Skip to main content

Transplantation of Neurons and Sheath Cells — A Tool for the Study of Regeneration

  • Conference paper
Repair and Regeneration of the Nervous System

Part of the book series: Dahlem Workshop Reports ((DAHLEM LIFE,volume 24))

Abstract

Loss of cells and failure of axons from surviving neurons to elongate through damaged CNS tissues are common consequences of injury to the brain and spinal cord. Recent animal experiments using neural or sheath cell transplants have been aimed at replacing the lost or impaired cells and also at promoting and directing the growth of neuronal processes. In this review we survey some of these studies with particular emphasis on the influence of the glial environment on axonal growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguayo, A.J.; David, S.; Richardson, P.; and Bray, G.M. 1982. Axonal elongation in peripheral and central nervous system transplants. In Advances in Cellular Neurobiology, eds. S. Federoff and L. Hertz, vol. 3, pp. 215–234. New York: Academic Press.

    Google Scholar 

  2. Beebe, B.K.; Møllgard, K.; Björklund, A.; and Stenevi, U. 1979. Ultrastructural evidence of synaptogenesis in the adult rat dentate gyrus from brain stem implants. Brain Res. 167: 391–395.

    Article  PubMed  CAS  Google Scholar 

  3. Benfey, M., and Aguayo, A.J. 1982. Extensive elongation of axons from rat brain into peripheral nerve grafts. Nature 296: 150–152.

    Article  PubMed  CAS  Google Scholar 

  4. Bernstein, J.J., and Bernstein, M.E. 1971. Axonal regeneration and formation of synapses proximal to the site of lesion following hemisection of the rat spinal cord. Exp. Neurol. 30: 336–351.

    Article  PubMed  CAS  Google Scholar 

  5. Berthold, C.-H., and Carlstedt, T. 1977. Observations of the morphology at the transition between the peripheral and the central nervous system in the cat. II. General organisation of the transitional region in S-1 dorsal rootlets. Acta Physiol. Scand. (Suppl.) 446: 23–42.

    CAS  Google Scholar 

  6. Björklund, A.; Segal, M.; and Stenevi, U. 1979. Functional reinnervation of rat hippocampus by locus coeruleus implants. Brain Res. 170: 409–426.

    Article  PubMed  Google Scholar 

  7. Björklund, A., and Stenevi, U. 1971. Growth of central catecholamine neurons into smooth muscle grafts in the rat mesencephalon. Brain Res. 31: 1–20.

    Article  PubMed  Google Scholar 

  8. Björklund, A., and Stenevi, U. 1977. Experimental reinnervation of the rat hippocampus by grafted sympathetic ganglia. I. Axonal regeneration along the hippocampal fimbria. Brain Res. 138: 259–270.

    Article  PubMed  Google Scholar 

  9. Björklund, A., and Stenevi, U. 1979. Reconstruction of brain circuitries by neural transplants. TINS Dec: 301–306

    Google Scholar 

  10. Björklund, A.; Stenevi, U.; Dunnett, S.B.; and Iversen, S.D 1981. Functional reactivation of the deafferented neostriatum by nigral transplant. Nature 289: 497–499.

    Article  PubMed  Google Scholar 

  11. Bunge, R.P., and Bunge, M.B. 19 78. Evidence that contact with connective tissue matrix is required for normal interaction between Schwann cells and nerve fibers. J. Cell Biol. 78: 943–950.

    Article  PubMed  CAS  Google Scholar 

  12. Das, G.D., and Altman, J. 1974. Transplantation of embryonic neural tissue in the mammalian brain. I. Growth and differentiation of neuroblasts from various regions of the embryonic brain in the cerebellum of neonatal rats. Life Sci. 4: 93–124.

    CAS  Google Scholar 

  13. David, S., and Aguayo, A.J. 1981. Axonal elongation into peripheral nervous system “bridges” after central nervous system injury in adult rats. Science 214: 931–933.

    Article  PubMed  CAS  Google Scholar 

  14. Duncan, I.D.; Aguayo, A.J.; Bunge, R.P.; and Wood, P.M. 1981. Transplantation of rat Schwann cells grown in tissue culture into the mouse spinal cord. J. Neurol. Sci. 49: 241–252.

    Article  PubMed  CAS  Google Scholar 

  15. Ebendal, T., and Richardson, P.M. 1981. Nerve growth activities in rat peripheral nerve. Neurosci. Abst. 7: 552.

    Google Scholar 

  16. Freed, W.J.; Morihisa, J.M.; Spoor, E.; Hoffer, B.J.; Olson, L.; Seiger, A.; andWyatt, R.J. 1981. Transplanted adrenal chromaffin cells in rat brain reduce lesion-induced rotational behaviour. Nature 292: 351–352.

    Article  PubMed  CAS  Google Scholar 

  17. Gash, D., and Sladek, Jr., J.R. 1980. Vasopressin neurons grafted into Brattleboro rats: viability and activity. Peptides 1: 11–14.

    Article  PubMed  CAS  Google Scholar 

  18. Goldberger, M.E., and Murray, M. 19 78. Recovery of movement and axonal sprouting may obey some of the same laws. In Neuronal Plasticity, ed. C.W. Cotman, pp. 73–96. New York: Raven Press.

    Google Scholar 

  19. Graybiel, A.M., and Ragsdale, Jr., C.W. 1979. Fiber connections of the basal ganglia. Prog. Br. Res. 51: 239–284.

    Article  Google Scholar 

  20. Hoffer, B.; Seiger, A.; Freedman, R.; Olson, L.; and Taylor, D. 1977. Electrophysiology and cytology of hippocampal formation transplants in the anterior chamber of the eye. II. Cholinergic mechanisms. Brain Res. 119: 107–132.

    Article  PubMed  CAS  Google Scholar 

  21. Jaeger, C.B., and Lund, R.D. 1980. Transplantation of embryonic occipital cortex to the brain of newborn rats. Exp. Brain Res. 40: 265–272.

    Article  PubMed  CAS  Google Scholar 

  22. Kao, C.C.; Chang, L.W.; and Bloodworth, J.M.B. 1977. Axonal regeneration across transected mammalian spinal cords: an electron microscopic study of delayed micro-surgical nerve grafting. Exp. Neurol. 54: 591–615.

    Article  PubMed  CAS  Google Scholar 

  23. Kromer, L.F.; Björklund, A.; and Stenevi, U. 1979. Intracephalic implants: A technique for studying neuronal interactions. Science 204: 1117–1119.

    Article  PubMed  CAS  Google Scholar 

  24. Kromer, L.F.; Bjöklund, A.; and Stenevi, U« 1981. Regeneration of the septohippocampal pathways in adult rats is promoted by utilizing embryonic hippocampal implants as bridges. Brain Res. 210: 173–200.

    Article  PubMed  CAS  Google Scholar 

  25. Lasek, R.J.; McQuarrie, I.G.; andWujek, J.R. 1982. The central nervous system regeneration problem: neuron and environment. In Post-Traumatic Peripheral Nerve Regeneration, eds. H. Millesietal. New York: Raven Press, in press.

    Google Scholar 

  26. Liu, C.N., and Chambers, W.W. 1958. Intraspinal sprouting of dorsal root axons. Arch. Neurol. Psych. 79: 46–61.

    CAS  Google Scholar 

  27. Lund, R.D., and Harvey, A.R. 1981. Transplantation of tectal tissue in rats. I. Organization of transplants and pattern of distribution of host afferents within them. J. Comp. Neurol. 201: 191–209.

    CAS  Google Scholar 

  28. Nygren, L.-G.; Olson, L.; and Seiger, A. 1977. Mono-aminergic reinnervation of the transected spinal cord by homologous fetal brain grafts. Brain Res. 129: 227–235.

    Article  PubMed  CAS  Google Scholar 

  29. Pellegrino, L.J.; Pellegrino, A.S.; and Cushman, A.J. 1979. A Stereotaxic Atlas of the Rat Brain. New York: Plenum Press.

    Google Scholar 

  30. Perkins, C.S.; Carlstedt, T.; Mizuno, K.; and Aguayo, A.J. 1980. Failure of regenerating dorsal root axons to regrow into the spinal cord. Can. J. Neurol. Sci. 7: 323.

    Google Scholar 

  31. Perlow, M.J.; Freed, W.J.; Hoffer, B.J.; Seiger, A.; Olson, L.; and Wyatt, R.J. 1979. Brain grafts reduce motor abnormalities produced by destruction of nigrostriatal dopamine system. Science 204: 643–647.

    Article  PubMed  CAS  Google Scholar 

  32. Peters, A.; Palay, S.; and Webster, H. de F. 1976. The Fine Structure of the Nervous System. The Neurons and Supporting Cells. Philadelphia: W.B. Saunders.

    Google Scholar 

  33. Raisman, G. 1969. Neuronal plasticity in the septal nuclei of the adult rat. Brain Res. 14: 25–48.

    Article  PubMed  CAS  Google Scholar 

  34. Raisman, G., and Field, P.M. 1973. A quantitative in-vestigation of the development of collateral reinnervation after partial deafferentation of the septal nuclei. Brain Res. 50: 241–264.

    Article  PubMed  CAS  Google Scholar 

  35. Richardson, P.M.; Aguayo, A.J.; and McGuinness, U.M. 1982. Role of neuroglial cells in axonal regeneration. In Proceedings of the First Annual Symposium on Spinal Cord Re-construction, eds. C. Kao et al. New York: Raven Press, in press.

    Google Scholar 

  36. Richardson, P.M.; Issa, V.M.K.; and Aguayo, A.J. 1982. Regeneration of long spinal axons in the rat. Can. J. Neurol. Sci., in press.

    Google Scholar 

  37. Richardson, P.M.; McGuinness, U.M.; and Aguayo, A.J. 1980. Axons from CNS neurons regenerate into PNS grafts. Nature 284: 264–265.

    Article  PubMed  CAS  Google Scholar 

  38. Richardson, P.M.; McGuinness, U.M.; and Aguayo, A.J. 1982. Peripheral nerve autografts to the rat spinal cord: studies with axonal tracing methods. Brain Res., in press.

    Google Scholar 

  39. Rosenstein, J.M., and Brightman, M.W. 1978. Intact cerebral ventricle as a site for tissue transplantation. Nature 276: 83–85.

    Article  PubMed  CAS  Google Scholar 

  40. Segal, M.; Stenevi. U.; and Björklund, A. 1981. Reformation in adult rats of functional septo-hippocampal connections by septal neurons regenerating across an embryonic hippocampal tissue bridge. Neurosci. Lett. 27: 7–12.

    Article  PubMed  CAS  Google Scholar 

  41. Schneider, G.E. 1973. Early lesions of the superior colliculus: factors affecting the formation of abnormal retinal projections. Brain Behav. Evol. 8: 73–109.

    CAS  Google Scholar 

  42. Schonfeld, A.R., and Katzman, R. 1980. Autoradiographic demonstration of the central origin of regenerating fibers into iris tissue implants in the rat mesencephalon. Brain Res. 197: 355–363.

    Article  PubMed  CAS  Google Scholar 

  43. Singer, M.; Nordlander, R.H.; and Egar, M. 19 79. Axonal guidance during embryogenesis and regeneration in the spinal cord of the newt: the blueprint hypothesis of neuronal pathway patterning. J. Comp. Neurol. 185: 1–22.

    Article  PubMed  CAS  Google Scholar 

  44. Stensaas, L.J.; Burgess, P.R.; and Horch, K.W. 1979. Re-generating dorsal root axons are blocked by spinal cord astrocytes. Neurosci. Abst. 5: 684.

    Google Scholar 

  45. Sugar, O., and Gerard, R.W. 1940. Spinal cord regeneration in the rat. J. Neurophysiol. 3: 1–19.

    Google Scholar 

  46. Taylor, D.; Freedman, R.; Seiger, A.; Olson, L.; and Hoffer, B.J. 1980. Conditions for adrenergic hyperinnervation in hippocampus: II. Electrophysiological evidence from intraocular double grafts. Exp. Brain Res. 39: 289–299.

    Article  PubMed  CAS  Google Scholar 

  47. Varon, S. S., and Bunge, R.P. 1978. Trophic mechanisms in the peripheral nervous system. Ann. Rev. Neurosci. 1: 327–361.

    Article  PubMed  CAS  Google Scholar 

  48. Varon, S.; Skaper, S.D.; and Manthorpe, M. 1981. Trophic activities for dorsal root and sympathetic ganglionic neurons in media conditioned by Schwann and other peripheral cells. Dev. Brain Res. 1: 73–88.

    Article  Google Scholar 

  49. Weinberg, H.J., and Spencer, P.S. 1979. Studies on the control of myelinogenesis. III. Signalling of oligodendrocyte myelination by regenerating peripheral axons. Brain Res. 162: 273–279.

    Article  PubMed  CAS  Google Scholar 

  50. Wendt, J.S.; Fagg, G.E.; and Cotman, C.W. 1981. CNS re-generation in the rat: growth of cholinergic fibers into sciatic nerve transplants after fimbria transection. Neurology 31: 91.

    Google Scholar 

  51. Wessells, N.K.; Letourneau, P.C.; Nuttall, R.P.; Ludueña- Andérson, M.; and Geiduschek, J.M. 1980. Responses to cell contacts between growth cones, neurites and ganglionic non- neuronal cells. J. Neurocyt. 9: 647–664.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. G. Nicholls

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Dr. S. Bernhard, Dahlem Konferenzen, Berlin

About this paper

Cite this paper

Aguayo, A.J., Richardson, R.M., David, S., Benfey, M. (1982). Transplantation of Neurons and Sheath Cells — A Tool for the Study of Regeneration. In: Nicholls, J.G. (eds) Repair and Regeneration of the Nervous System. Dahlem Workshop Reports, vol 24. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68632-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68632-0_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68634-4

  • Online ISBN: 978-3-642-68632-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics