Skip to main content

Direct Measurement of Arterial Pressure and Derived Variables

  • Chapter

Part of the book series: European Academy of Anaesthesiology ((ANAESTHESIOLOGY,volume 2))

Abstract

Long before anaesthesia was conceived of, Stephen Hales(1) had cannulated the carotid artery of a conscious horse and noted the elevation and pulsatile variability of the blood pressure. Today, almost 250 years later, it is commonplace to measure arterial pressure directly during anaesthesia, and in patients requiring intensive therapy. For most anaes-thesiologists, the measurement and recording of arterial pressure starts and ends with the derivation of systolic and diastolic values, and occasionally the derivation of mean arterial pressure and heart rate.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hales S (1733) Statical essays: containing haemastaticks. (Reprinted 1964: 22. History of Medicine series, Library of New York Academy of Medicine) Hafner Publishing, New York.

    Google Scholar 

  2. Prys-Roberts C, Gersh BJ, Baker AB, Reuben SR (1972) The effects of halothane on the interactions between myocardial contractility, aortic impedance and left ventricular performance. 1. Theoretical considerations and results. Br J Anaesth 44; 634–649.

    Article  PubMed  CAS  Google Scholar 

  3. Mirsky I, Pasternac A, Ellison RC et al. (1974) Clinical applications of force-velocity parameters and the concept of a ‘normalized velocity’. In: Mirsky I et al. (eds) Cardiac Mechanics: physiological, clinical, and mathematical considerations. Wiley and Sons, New York, p 293.

    Google Scholar 

  4. Smith NT (1980) Myocardial function and anaesthesia. In: Prys-Roberts C (ed) The circulation in anaesthesia. Blackwell Scientific, Oxford.

    Google Scholar 

  5. Pollack GH (1970) Maximum velocity as an index of contractility in cardiac muscle. Circ Res 26; 111–127.

    PubMed  CAS  Google Scholar 

  6. Taylor SH, Snow HM, Linden RJ (1972) Relationship between left ventricular and aortic dP/dt (max). Proc R Soc Med 65; 550–551.

    PubMed  CAS  Google Scholar 

  7. Bourgeois MJ, Gilbert BK, Donald DE, Wood EH (1974) Characteristics of aortic diastolic pressure decay with application to the continuous monitoring of changes in peripheral vascular resistance. Circ Res 35; 56–66.

    PubMed  CAS  Google Scholar 

  8. Frank O (1895) Zur Dynamik des Herzmuskels. Zeitschrift für Biologie 32; 370–437.

    Google Scholar 

  9. Erlanger J, Hooker DR (1904) An experimental study of blood pressure and of pulse pressure in man. Johns Hopkins Hosp Rep 12; 147.

    Google Scholar 

  10. Frank O (1930) Schätzung des Schlagvolumens des menschlichen Herzens auf Grund der Wellen-und Windkesseltheorie. Z Biol 90; 405–409.

    Google Scholar 

  11. Wezler K, Böger A (1939) Die Dynamik des arteriellen Systems. Der arterielle Blutdruck und seine Komponenten. Ergeb Physiol 41; 292–606.

    Google Scholar 

  12. Broemser P, Ranke O (1931) Über die Messung des Schlagvolumen des Herzens auf unblutigen Weg. Z Biol 90; 467–507.

    Google Scholar 

  13. Remington JW, Hamilton WF (1945) The construction of a theoretical cardiac ejection curve from the contour of the aortic pressure pulse. Am J Physiol 144; 546–556.

    Google Scholar 

  14. Hamilton WF, Remington JW (1947) Quantitative calculation of the time course of cardiac ejection from the pressure pulse. Am J Physiol 148; 25–34.

    PubMed  Google Scholar 

  15. Warner HR, Swan HJC, Conolly DC et al (1953) Quantitation of beat-to-beat changes in stroke volume from the aortic pulse contour in man. J Appl Physiol 5; 495.

    PubMed  CAS  Google Scholar 

  16. Warner HR, Gardner RM, Toronto AF (1968) Computer-based monitoring of cardiovascular functions in postoperative patients. Circulation 37–38; 69–74.

    Google Scholar 

  17. Bennett GM, Loeser EA, Kawamura R, Stanley TH (1977) Cardiovascular responses to nitrous oxide during enflurane and oxygen anesthesia. Anesthesiology 46; 227–229.

    PubMed  CAS  Google Scholar 

  18. McDermott RW, Stanley TH (1974) The cardiovascular effects of low concentrations of nitrous oxide during morphine anesthesia. Anesthesiology 41; 89–91.

    Article  PubMed  CAS  Google Scholar 

  19. McDonald DA (1974) Blood flow in arteries, 2nd ed. Arnold, London.

    Google Scholar 

  20. Kouchoukos NT, Sheppard LC, McDonald DA (1970) Estimation of stroke volume in the dog by a pulse contour method. Circ Res 26; 611–623.

    PubMed  CAS  Google Scholar 

  21. Kouchoukos NT, Sheppard LC, McDonald DA, Kirklin JW (1969) Estimation of stroke volume from the central arterial pulse contour in postoperative patients. Surg Forum 20; 180.

    PubMed  CAS  Google Scholar 

  22. Womersley JR (1957b) Oscillatory flow in arteries: the constrained elastic tube as a model of arterial flow and pulse transmission. Phys Med Biol 2; 178–187.

    Article  PubMed  CAS  Google Scholar 

  23. Taylor MG (1964) Wave travel in arteries and the design of the cardiovascular system. In: Attinger EO (ed) Pulsatile blood flow. McGraw-Hill, New York.

    Google Scholar 

  24. Wesseling KH, Purschke R, Smith NT et al. (1976) A beat-to-beat cardiac output computer for clinical monitoring. In: Payne JP, Hill DW (eds) Real time computing in patient management. Peregrinus, Stevenage.

    Google Scholar 

  25. Smith NT, Wesseling KH, Weber JAP, De Wit B (1974) Preliminary evaluation of a pulse contour cardiac output computer in man. Proc San Diego Biomed Symp 13; 113–119.

    Google Scholar 

  26. Purschke R, Brucke P, Schulte HD (1974) Untersuchung zur zuverlaessigkeit der schlagvolumen — bestimmung aus der aortendruckkurve, teil II: Langzeitbeobachtung bei patienten. Anaesthesist 23; 525.

    PubMed  CAS  Google Scholar 

  27. Bourgeois MJ, Gilbert BK, von Bernuth G, Wood EH (1976) Continuous determination of beat-to-beat stroke volume from aortic pressure pulses in the dog. Circ Res 39; 15.

    PubMed  CAS  Google Scholar 

  28. Prys-Roberts C, Corbett JL, Kerr JH et al. (1980) Treatment of sympathetic overactivity in tetanus. Lancet 1; 542.

    Google Scholar 

  29. Prys-Roberts C (1981) Cardiovascular monitoring in patients with vascular disease. Br J Anaesth 53; 767–776.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Prys-Roberts, C., Curnow, J.S.H. (1982). Direct Measurement of Arterial Pressure and Derived Variables. In: Prys-Roberts, C., Vickers, M.D. (eds) Cardiovascular Measurement in Anaesthesiology. European Academy of Anaesthesiology, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68690-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68690-0_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-11719-3

  • Online ISBN: 978-3-642-68690-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics