Skip to main content

Physiological Models of the Rodent Circadian System

  • Conference paper
Vertebrate Circadian Systems

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

C.P. Richter tried for a number of years to identify the physiological substrate underlying the endogenous generation of circadian rhythms in rats. After attempting a variety of neural and endocrine ablations, he reported the successful abolition of freerunning rhythms of activity, eating and drinking by lesions in the hypothalamus. He did not identify the locus of the effective lesions except to indicate that they were near the “ventral median nucleus” of the hypothalamus (Richter 1967).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe K, Kroning J, Greer MA, Critchlow V (1979) Effects of destruction of the suprachiasmatic nuclei on the circadian rhythms in plasma corticosterone, body temperature, feeding and thyrotropin. Neuroendocrinology 29: 119–131

    Article  PubMed  CAS  Google Scholar 

  • Albers HE (1981) Gonadal hormones organize and modulate the circadian system of the rat. Am J Physiol 241: R62–R66

    PubMed  CAS  Google Scholar 

  • Altman J (1960) Diurnal activity rhythm of rats with lesions of superior collicuius and visual cortex. Am J Physiol 202: 1205–1207

    Google Scholar 

  • Bolles RC, Stokes LW (1965) Rat’s anticipation of diurnal and a-diurnal feeding. J Comp Physiol Psychol 60: 290–294

    Article  PubMed  CAS  Google Scholar 

  • Boulos Z, Terman M (1979) Food availability and daily biological rhythms. Neurosci Biobehav Rev 4: 119–131

    Article  Google Scholar 

  • Boulos Z, Rosenwasser A, Terman M (1980) Feeding schedules and the circadian organization of behavior in the rat. Behav Brain Res 1: 39–65

    Article  PubMed  CAS  Google Scholar 

  • Browman LG (1943) The effect of controlled temperatures upon the spontaneous activity rhythms of the albino rat. J Exp Zool 94: 477–489

    Article  Google Scholar 

  • Chase PA, Seiden LS, Moore RY (1969) Behavioral and neuroendocrine responses to light mediated by separate visual pathways in the rat. Physiol Behav 4: 949–952

    Article  Google Scholar 

  • Daan S, Damassa D, Pittendrigh CS, Smith ER (1975) An effect of castration and testosterone replacement on a circadian pacemaker in mice (Mus musculus). Proc Natl Acad Sci USA 72: 3744–3747

    Article  PubMed  CAS  Google Scholar 

  • Davis FC, Menaker M (1980) Hamsters through time’s window: temporal structure of hamster locomotor rhythmicity. Am J Physiol 239: R149–R155

    PubMed  CAS  Google Scholar 

  • Eskes GA, Zucker I (1978) Photoperiodic regulation of the hamster testis: dependence on circadian rhythms. Proc Natl Acad Sci USA 75: 1034–1038

    Article  PubMed  CAS  Google Scholar 

  • Gibbs FP (1979) Fixed interval feeding does not entrain the circadian pacemaker in blind rats. Am J Physiol 236: R249–R253

    PubMed  CAS  Google Scholar 

  • Groos G, Mason R (1978) Maintained discharge of rat suprachiasmatic neurons at different adaptation levels. Neurosci Lett 8: 59–64

    Article  PubMed  CAS  Google Scholar 

  • Hendrickson AE, Wagoner N, Cowan WM (1972) An autoradiographic and electron microscopic study of retino-hypothalamic connections. Z Zeilforsch 135: 1–26

    Article  CAS  Google Scholar 

  • Kawamura H, Inouye ST (1979) Circadian rhythm in an island containing the suprachiasmatic nucleus. In: Suda M, Hayaishi O, Nakagawa H (eds) Biological rhythms and their central mechanism.Elsevier/North-Holland, Amsterdam, pp 335–341

    Google Scholar 

  • Kennedy C, DesRosiers MH, Jehle JW, Reivich M, Sharp F, Sokoloff L (1975) Mapping of functional neural pathways by autoradiographic survey of local metabolic rate with [14C] deoxyglucose. Science 187: 850–853

    Article  PubMed  CAS  Google Scholar 

  • Krieger DT (1980) Ventromedial hypothalamic lesions abolish food-shifted circadian adrenal and temperature rhythmicity. Endocrinology 106: 649–654

    Article  PubMed  CAS  Google Scholar 

  • Krieger DT, Hauser H, Krey LC (1977) Suprachiasmatic nuclear lesions do not abolish food-shifted circadian adrenal and temperature rhythmicity. Science 197: 398–399

    Article  PubMed  CAS  Google Scholar 

  • Mai JK (1978) The accessory optic system and the retino-hypothalamic system. A review. J Hirnforsch 19: 213–288

    PubMed  CAS  Google Scholar 

  • Mai JK (1979) Distribution of retinal axons within the lateral hypothalamic area. Exp Brain Res 34: 373–377

    Article  PubMed  CAS  Google Scholar 

  • Mason CA, Sparrow N, Lincoln DW (1977) Structural features of the retinohypothalamic projection in the rat during normal development. Brain Res 132: 141–148

    Article  PubMed  CAS  Google Scholar 

  • Menaker M, Eskin A (1966) Entrainment of circadian rhythms by sound in Passer domesticus. Science 154: 1579–1581

    Article  PubMed  CAS  Google Scholar 

  • Mulhouse OE (1977) Optic chiasm collaterals afferent to the suprachiasmatic nucleus. Brain Res 137: 351–355

    Article  Google Scholar 

  • Moore RY, Eichler VB (1972) Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res 42: 201–206

    Article  PubMed  CAS  Google Scholar 

  • Moore RY, Lenn NJ (1972) A retinohypothalamic projection in the rat. J Comp Neurol 146: 1–14

    Article  PubMed  CAS  Google Scholar 

  • Morin LP (1980) Effect of ovarian hormones on synchrony of hamster circadian rhythms. Physiol Behav 24: 741–749

    Article  PubMed  CAS  Google Scholar 

  • Morin LP, Fitzgerald KM, Zucker I (1977) Estradiol shortens the period of hamster circadian rhythms. Science 196: 305–307

    Article  PubMed  CAS  Google Scholar 

  • Nishino H, Koizumi K, Brooks CM (1976) The role of suprachiasmatic nuclei of the hypothalamus in the production of circadian rhythm. Brain Res 112: 45–59

    Article  PubMed  CAS  Google Scholar 

  • Pavlidis T (1969) Populations of interacting oscillators and circadian rhythms. J Theor Biol 22: 418–436

    Article  PubMed  CAS  Google Scholar 

  • Pfaff D, Keiner M (1973) Atlas of estradiol-concentrating cells in the central nervous system of the female rat. J Comp Neurol 151: 121–158

    Article  PubMed  CAS  Google Scholar 

  • Richter CP (1967) Sleep and activity: their relation to the 24-hour clock. Res Publ Assoc Nerv Ment Dis 45: 8–27

    CAS  Google Scholar 

  • Riley JN, Card JP, Moore RY (1981) A retinal projection to the lateral hypothalamus in the rat. Cell Tissue Res 214: 257–269

    Article  PubMed  CAS  Google Scholar 

  • Rowland N (1976) Orcadian rhythms and partial recovery of regulatory drinking in rats after lateral hypothalamic lesions. J Comp Physiol Psychol 90: 383–393

    Article  Google Scholar 

  • Rusak B (1975) Neural control of circadian rhythms in behavior of the golden hamster. Mesocricetus auratus. Dissertation, Univ California, Berkeley

    Google Scholar 

  • Rusak B (1977a) The role of the suprachiasmatic nuclei in the generation of circadian rhythms in the golden hamster. Mesocricetus auratus, J Comp Physiol 118: 145–164

    Article  Google Scholar 

  • Rusak B (1977b) Involvement of the primary optic tracts in mediation of light effects on hamster circadian rhythms. J Comp Physiol 118: 165–172

    Article  Google Scholar 

  • Rusak B, Boulos Z (1981) Pathways for photic entrainment of mammalian circadian rhythms. Photochem Photobiol 34: 267–273

    PubMed  CAS  Google Scholar 

  • Rusak B, Groos G (1982) Suprachiasmatic stimulation phase shifts rodent circadian rhythms. Science 215: 1407–1409

    Article  PubMed  CAS  Google Scholar 

  • Rusak B, Zucker I (1979) Neural regulation of circadian rhythms. Physiol Rev 59: 449–526

    PubMed  CAS  Google Scholar 

  • Sawaki Y (1977) Retinohypothalamic projection: electrophysiological evidence for the existence in female rats. Brain Res 120: 336–341

    Article  PubMed  CAS  Google Scholar 

  • Schneider GE (1973) Early lesions of superior colliculus: factors affecting the formation of abnormal retinal projections. Brain Behav Evol 8: 73–109

    Article  PubMed  CAS  Google Scholar 

  • Schoenfeld TA, Hamilton LW (1977) Secondary brain changes following lesions: a new paradigm for lesion experimentation. Physiol Behav 18: 951–967

    Article  PubMed  CAS  Google Scholar 

  • Schwartz WJ, Gainer H (1977) Suprachiasmatic nucleus: use of 14C-level deoxyglucose uptake as a functional marker. Science 197: 1089–1091

    Article  PubMed  CAS  Google Scholar 

  • Schwartz WJ, Davidsen LC, Smith CB (1980) In vivo metabolic activity of a putative circadian oscillator, the rat suprachiasmatic nucleus. J Comp Neurol 189: 157–167

    Article  PubMed  CAS  Google Scholar 

  • Silver J Brand S (1979) A route for direct retinal input to the preoptic hypothalamus: dendritic projections into the optic chiasm. Am J Anat 155: 391–401

    Article  PubMed  CAS  Google Scholar 

  • Stanfield B, Cowan WM (1976) Evidence for a change in the retinohypothalamic projection in the rat following early removal of one eye. Brain Res 104: 129–136

    Article  PubMed  CAS  Google Scholar 

  • Stephan FK, Zucker I (1972a) Rat drinking rhythms: central visual pathways and endocrine factors mediating responsiveness to environmental illumination. Physiol Behav 8: 315–326

    Article  PubMed  CAS  Google Scholar 

  • Stephan FK, Zucker I (1972b) Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci USA 69: 1583–1586

    Article  PubMed  CAS  Google Scholar 

  • Swanson LW, Cowan WM, Jones EG (1974) An autoradiographic study of the connections of the ventral lateral geniculate nucleus in the albino rat and the cat. J Comp Neurol 156: 143–164

    Article  PubMed  CAS  Google Scholar 

  • Winfree AT (1967) Biological rhythms and the behavior of populations of coupled oscillators. J Theor Biol 16: 15–42

    Article  PubMed  CAS  Google Scholar 

  • Zucker I (1979) Hormones and hamster circadian organization. In: Suda M, Hayaishi O, Nakagawa H (eds) Biological rhythms and their central mechanism. Elsevier/North-Holland, Amsterdam, pp 369–381

    Google Scholar 

  • Zucker I, Rusak B, King RG Jr (1976) Neural bases for circadian rhythms in rodent behavior. In: Riesen AH, Thompson RF (eds) Advances in psychobiology, vol. III. Wiley, New York, pp 35–74

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag, Berlin Heidelberg

About this paper

Cite this paper

Rusak, B. (1982). Physiological Models of the Rodent Circadian System. In: Aschoff, J., Daan, S., Groos, G.A. (eds) Vertebrate Circadian Systems. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68651-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68651-1_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68653-5

  • Online ISBN: 978-3-642-68651-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics