Circadian Contributions to Survival

  • S. Daan
  • J. Aschoff
Part of the Proceedings in Life Sciences book series (LIFE SCIENCES)

Abstract

The significance of biological rhythms can be discussed under at least two aspects. They serve, on the one hand, to attain an optimal temporal arrangement of animal behaviour within the cycles of the environment, as in the four “circa-clocks” (Aschoff 1981). On the other hand, this external adaptation results in internal temporal order which in itself may have selective value. In addition, there are many rhythmic processes within the organism, not related to any environmental periodicity, which in various ways contribute to the maintenance of functional integrity of the internal milieu (Aschoff and Wever 1961). In focussing on how circadian rhythms contribute to survival, we do well to consider them, first, as part of a spectrum of rhythms and to evaluate their possible intrinsic function regardless of the environmental day-night cycle. We then will proceed to a discussion of possible benefits to be derived from the adjustment to the periodic environment.

Keywords

Fermentation Attenuation Cage Hunt Renin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adolph EF (1949) Quantitative relations in the physiological constituents of mammals. Science 109: 579–585PubMedCrossRefGoogle Scholar
  2. Allison T, Gerber SD, Breelove SM, Dryden GL (1977) A behavioral and polygraphic study of sleep in the shrews Suncus murium, Blarina brevicauda and Cryptotis parva. Behav Biol 20: 354–366PubMedCrossRefGoogle Scholar
  3. Aschoff J (1960) Exogenous and endogenous components in circadian rhythms. Cold Spring Harbor Symp Quant Biol 25: 11–28PubMedCrossRefGoogle Scholar
  4. Aschoff J (1969) Phasenlage der Tagesperiodik in Abhängigkeit von Jahreszeit und Breitengrad. Oecologia 3: 125–165CrossRefGoogle Scholar
  5. Aschoff J (1979) Circadian rhythms: Influence of internal and external factors on the period measured in constant conditions. Z Tierpsychol 49: 225–249PubMedCrossRefGoogle Scholar
  6. Aschoff J (ed) (1981) Biological rhythms. Handbook of behavioral neurobiology, vol IV. Plenum Press, New YorkGoogle Scholar
  7. Aschoff J, Meyer-Lohmann J (1954) Die 24-Stunden-Periodik von Nagern im natürlichen und künstlichen Belichtungswechsel. Z Tierpsychol 11: 476–484CrossRefGoogle Scholar
  8. Aschoff J, Wever R (1961) Biologische Rhythmen und Regelung. Bad Oeynhauser Gespr 5: 1–15Google Scholar
  9. Aschoff J, Saint Paul von U, Wever R (1971) Die Lebensdauer von Fliegen unter Einfluß von Zeitverschiebungen. Naturwissenschaften 58: 574–575PubMedCrossRefGoogle Scholar
  10. Beier W, Lindauer M (1970) Der Sonnenstand als Zeitgeber für die Biene. Apidologie l: 5–28CrossRefGoogle Scholar
  11. Bovet J, Oertli EF (1974) Free-running circadian activity rhythms in freeliving beaver (Castor canadensis). J Comp Physiol 92: 1–10CrossRefGoogle Scholar
  12. Cavé AJ (1968) The breeding of the kestrel, Falco tinnunculus, in the reclaimed area of Oostelijk Flevoland. Neth J Zool 18: 313–407CrossRefGoogle Scholar
  13. Chapin JP, Wing LW (1959) The wideawake calender, 1953 to 1958. Auk 76: 152–158Google Scholar
  14. Corbet GB, Southern HN (eds) (1977) The handbook of British mammals, 2nd edn. Blackwell, OxfordGoogle Scholar
  15. Daan S (1973) Periodicity of heterothermy in the Garden Dormouse, Eliomys quercinus (L.). Neth J Zool 23: 237–265CrossRefGoogle Scholar
  16. Daan S, Aschoff J (1975) Orcadian rhythms of locomotor activity in captive birds and mammals: Their variations with season and latitude. Oecologia 18: 269–316CrossRefGoogle Scholar
  17. Daan S, Koene P (1981) On the timing of foraging flights of oystercatchers Haematopus ostralegus on tidal mudflats. Neth J Sea Res 15: 1–22CrossRefGoogle Scholar
  18. Daan S, Pittendrigh CS (1976) A functional analysis of Orcadian pacemakers in nocturnal rodents.II. The variability of phase response curves. J Comp Physiol 106: 252–266Google Scholar
  19. Daan S, Slopsema S (1978) Short-term rhythms in foraging behaviour of the common vole, (Microtus arvalis). J Comp Physiol 127: 215–227CrossRefGoogle Scholar
  20. Daan S, Tinbergen JM (1980) Young guillemots (Uria lomvia) leaving their arctic breeding cliffs. A daily rhythm in numbers and risk. Ardea 67: 96–100Google Scholar
  21. Daan S, Cavé AJ, Dijkstra C (1982) Body mass and size in relation to breeding behaviour in the kestrel (Falco tinnunculus (L.)). Ardea (in press)Google Scholar
  22. Darling FF (1938) Bird flocks and the breeding cycle: a contribution to the study of avian sociality. Cambridge Univ Press, CambridgeGoogle Scholar
  23. Drent RH, Daan S (1981) The prudent parent: Energetic adjustments in avian breeding. Ardea 68: 225–252Google Scholar
  24. Emlen ST, DeMong NJ (1975) Adaptive significance of synchronized breeding in a colonial bird: a new hypothesis. Science 188: 1029–1031PubMedCrossRefGoogle Scholar
  25. Greenwood J (1964) The fledging of the guillemot Uria aalge with notes on the razor bill Alca torda. Ibis 106: 469–481CrossRefGoogle Scholar
  26. Henwood K, Fabrick A (1969) A quantitative analysis of dawn chorus: temporal selection for communicatory optimization. Am Nat 114: 260–274CrossRefGoogle Scholar
  27. Heusner AA (1982) Energy metabolism and body size. I: Is the 0.75 mass exponent of Kleibers equation a statistical artifact? Respir Physiol 48: 1–12PubMedCrossRefGoogle Scholar
  28. Hilfenhaus M (1976) Orcadian rhythm of plasma renin activity, plasma aldosterone and plasma corticosterone in rats. Int J Chronobiol 3: 213–219Google Scholar
  29. Hill AV (1950) The dimensions of animals and their muscular dynamics. Sci Prog 38: 209–230Google Scholar
  30. Honma K, Hiroshige T (1978) Simultaneous determination of circadian rhythms of locomotor activity and body temperature in the rat. Jpn J Physiol 28: 159–169PubMedCrossRefGoogle Scholar
  31. Jegla TC, Poulson TL (1968) Evidence of circadian rhythms in crayfish. J Exp Zool 168: 273–282CrossRefGoogle Scholar
  32. Kacelnik A, Krebs JR (1982) The dawn chorus in the great tit (Parus major): a causal and functional analysis Behaviour (in press)Google Scholar
  33. Kirkwood JK (1981) Bioenergetics and growth in the kestrel, (Falco tinnunculus). Ph D thesis, Univ BristolGoogle Scholar
  34. Kleiber M (1961) The fire of life. John Wiley and Sons, New YorkGoogle Scholar
  35. Kock De LL, Rohn I (1971) Observations on the use of the exercise-wheel in relation to the social rank and hormonal conditions in the bank vole (Clethrionomys glareolus), and the Norway lemming (Lemmus lemmus). Z Tierpsychol 29: 180–195PubMedCrossRefGoogle Scholar
  36. Landau IT (1975) Light dark rhythms in aggressive behavior of the male golden hamster. Physiol Behav 14: 767–774PubMedCrossRefGoogle Scholar
  37. Lehmann U (1976) Short-term and circadian rhythms in the behaviour of the vole, (Microtus agrestis (L.)). Oecologia 23: 185–199CrossRefGoogle Scholar
  38. Lindstedt SL, Calder WA (1981) Body size, physiological time, and longevity of homeothermic animals. Q Rev Biol 56: 1–16CrossRefGoogle Scholar
  39. Neumann D (1976) Adaptations of chironomids to intertidal environments. Annu Rev Entomol 21: 387–414CrossRefGoogle Scholar
  40. Newton I (1979) Population ecology of raptors. Poyser, BerkhamstedGoogle Scholar
  41. Nice M (1943) Studies in the life history of the song sparrow II (Melospiza melodia). Trans Linn Soc N Y 6: 1–328Google Scholar
  42. Nishio T, Shiosaka S, Nakagawa H, Sakumoto T, Sato K (1979) Orcadian feeding rhythm after hypothalamic knive-cut isolating suprachiasmatic nucleus. Physiol Behav 23: 763–769PubMedCrossRefGoogle Scholar
  43. Pennycuick CJ (1975) Mechanics of flight. In: Farner DS, King JR (eds) Avian biology, vol V. Academic Press, London New York, pp 1–75Google Scholar
  44. Peret J, Macaire I, Chanez M (1973) Schedule of protein ingestion, nitrogen and energy utilization and circadian rhythm of hepatic glycogen, plasma corticosterone and insulin in rats. J Nutr 103: 866–874PubMedGoogle Scholar
  45. Pittendrigh CS (1958) Perspectives in the study of biological clocks. In: Buzzati-Traverso AA (ed) Perspectives in marine biology. Univ Calif Press, Berkeley, pp 239–268Google Scholar
  46. Pittendrigh CS, Daan S (1976a) A functional analysis of circadian pacemakers in nocturnal rodents. I The stability and lability of spontaneous frequency. J Comp Physiol 106: 223–252CrossRefGoogle Scholar
  47. Pittendrigh CS, Daan S (1976b) A functional analysis of circadian pacemakers in nocturnal rodents. IV; Entrainment: pacemaker as clock. J Comp Physiol 106: 291–331CrossRefGoogle Scholar
  48. Pittendrigh CS, Skopik SD (1970) Circadian systems V. The driving oscillation and the temporal sequence of development. Proc Natl. Acad Sci USA 65: 500–507CrossRefGoogle Scholar
  49. Potvin CL, Bovet J (1975) Annual cycle of patterns of activity rhythms in beaver colonies (Castor canadensis) J Comp Physiol 98: 243–256CrossRefGoogle Scholar
  50. Remmert H (1962) Der Schlüpfrhythmus der Insekten. Steiner, WiesbadenGoogle Scholar
  51. Rijnsdorp A, Daan S, Dijkstra C (1981) Hunting in the kestrel, (Falco tinnunculus), and the adaptive significance of daily habits. Oecologia 50: 391–406CrossRefGoogle Scholar
  52. Robitaille JA, Bovet J (1976) Field observations on the social behaviour of the Norway rat, Rattus norvegicus (Berkenhout). Biol Behav 1: 289–308Google Scholar
  53. Rusak B (1982) Neural control and functional aspects of Mammalian behavioral rhythms. In: Loher W (ed) Behavioral expressions of biological rhythms. Garland, New York (in press)Google Scholar
  54. Scheving LE, Pauly JE (1967) Effect of adrenalectomy, adrenal medullectomy and hypophysectomy on the daily mitotic rhythm in the corenal epithelium of the rat. In: Mayersbach H von (ed) The cellular aspects of biorhythms. Springer, Berlin Heidelberg New York, pp 167–174Google Scholar
  55. Stahl WR (1962) Similarity and dimensional methods in biology. Science 137: 205–212PubMedCrossRefGoogle Scholar
  56. Stephan FK, Kovacevic NS (1978) Multiple retention deficits in passive avoidance in rats is eliminated by SCN lesions. Behav Biol 22: 456–462PubMedCrossRefGoogle Scholar
  57. Thinès G, Wolff F, Boucqney C, Soffie M (1965) Etude comparative de l’activité du poisson cavernicole Anoptichthys antrobius Alvarez, et de son ancêtre epigé Astyanax mexicanus (Fillippi). Ann Soc R Zool Belg 96: 61–116Google Scholar
  58. Western D (1979) Size, life history and ecology in mammals. Afr J Ecol 17: 185–204CrossRefGoogle Scholar
  59. Wilkie DR (1977) Metabolism and body size. In: Pedley TJ (ed) Scale effects in animal locomotion. Academic Press, London New York, pp 23–36Google Scholar
  60. Zepelin H, Rechtschaffen A (1974) Mammalian sleep, longevity and energy metabolism. Brain Behav Evol 10: 425–470PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1982

Authors and Affiliations

  • S. Daan
    • 1
  • J. Aschoff
    • 2
  1. 1.Zoological LaboratoryGroningen UniversityHarenNetherlands
  2. 2.Max-Planck-Institut für VerhaltensphysiologieAndechsGermany

Personalised recommendations