Skip to main content

Phase Responses and Characteristics of Free-Running Activity Rhythms in the Golden Hamster: Independence of the Pineal Gland

  • Conference paper
Vertebrate Circadian Systems

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

The pineal organ is of major importance for the circadian organization of fishes, amphibians, reptiles (Underwood 1982), and birds (Takahashi and Menaker 1979), yet there is little evidence for a similar role in mammals. As was first shown by Richter (1967), pinealectomy has no effect on the free-running activity rhythm of blinded rats. Other studies have also failed to find any difference between pinealectomized (sighted) rats and intact controls with regard to the circadian period in constant conditions and its dependence on intensity of illumination (Quay 1968), the phase-angle difference to an entraining light-dark cycle (LD) (Quay 1970a), or the pattern of activity in either natural or artificial LD (Karppanen et al. 1973). Furthermore, the periods of free-running activity rhythms were similar in intact and pinealectomized golden hamsters after 9 weeks of exposure to continuous darkness (DD) as well as immediately after the transfer from LD to DD (Morin and Cummings 1981). Circadian rhythms in several functions other than locomotor activity have also been shown to be not affected, or only marginally altered, by pinealectomy: e.g., the rhythms of food intake (Baum 1970, Morimoto and Yamamura 1979, Lynch and Wurtman 1979) and of water intake (Stephan and Zucker 1972), of plasma levels in corticosterone (Takahashi et al. 1976, Morimoto and Yamamura 1979), testosterone (Kinson and Liu 1973), and prolactin (Niles et al. 1977a), of the melanocyte stimulating hormone content of the pituitary (Tilders and Smelk 1975), of visual evoked potentials in the rabbit (cf. Chap. 2.4), and of agonistic behavior in mice (Cavalieri et al. 1980) as well as body temperature in the rat (Spencer et al. 1976).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aschoff J (1962) Spontane lokomotorische Aktivität. In: Helmeke JG, Lengerken HV, Stark D (eds) Handbuch der Zoologie. Band 8 (II, 4) Walter de Gruyter, Berlin.

    Google Scholar 

  • Aschoff J, Gerecke U, Kureck A, Pohl H, Rieger P, Saint Paul U von, Wever R (1971) Interdependent parameters of circadian activity rhythms in birds and man. In: Menaker M (ed) Biochronometry. Natl Acad Sci, Washington, pp 3–27

    Google Scholar 

  • Banerji TK, Kachi T, Quay WB (1979) Circadian changes in adrenal dopamine-β-hydroxylase activity: dependence of change at darkness onset, and the effect of pinealectomy, on animal strain and age. Chronobiologia 6:1–7

    PubMed  CAS  Google Scholar 

  • Banerji TK, Quay WB (1978) Modification of plasma dopamine-β-hydroxylase activity by adrenal and pineal extirpations, and time of day dependency of changes. Chronobiologia 5: 379–395

    PubMed  CAS  Google Scholar 

  • Baum MJ (1970) Light-synchronization of rat feeding rhythms following sympathectomy or pinealectomy. Physiol Behav 5: 325–329

    Article  PubMed  CAS  Google Scholar 

  • Cavalieri VM, Sollberger A, Bliss DK (1980) Rhythmicity of intermale aggression in mice: potential pineal influences. J Interdiscipl Cycle Res 11: 299–324

    Article  Google Scholar 

  • Daan S, Pittendrigh CS (1976) A functional analysis of circadian pacemakers in nocturnal rodents. II. The variability of phase response curves. J Comp Physiol 106: 253–266

    Article  Google Scholar 

  • Deguchi T (1975) Ontogenesis of a biological clock for serotonin: acetyl coenzyme A N-acetyltransferase in pineal gland of rat. Proc Natl Acad Sci USA 72: 2814–2818

    Article  PubMed  CAS  Google Scholar 

  • Ebihara S, Kawamura H (1980) Central mechanism of circadian rhythms in birds. In: Tanabe Y, Tanaka K, Ookawa T (eds) Biological rhythms in birds. Neural and endocrine aspects. Springer, Berlin Heidelberg New York, pp 71–78

    Google Scholar 

  • Elliott JA (1981) Circadian rhythms, entrainment and photoperiodism in the Syrian hamster. In: Follett BK and Follett DE (eds) Biological clocks in seasonal reproductive cycles. Wright, Bristol, pp 203–217

    Google Scholar 

  • Ellis GB, Turek FW (1979) Changes in locomotor activity associated with the photoperiodic response of the testes in male golden hamsters. J Comp Physiol 132: 277–284

    Article  Google Scholar 

  • Ellis GB, McKleveen RE, Turek FW (1982) Dark pulses affect the circadian rhythm of activity in hamsters kept in constant light. Am J Physiol 242: R44–R50

    PubMed  CAS  Google Scholar 

  • Finkelstein JS, Baum FR, Campbell CS (1978) Entrainment of the female hamster to reversed photoperiod: Role of the pineal. Physiol Beh 21: 105–111

    Article  CAS  Google Scholar 

  • Jones DC, Kimeidorf DJ, Rubadeau DO, Castenera TJ (1953) Relationship between volitional activity and age in the male rat. Amer J Physiol 172: 109–114

    PubMed  CAS  Google Scholar 

  • Hoffmann K (1981) The role of the pineal gland in the photoperiodic control of seasonal cycles in hamsters. In: Follett BK, Follett DE (eds) Biological clocks in seasonal reproductive cycles. Wright, Bristol, pp 237–250

    Google Scholar 

  • Karppanen H, Airaksinen MM, Särkimäki J (1973) Effects in rats of pinealectomy and oxypertine on spontaneous locomotor activity and blood pressure during various light schedules. Ann Med Exp Biol Fenn 51: 93–103

    PubMed  CAS  Google Scholar 

  • Kawakami M, Yamaoka S, Yamaguchi T (1972) Influence of light and hormones upon circadian rhythm of EEG slow wave and paradoxial sleep. In: Itoh S, Ogata K, Yoshimura H (eds) Advances in climatic physiology. Igaku Shoin Ltd, Tokio, pp 349–366

    Google Scholar 

  • Kincl FA, Chang CC, Buzkova V (1970) Observation on the influence of changing photoperiod on spontaneous wheel-running activity of neonatally pinealectomized rats. Endocrinology 87: 38–42

    Article  PubMed  CAS  Google Scholar 

  • Kinson GA, Liu CC (1973) Effects of blinding and pinealectomy on diurnal variations in plasma testosterone. Experientia 29: 1415–1416

    Article  PubMed  CAS  Google Scholar 

  • Kizer HS, Zivin JA, Jacobowitz DM, Kopin IJ (1975) The nyctohemeral rhythm of plasma prolactin, effects of ganglionectomy, pinealectomy, constant light, constant darkness or 6-OH-dopamine administration. Endocrinology 96: 1230–1240

    Article  PubMed  CAS  Google Scholar 

  • Krapp Ch (1977) Der Einfluß der Epiphyse auf die Lokomotionsaktivität bei Ratten. Experientia 33: 731–732

    Article  PubMed  CAS  Google Scholar 

  • Lynch HJ, Wurtman RJ (1979) Control of rhythms in the secretion of pineal hormones in humans and experimental animals. In: Suda M, Hayashi O, Nakagawa H (eds) Biological rhythms and their central mechanism (The Naito Foundation Symp 1979) Elsevier, North-Holland Biomedical Press, Amsterdam New York Oxford, pp 117–131

    Google Scholar 

  • Moore RY, Klein DC (1974) Visual pathways and the central neural control of a circadian rhythm in pineal serotonin N-acetyltransferase activity. Brain Research 71: 17–33

    Article  PubMed  CAS  Google Scholar 

  • Morimoto Y, Yamamura Y (1979) Regulation of circadian adrenocortical periodicities and of eating — fasting cycles in rats under various lighting conditions. In: Suda M, Hayaishi O, Nakagawa H (eds) Biological rhythms and their central mechanism (The Naito Foundation Symp 1979). Elsevier, North-Holland Biomedial Press, Amsterdam New York Oxford, pp 176–188

    Google Scholar 

  • Morin LP, Cummings LA (1981) Effect of surgical or photoperiodic castration, testosterone replacement or pinealectomy on male hamster running rhythmicity. Physiol Beh 26: 825–838

    Article  CAS  Google Scholar 

  • Niles LP, Brown GM, Grota LJ (1977a) Effects of neutralization of circulating melatonin and N-acetyl-serotonin on plasma prolactin levels. Neuroendocrinology 23: 14–22

    Article  PubMed  CAS  Google Scholar 

  • Niles LP, Brown GM, Grota LJ (1977b) Endocrine effects of the pineal gland and neutralization of circulating melatonin and N-acetyl-serotonin. Can J Physiol Pharmacol 55: 537–544

    Article  PubMed  CAS  Google Scholar 

  • Niles LP, Brown GM, Grota LJ (1979) Role of the pineal gland in diurnal endocrine secretion and rhythm regulation. Neuroendocrinology 29: 14–21

    Article  PubMed  CAS  Google Scholar 

  • Pittendrigh CS, Daan S (1976a) A functional analysis of circadian pacemakers in nocturnal rodents. 1. The stability and lability of spontaneous frequency. J Comp Physiol 106: 223–252

    Article  Google Scholar 

  • Pittendrigh CS, Daan S (1976b) A functional analysis of circadian pacemakers in nocturnal rodents. V. Pacemaker structure: A clock for all seasons. J Comp Physiol 106: 333–355

    Article  Google Scholar 

  • Quay WB (1968) Individuation and lack of pineal effect in the rat’s circadian locomotor rhythm. Physiol Behav 3: 109–118

    Article  Google Scholar 

  • Quay WB (1970a) Physiological significance of the pineal during adaptation to shifts in photoperiod. Physiol Beh 5: 353–360

    Article  CAS  Google Scholar 

  • Quay WB (1970b) Precocious entrainment and associated characteristics of activity patterns following pinealectomy and reversal of photoperiod. Physiol Beh 5: 1281–1290

    Article  CAS  Google Scholar 

  • Quay WB (1972) Pineal homeostatic regulation of shifts in the circadian activity rhythm during maturation and aging. Trans Acad Sci, Ser. 11, 34: 239–254

    Google Scholar 

  • Reiss, M, Davis RH, Sideman MB, Lienta ES (1963) Pineal gland and spontaneous activity of rats. J Endocrin 28: 127–128

    Article  CAS  Google Scholar 

  • Richter CP (1922/23) A behavioristic study of the activity of the rat. Comp Psychol Monogr 1, No. 2, pp 1–55

    Google Scholar 

  • Richter CP (1967) Sleep and activity: their relation to the 24-hour clock. In: Kety SS, Evarts EV, Williams HC (eds) Sleep and altered states of consciousness. Williams & Williams C, Baltimore, pp 8–29

    Google Scholar 

  • Richter CP, Uhlenhuth EH (1954) Comparison of the effects of gonadectomy on spontaneous activity of wild and domesticated Norway rats. Endocrinology 54: 311–3222

    Article  PubMed  CAS  Google Scholar 

  • Rønnekleiv OK, Krulich L, McCann SM (1973) An early morning surge of prolactin in the male rat and its abolition by pinealectomy. Endocrinology 92: 1339–1342

    Article  PubMed  Google Scholar 

  • Rusak B (1982) Circadian organization in mammals and birds: role of the pineal gland. In: Reiter RJ (ed) The pineal gland, Vol III Extra-reproductive effects. CRM Press, Boca Raton, Florida (in press)

    Google Scholar 

  • Scalabrino G, Ferioli ME, Nebuloni R, Fraschini F (1979) Effects of pinealectomy on the circadian rhythms of the activities of polyamine biosynthetic decarboxylases and tyrosine aminotransferase in different organs of the rat. Endocrinology 104: 377–384

    Article  PubMed  CAS  Google Scholar 

  • Simpson SM, Follett BK (1981) Pineal and hypothalamic pacemakers: Their role in regulating circadian rhythmicity in Japanese Quail. J Comp Physiol 144: 381–389

    Article  Google Scholar 

  • Slonaker JR (1930) The effect of the excision of different sexual organs on the development, growth and longevity of the albino rat. Am J Physiol 93: 307–317

    Google Scholar 

  • Spencer F, Shirer HW, Yochim JM (1976) Core temperature in the female rat: effect of pinealectomy or altered lighting. Am J Physiol 231: 355–360

    PubMed  CAS  Google Scholar 

  • Stephan FK, Zucker I (1972) Rat drinking rhythms: Central visual pathways and endocrine factors mediating responsiveness to environmental illumination. Physiol Beh 8: 315–326

    Article  CAS  Google Scholar 

  • Takahashi JS, Menaker M (1979) Brain mechanisms in avian circadian systems. In: Suda M, Hayaishi O, Nakagawa H (eds) Biological rhythms and their central mechanism (The Naito Foundation Symp 1979). Elsevier, North-Holland Biomedical Press, Amsterdam New York Oxford, pp 95–109

    Google Scholar 

  • Takahashi K, Inoue K, Takahashi Y (1976) No effect of pinealectomy on the parallel shift in circadian rhythms of adrenocortical activity and food intake in blinded rats. Endocrinol Japan 23: 417–421

    Article  CAS  Google Scholar 

  • Tamarkin L, Reppert SM, Klein DC (1979) Regulation of pineal melatonin in the Syrian hamster. Endrocrinology 104: 385–389

    Article  CAS  Google Scholar 

  • Tilders FJH, Smelk PG (1975) A diurnal rhythm in melanocytestimulating hormone content of the rat pituitary gland and its independence from the pineal gland. Neuroendocrinol 17: 296–308

    Article  CAS  Google Scholar 

  • Turek FW, Campbell CS (1979) Photoperiodic regulation of neuroendocrinegonadal activity. Biol Reprod 20: 32–50

    PubMed  CAS  Google Scholar 

  • Turek FW, Ellis GB (1980) Role of the pineal gland in seasonal changes in neuroendocrine testicular function. In: Steinberger A, Steinberger E (eds) Testicular development, structure and function. Raven Press, New York, pp 389–393

    Google Scholar 

  • Underwood H (1982) Circadian organization in fish, reptiles and amphibians: role of the pineal gland. In: Reiter RJ (ed) The pineal gland. Vol III Extra-reproductive effects. CRM Press, Boca Raton, Florida (in press)

    Google Scholar 

  • Wang GH, Richter CP, Guttmacher AF (1925) Activity studies on male castrated rats with ovarian transplants and correlation of the activity with the histology of the grafts. Amer J Physiol 73: 581–599

    Google Scholar 

  • Wilkinson M, Arendt J, Bradtke J, Ziegler Dde (1977) Determination of a dark-induced increase of pineal N-acetyltransferase activity and simultaneous radio-immunoassay of melatonin In pineal, serum and pituitary tissue of the male rat. J Endocr 72: 243–244

    Article  PubMed  CAS  Google Scholar 

  • Willoughby JO (1980) Pinealectomy mildly disturbs the secretory patterns of prolactin and growth hormone in the unstressed rat. J Endocr 86: 101–107

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

Aschoff, J., Gerecke, U., von Goetz, C., Groos, G.A., Turek, F.W. (1982). Phase Responses and Characteristics of Free-Running Activity Rhythms in the Golden Hamster: Independence of the Pineal Gland. In: Aschoff, J., Daan, S., Groos, G.A. (eds) Vertebrate Circadian Systems. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68651-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68651-1_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68653-5

  • Online ISBN: 978-3-642-68651-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics