Skip to main content

Transmission Dynamics and Control of Infectious Disease Agents

  • Conference paper
Population Biology of Infectious Diseases

Part of the book series: Dahlem Workshop Reports ((DAHLEM LIFE,volume 25))

Abstract

The concept of an infection’s (or parasite’s) basic reproductive rate, R0, is central to an understanding of the population biology of infectious disease agents. This parameter, R0, measures the ability of an infection (or parasite) to give rise to secondary cases (or second generation parasites), and its value is determined by a variety of factors specific to the biology of the disease agent and that of its host. The condition, R0 = 1, defines a transmission threshold below which a disease is unable to maintain itself within the human community. The value of R0 can be estimated from horizontal or longitudinal epidemiological studies of the prevalence and intensity of infection in various age classes of the population. Measurement of this parameter provides a means of estimating the proportion of the community that must be immunized, or receive chemotherapeutic treatment, either to eradicate an infection or to reduce its prevalence to a defined level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, R.M., and May, R.M. 1979. Population biology of infectious diseases: part I. Nature 280: 361–367.

    Article  PubMed  CAS  Google Scholar 

  2. Anderson, R.M., and May, R.M. 1982. Directly transmitted infectious diseases: control by vaccination. Science 215: 1053–1060.

    Article  PubMed  CAS  Google Scholar 

  3. Anderson, R.M., and May, R.M. 1982. The population dynamics and control of human helminth infections. Nature, 297: 557–563.

    Article  PubMed  CAS  Google Scholar 

  4. Anderson, R.M., and May, R.M. 1982. The dynamics and control by vaccination of directly transmitted viral and bacterial infections. J. Hyg., in press.

    Google Scholar 

  5. Bailey, N.T.J. 1975. Mathematical theory of infectious diseases, 2nd ed. Macmillan Press: London.

    Google Scholar 

  6. Bartlett, M.S. 1957. Measles periodicity and community size. J.R. Statist. Soc. A 120: 48–70.

    Article  Google Scholar 

  7. Bartlett, M.S. 1960. The critical community size for measles in the United States. J.R. Statist. Soc. A 123: 37–44.

    Article  Google Scholar 

  8. Becker, N.G. 1979. The uses of epidemic models. Biometrics 35: 295–305.

    Article  PubMed  CAS  Google Scholar 

  9. Bruce-Chwatt, L.J., and Glanville, V.J. 1973. The Late George Macdonald. Dynamics of Tropical Diseases. London: Oxford University Press.

    Google Scholar 

  10. Burnet, F.M., and White, D.O. 1972. Natural History of Infectious Diseases. Cambridge: Cambridge University Press.

    Google Scholar 

  11. Creese, A.L., and Henderson, R.H. 1980. Cost-benefit analysis and immunization programmes in developing countries. Bull. WHO 58: 491–497.

    PubMed  CAS  Google Scholar 

  12. Cvjetanovic, B.; Grab, B.; and Uemura, K. 1978. Dynamics of acute bacterial disease. Bull. WHO 56 (Suppl. 1): 1–143.

    Google Scholar 

  13. Dietz, K. 1976. The incidence of infectious diseases under the influence of seasonal fluctuations. In: Mathematical Models in Medicine, eds. J. Berger, W. Buhler, R. Repges, and P. Tautu, vol. 11, pp. 1–15. Lecture Notes in Biomathematics. Berlin: Springer-Verlag.

    Google Scholar 

  14. Dietz, K. 1980. Models for Vector-borne Parasitic Diseases. Lecture Notes in Biomathematics, vol. 39, pp. 264–277. Berlin: Springer-Verlag.

    Google Scholar 

  15. De Quadros, C.A. 1980. More effective immunization. Proc. R. Soc. Lond. B 209: 111–118.

    Article  PubMed  Google Scholar 

  16. Fine, P.E.M. 1979. John Brownlee and the measurement of infectiousness: an historical study in epidemic theory. J.R. Statist. Soc. A 142: 347–362.

    Article  Google Scholar 

  17. Frost, W.H. 1976. Some conceptions of epidemics in general. Am. J. Epidemiol. 103: 141–151.

    PubMed  CAS  Google Scholar 

  18. Galbraith, N.S.; Forbes, P.; and Mayon-White, R.T. 1980a. Changing patterns of communicable disease in England and Wales: Part I — Newly recognised diseases. Br. Med. J. 281: 427–429.

    Article  PubMed  CAS  Google Scholar 

  19. Galbraith, N.S.; Forbes, P.; and Mayon-White, R.T. 1980b. Changing patterns of communicable disease in England and Wales: Part II — Disappearing and declining diseases. Br. Med. J. 281: 448–492.

    Google Scholar 

  20. Grossman, Z. 1980. Oscillatory phenomena in a model of infectious diseases. Theor. Pop. Biol. 18: 204–243.

    Article  CAS  Google Scholar 

  21. Knox, E.G. 1980. Strategy for rubella vaccination. Int. J. Epidemiol. 9 : 13–23.

    Article  PubMed  CAS  Google Scholar 

  22. May, R.M. 1977. Togetherness among schistosomes: its effects on the dynamics of the infection. Math. Biosci. 35: 301–343.

    Article  Google Scholar 

  23. May, R.M., and Anderson, R.M. 1979. Population biology of infectious diseases: Part II. Nature 280: 455–461.

    Article  PubMed  CAS  Google Scholar 

  24. Muench, H. 1959. Catalytic Models in Epidemiology. Cambridge, MA: Harvard University Press.

    Google Scholar 

  25. Smith, C.E.G. 1970. Prospects for the control of infectious diseases. Proc. R. Soc. Med. 63: 1181–1189.

    PubMed  CAS  Google Scholar 

  26. Tyrrell, D.A.J. 1980. Approaches to the control of respiratory virus diseases. Bull. WHO 58: 513–518.

    PubMed  CAS  Google Scholar 

  27. Yorke, J.A.; Hethcote, H.W.; and Nold, A. 1978. Dynamics and control of the transmission of gonorrhea. Sex. Trans. Dis. 5: 51–56.

    Article  CAS  Google Scholar 

  28. Yorke, J.A.; Nathanson, N.; Pianigiani, G.; and Martin, J. 1979. Seasonality and the requirements for perpetuation and eradication of viruses in populations. Am. J. Epidemiol. 109: 103–123.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 D. Bernhard, Dahlem Konferenzen, Berlin

About this paper

Cite this paper

Anderson, R.M. (1982). Transmission Dynamics and Control of Infectious Disease Agents. In: Anderson, R.M., May, R.M. (eds) Population Biology of Infectious Diseases. Dahlem Workshop Reports, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68635-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68635-1_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68637-5

  • Online ISBN: 978-3-642-68635-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics