Skip to main content

The Neurophysiology of the Mammalian Suprachiasmatic Nucleus and Its Visual Afferents

  • Conference paper
Vertebrate Circadian Systems

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

In 1967 Richter concluded that the circadian clock controlling the rest-activity cycle of the rat is probably located “somewhere in the hypothalamus” (Richter 1967). He added: “...we assume that (the clock) is constituted of many cells, each one of which is programmed to function at a rate of 24 or nearly 24 h, that under ordinary conditions these cells all function together but that under certain conditions they may become desyn-chronized at least to some extent”. These statements represent perhaps the earliest speculation about the localization and neurophysiological organization of a circadian pacemaker in the mammalian hypothalamus. More recently Enright developed a more sophisticated neural model which includes specific mechanisms both for the generation of circadian oscillations and their photic entrainment. This model for the circadian pacemaker is primarily theoretical in nature. In order to construct a physiological model for the circadian pacemaker, a study of the functional properties of a “real” biological clock is essential. With the identification of the suprachiasmatic nuclei (SCN) as a putative pacemaker in the mammalian hypothalamus such an experimental program has become possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anton-Tay F, Chou C, Anton S, Wurtman RJ (1968) Brain serotonin concentration: elevation following intraperitoneal administration of melatonin. Science 162: 277–278

    Article  PubMed  CAS  Google Scholar 

  • Azmitia EC, Segal M (1978) An autoradiographic analysis of the differential ascending projections of the dorsal and medial raphe nuclei in the rat. J Comp Neurol 179: 641–668

    Article  PubMed  CAS  Google Scholar 

  • Bubenik GA, Brown GM, Grota LJ (1976) Differential localization of N-acetylated indolealkylamines in CNS and Harderian gland using immunohistology. Brain Res 118: 417–423

    Article  PubMed  CAS  Google Scholar 

  • Enright JT (1980) The timing of sleep and wakefulness. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Foote WE, Taber-Pierce E, Edwards L (1978) Evidence for a retinal projection to the midbrain of the cat. Brain Res 156: 135–140

    Article  PubMed  CAS  Google Scholar 

  • Groos GA (1979) Electrophysiological evidence for the absence of photosensitive neurons in the rat suprachiasmatic nucleus. IRCS Med Sci 7: 342

    Google Scholar 

  • Groos GA, Mason R (1978) Maintained discharge of rat suprachiasmatic neurons at different adaptation levels. Neurose Lett 8: 59–64

    Article  CAS  Google Scholar 

  • Groos GA, Mason R (1980) The visual properties of rat and cat suprachiasmatic neurones. J Comp Physiol 135: 349–356

    Article  Google Scholar 

  • Groos GA, Vanderkooy D (1981) Functional absence of brain photoreceptors mediating entrainment of circadian rhythms in the adult rat. Experientia 37: 71–72

    Article  PubMed  CAS  Google Scholar 

  • Gueldner FH, Ingham CA (1979) Plasticity in synaptic appositions of optic nerve afferents under different lighting conditions. Neurosci Lett 14: 235–240

    Article  Google Scholar 

  • Gueldner FH, Ingham CA (1980) Increase in post-synaptic density material in optic target neurons of the rat suprachiasmatic nucleus after bilateral enucleation. Neurosci Lett 17: 27–31

    Article  Google Scholar 

  • Hale PT, Sefton AJ (1978) A comparison of the visual and electrical response properties of cells in the dorsal and ventral lateral geniculate nuclei. Brain Res 153: 591–595

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann K (1971) Splitting of the circadian rhythm as a function of light intensity. In: Menaker M (ed) Biochronometry. Natl Acad Sci, Washington DC, pp 134–151

    Google Scholar 

  • Klein DC (1978) The pineal gland: a model of neuroendocrine regulation. In: Reichlin S, Baldessarini RJ, Martin JB (eds) The hypothalamus. Raven Press, New York, pp 303–327

    Google Scholar 

  • Lambert HH (1975) Continuous red light induces persistent estrus without retinal degeneration in the albino rat. Endocrinology 97: 208–210

    Article  PubMed  CAS  Google Scholar 

  • Mason CA, Sparrow N, Lincoln DW (1977) Structural features of the retinohypothalamic projection in the rat during normal development. Brain Res 132: 141–148

    Article  PubMed  CAS  Google Scholar 

  • McCormack CE, Sontag CR (1880) Entrainment by red light of running activity and ovulation rhythms of rats. Am J Physiol 239: R450–R4543

    Google Scholar 

  • Moore RY (1973) Retino-hypothalamic projections in mammals: a comparative study. Brain Res 49:403–409

    Article  PubMed  CAS  Google Scholar 

  • Nishino H (1976) Suprachiasmatic nuclei and circadian rhythms. Folia Pharmacol 72: 941–954

    Article  CAS  Google Scholar 

  • Nishino H, Koizumi K, McBrooks C (1976) The role of suprachiasmatic nuclei of the hypothalamus in the production of circadian rhythm. Brain Res 112: 49–59

    Article  Google Scholar 

  • Pickard GE (1980) Morphological characteristics of retinal ganglion cells projecting to the suprachiasmatic nucleus: a horseradish perioxidase study. Brain Res 183: 458–465

    Article  PubMed  CAS  Google Scholar 

  • Richard D, Koszul MF, Buser P (1977) Size and characteristics of visual receptive fields in nucleus ventralis lateralis in cat under chloralose anesthesia. Brain Res 138: 175–179

    Article  PubMed  CAS  Google Scholar 

  • Richter CP (1967) Sleep and activity: their relation to the 24-hour clock. Proc Assoc Res Nerv Dis 45: 8–27

    CAS  Google Scholar 

  • Rusak B (1982) Orcadian organization in mammals and birds: role of the pineal gland. In: Reiter RJ (ed) The pineal Hand: extra-reproductive effects. CRM Press, Boca Raton, Florida (in press)

    Google Scholar 

  • Rusak B, Boulos Z (1981) Pathways for photic entrainment of mammalian circadian rhythms. Photochem Photobiol 34: 267–273

    PubMed  CAS  Google Scholar 

  • Sawaki Y (1979) Suprachiasmatic nucleus neurones: excitation and inhibition mediated by the direct retino-hypothalamic projection in female rats. Exp Brain Res 37: 127–138

    Article  PubMed  CAS  Google Scholar 

  • Schwartz WJ, Davidsen LC, Smith CB (1980) In vivo metabolic activity of a putative circadian oscillator, the rat suprachiasmatic nucleus. J Comp Neurol 189: 157–167

    Article  PubMed  CAS  Google Scholar 

  • Sugden D, Morris RD (1979) Changes in regional brain levels of tryptophan, 5-hydroxytryptamine,5-hydroxyindoleacetic acid, dopamize and nor-adrenaline after pinealectomy in the rat. J Neurochem 32: 1593–1596

    Article  PubMed  CAS  Google Scholar 

  • Swanson LW, Cowan WM, Jones EG (1974) An autoradiographic study of the efferent connections of the ventral lateral geniculate nucleus in the albino rat and the cat. J Comp Neurol 156: 143–164

    Article  PubMed  CAS  Google Scholar 

  • Underwood H, Groos GA (1982) Vertebrate circadian rhythms: retinal and extraretinal photoreceptors. Experientia (in press)

    Google Scholar 

  • Williams TP, Baker BN (1980) The effects of constant light on visual processes. Plenum Press, New York

    Google Scholar 

  • Yates CA, Herbert J (1979) The effects of different photo-periods on circadian 5HT rhythms in regional brain areas and their modulation by pinealectomy, melatonin and oestradiol. Brain Res 176:311–326

    Article  PubMed  CAS  Google Scholar 

  • Zatz M, Brownstein MJ (1981) Injection of alpha-bungarotoxin near the suprachiasmatic nucleus blocks the effects of light on nocturnal pineal enzyme activity. Brain Res 213: 438–442

    Article  PubMed  CAS  Google Scholar 

  • Zatz M, Herkenham MA (1981) Intraventricular carbachol mimics the phase-shifting effect of light on the circadian rhythm of wheel-running activity. Brain Res 212: 234–238

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

Groos, G.A. (1982). The Neurophysiology of the Mammalian Suprachiasmatic Nucleus and Its Visual Afferents. In: Aschoff, J., Daan, S., Groos, G.A. (eds) Vertebrate Circadian Systems. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68651-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68651-1_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68653-5

  • Online ISBN: 978-3-642-68651-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics