, W.F. Tseng, J.W. Mayer, and T. Suganuma, Solid-St. Electron. 22, 335 (1979).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mader, S. (1982). Annealing and Residual Damage. In: Ryssel, H., Glawischnig, H. (eds) Ion Implantation Techniques. Springer Series in Electrophysics, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68779-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68779-2_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68781-5

  • Online ISBN: 978-3-642-68779-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics