The Kinetics of the Uptake and Elimination of Halothane and Enflurane

  • H. Schmidt
  • R. Dudziak
Part of the Anaesthesiologie und Intensivmedizin / Anaesthesiology and Intensive Care Medicine book series (A+I, volume 150)

Abstract

The general presentation of the pharmacokinetics of halothane and enflurane, using numerous mathematical models [2, 6, 9,12,13, 24, 25, 30, 34], like the corresponding clinical experimental investigations is based upon measurements of the inspiratory and/or end-expiratory concentration of the anaesthetic in question [8, 14,23, 29, 31, 33], and upon determinations of the solubility of the individual inhalation anaesthetics in the various body fluids and tissues [18, 21, 22, 32]. On the other hand, measurements of the halothane or enflurane concentration in the arterial or venous blood of humans are used almost exclusively for the determination of partial pharmacokinetic or pharmacodynamic aspects [1,3, 7,10,11,16,17,19, 20, 26]. Only the serum half-lives calculated for halothane by Duncan and Raventos [11], which fluctuate between 3 and 45 min, are based upon nephelometric determinations of the halothane level in the venous blood.

Keywords

Catheter Bromide Respiration Charcoal Fentanyl 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ardoin D, Hingson RA, Tomaro AJ, Fike WW (1966) Chromatographic blood-gas studies of halothane in ambulatory oral surgical anesthesia. Anesth Analg 45: 275–281PubMedCrossRefGoogle Scholar
  2. 2.
    Ashman MN, Blesser WB, Epstein RM (1970) A nonlinear model for the uptake and distribution of halothane in man. Anesthesiology 33: 419–429PubMedCrossRefGoogle Scholar
  3. 3.
    Bencsath FA, Drysch K, List D, Weichardt H (1978) Analysis of volatile air pollutants by charcoal adsorption with subsequent gas chromatographic head space analysis by desorption with benzylalcohol. Angewandte Chromatographic No. 32 E, Bodenseewerk. Perkin-Elmer & Co, ÜberlingenGoogle Scholar
  4. 4.
    Beneken Kolmer HH, Burm AG, Cramers CA, Ramakers JM, Vader HL (1975) The uptake and elimination of halothane in dogs: a two or multicompartment-system? I: Gaschromatographic determination of halothane in blood and in inspiratory and end-tidal gases. Br J Anaesth 47: 1049–1052PubMedCrossRefGoogle Scholar
  5. 5.
    Beneken Kolmer HH, Burm AG, Cramers CA, Ramakers JM, Vader HL (1975) The uptake and elimination of halothane in dogs: a two or multicompartment-system? II: Evaluation of wash-in and wash-out curves. Br J Anaesth 47: 1169–1175CrossRefGoogle Scholar
  6. 6.
    Bourne JG (1964) Uptake, elimination and potency of inhalational anaesthetics. Anaesthesia 19: 12–32PubMedCrossRefGoogle Scholar
  7. 7.
    Butler RA (1963) Halothane. In: Papper EM, Kitz RJ (eds) Uptake and distribution of anesthetic agents. McGraw-Hill, New York Toronto London, pp 274–283Google Scholar
  8. 8.
    Chase RE, Holaday DA, Fiserova-Bergerova V, Saidman LJ (1971) The biotransformation of Ethane in man. Anesthesiology 35: 262–267PubMedCrossRefGoogle Scholar
  9. 9.
    Cowles AL, Borgstedt HH, Gillies A J (1968) Uptake and distribution of inhalation anesthetic agents in clinical practice. Curr Res Anesth Analg 47: 404–414Google Scholar
  10. 10.
    Dick W, Knoche E, Traub E, Eckstein K-L (1975) Ethrane in der Geburtshilfe. In: Kreuscher H (ed) Ethrane, neue Ergebnisse aus Forschung und Klinik. Schattauer, Stuttgart New York,pp 73–85Google Scholar
  11. 11.
    Duncan WAM, Raventos J (1959) The pharmacokinetics of halothane (Fluothane) anaesthesia.Br J Anaesth 31: 302–315Google Scholar
  12. 12.
    Eger EI II (1963) Applications of a mathematical model of gas uptake. In: Papper EM, Kitz RJ (eds Uptake and distribution of anesthetic agents. McGraw-Hill, New York Toronto London, pp 88–103Google Scholar
  13. 13.
    Eger EI II (1976) Anesthetic uptake and action. William & Wilkins, BaltimoreGoogle Scholar
  14. 14.
    Epstein RM, Rackow H, Salanitre E, Wolf GL (1964) Influence of the concentration effect on the uptake of anesthetic mixtures: The second gas effect. Anesthesiology 25: 364–371PubMedCrossRefGoogle Scholar
  15. 15.
    Goldman E, De Campo T, Aldrete JA (1979) Enflurane concentration: influence of semi-closed system ( Abstr ). Anesthesiology 51: 23CrossRefGoogle Scholar
  16. 16.
    Gostomzyk JG (1971) Bestimmung der Narkosegas-Konzentration im Blut mit der Dampfraum- Gaschromatographie. Anaesthesist 20: 212–215PubMedGoogle Scholar
  17. 17.
    Grothe B, Doenicke A, Hauck G, Lindstrom D, Bauer T, Kugler J (1976) Untersuchungen zur Metabolisierung von Halothan und Ethrane am Menschen mit und ohne Vorbehandlung von Phenobarbital. Anaesthesiol Wiederbeleb 99:31–41Google Scholar
  18. 18.
    Han YH, Helrich MH (1966) Effect of temperature on solubility of halothane in human blood and brain tissue homogenate. Anesth Analg 45: 775–780PubMedCrossRefGoogle Scholar
  19. 19.
    Hennes HH (1975) Ethrane in der Kinderanaesthesie. In: Kreuscher H (ed) Ethrane, neue Ergebnisse aus Forschung und Klinik. Schattauer, Stuttgart New York, ppGoogle Scholar
  20. 20.
    Kessler G, Haferkorn D (1977) Vergleichende Untersuchungen liber die postnarkotische Phase nach Kurznarkosen mit Halothan und Ethrane. Z Prakt Anaesth 12: 269–274Google Scholar
  21. 21.
    Larson CP Jr, Eger EI II, Severinghaus JW (1962) The solubility of halothane in blood and tissue homogenates. Anesthesiology 23: 349–355PubMedCrossRefGoogle Scholar
  22. 22.
    Lowe HJ, Hagler K (1969) Determination of volatile organic anesthetics in blood, gases, tissues and lipids: partition coefficients. In: Porter R (ed) Gas chromatography in biology and medicine. A Ciba Foundation symposium. Churchill, London, pp 86–112Google Scholar
  23. 23.
    Mapleson WW (1962) Rate of uptake of halothane vapour in man. Br J Anaesth 34: 11–18PubMedCrossRefGoogle Scholar
  24. 24.
    Mapleson WW (1963) An electric analogue for uptake and exchange of inert gases and other agents. J ApplPhysiol 18: 197–204PubMedGoogle Scholar
  25. 25.
    Mapleson WW (1972) Kinetics. In: Chenoweth MB (ed) Modern inhalation anesthetics. Springer, Berlin Heidelberg New York, pp 326–344Google Scholar
  26. 26.
    Miller MS, Gandolfi AJ (1979) A rapid, sensitive method for quantifying enflurane in whole blood. Anesthesiology 51: 542–544PubMedCrossRefGoogle Scholar
  27. 27.
    Saraiva RA, Willis BA, Steward A, Nunn JN, Mapleson WW (1977) Halothane solubility in human blood. Br J Anaesth 49:115–119PubMedCrossRefGoogle Scholar
  28. 28.
    Schmidt H (1981) Das Verhalten der venosen Blutspiegel von Halothan und Enfluran unter den Bedingungen einer weitgehend standardisierten Narkose. Habilitationsschrift, Frankfurt/MGoogle Scholar
  29. 29.
    Sechzer PH, Linde HW, Dripps RD (1962) Uptake of halothane by the human body. Anesthesiology 23: 161–162CrossRefGoogle Scholar
  30. 30.
    Smith NT, Zwart A, Beneken JEW (1972) Interaction between circulatory effects and the uptake and distribution of halothane: use of a multiple model. Anesthesiology 37: 47–58PubMedCrossRefGoogle Scholar
  31. 31.
    Stoelting RK, Eger EI II (1969) The effect of ventilation and anesthetic solubility on recovery from anesthesia. Anesthesiology 30: 290–296PubMedCrossRefGoogle Scholar
  32. 32.
    Stoelting RK, Longshore RK (1972) Effect of temperature on the solubility of fluoxene, halothane and methoxyflurane blood/gas and cerebrospinal fluid/gas partition coefficients. Anesthesiology 36: 503–505PubMedCrossRefGoogle Scholar
  33. 33.
    Torri G, Damia G, Fabiani ML, Frova G (1972) Uptake and elimination of enflurane in man. A comparative study between enflurane and halothane. Br J Anaesth 44: 789–794PubMedCrossRefGoogle Scholar
  34. 34.
    Zwart A, Smith NT, Beneken JEW (1972) Multiple model approach to uptake and distribution of halothane: use of analog computer. Comp Biol Med Res 5:228–238CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1982

Authors and Affiliations

  • H. Schmidt
  • R. Dudziak

There are no affiliations available

Personalised recommendations