Recovery Mechanisms in the Mammalian Brain

  • W. Singer
Part of the Dahlem Workshop Reports book series (DAHLEM, volume 24)


Various strategies are reviewed which the mammalian brain can use to restore lost functions. These strategies are exemplified by clinical observations and by results from animal experiments. Emphasis is laid on the evidence that recovery processes are gated by mechanisms of selective attention. Results are reported from developmental work which demonstrates that experience-dependent modifications of neuronal response properties are also controlled by attention. Three key questions concern (a) whether the mammalian brain has developed specific repair mechanisms, (b) whether the neuronal changes observed after lesions should be considered as reactivated developmental processes, or (c) whether the responses to lesions are simply part of the repertoire of adaptive processes that serve normal brain functions. It is concluded that the evidence available favors the last assumption.


Visual Cortex Superior Colliculus Visual Experience Mammalian Brain Neuronal Plasticity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    Alexander, G.E., and Goldman, P.S. 1978. Functional development of the dorsolateral prefrontal cortex: An analysi utilizing reversible cryogenic depression. Brain Res. 143: 233–249.PubMedCrossRefGoogle Scholar
  2. (2).
    Andersen, P.; Lundberg, S.H.; Sveen, 0.; and Wigstrom, H. 1977. Specific long-lasting potentiation of synaptic trans mission in hippocampal slices. Nature 266: 736–737.Google Scholar
  3. (3).
    Azmita, E.C.; Buchan, A.M.; and Williams, J.H. 1978. Structural and functional restoration of collateral sprouting of hippocampal 5.H.T. neurons. Nature 274: 374–377.CrossRefGoogle Scholar
  4. (4).
    Baranyi, A., and Feher, 0. 1981. Synaptic facilitation requires paired activation of convergent pathways in the neocortex. Nature 290: 413–415.PubMedCrossRefGoogle Scholar
  5. (5).
    Barlow, H.B. 1975. Visual experience and cortical development. Nature 258: 199–204.PubMedCrossRefGoogle Scholar
  6. (6).
    Bernstein, J.J.; Wells, M.R.; and Bernstein, M.E. 1978. Spinal cord regeneration: Synaptic renewal and neurochemistry. In Neuronal Plasticity, ed. C.W. Cotman, pp. 49–71. New York: Raven Press.Google Scholar
  7. (7).
    Blakemore, C., and Van Sluyters, R.C. 1974. Reversal of the physiological effects of monocular deprivation in kittens: further evidence for a sensitive period. J. Physiol. (Lond.) 237: 195–216.Google Scholar
  8. (8).
    Blakemore, C., and Van Sluyters, R.C. 1975. Innate and environmental factors in the development of the kitten’s visual cortex. J. Physiol. (Lond.) 248: 663–716.Google Scholar
  9. (9).
    Buisseret, P., and Gary-Bobo, E. 1979. Development of visual cortical orientation specificity after dark-rearing: role of extraocular proprioception. Neurosci. Lett. 13: 259–263.PubMedCrossRefGoogle Scholar
  10. (10).
    Buisseret, P.; Gary-Bobo, E.; and Imbert, M. 1978. Ocular motility and recovery of orientational properties of visual cortical neurones in dark-reared kittens. Nature 272: 816– 817.PubMedCrossRefGoogle Scholar
  11. (11).
    Cotman, C.W. 1978. Neuronal Plasticity. New York: Raven Press.Google Scholar
  12. (12).
    Creutzfeldt, O.D., and Heggelund, P. 1975. Neural plasticity in visual cortex of adult cats after exposure to visual pattern. Science 188: 1025–1027.PubMedCrossRefGoogle Scholar
  13. (13).
    Crewther, D.P.; Crewther, S.G.; and Pettigrew, J.D. 1977. A role for extraocular afferents in post-critical period reversal of monocular deprivation. J. Physiol. 282: 181–195.Google Scholar
  14. (14).
    Dieringer, M., and Precht, W. 1979. Synaptic mechanisms involved in compensation of vestibular function following hemilabyrinthectomy. Brain Res. 50: 607–615.CrossRefGoogle Scholar
  15. (15).
    Flohr, H., and Precht, W. 1981. Lesion-Induced Neuronal Plasticity in Sensorymotor Systems. Berlin, Heidelberg, New York: Springer.Google Scholar
  16. (16).
    Freeman, R.D., and Bonds, A.B. 1979. Cortical plasticity in monocularly deprived immobilized kittens depends on eye movement. Science 206: 1093–1095.PubMedCrossRefGoogle Scholar
  17. (17).
    Goldman, P.S., and Alexander, G.E. 1977. Maturation of prefrontal cortex in the monkey revealed by local cryogenic depression. Nature 267: 613–615.PubMedCrossRefGoogle Scholar
  18. (18).
    Goldman, P.S., and Galkin, T.N. 1978. Prenatal removal of frontal association cortex in the fetal rhesus monkey: anatomical and functional consequences in postnatal life. Brain Res. 1952: 451–485.CrossRefGoogle Scholar
  19. (19).
    Goldman, P.S., and Lewis, M.E. 1978. Developmental biology of brain damage. In Neuronal Plasticity, ed. C.W. Cotman, pp. 291–310. New York: Raven Press.Google Scholar
  20. (20).
    Graziadei, P.P.C., and Monti-Graziadei, G.A. 1978. The olfactory system: A model for the study of neurogenesis and axon regeneration in mammals. In Neuronal Plasticity, ed. C.W. Cotman, pp. 131–154. New York: Raven Press.Google Scholar
  21. (21).
    Greenough, W.T.; Fass, B.; and Devoogd, T.J. 1976. The influence of experience on recovery following brain damage in rodents: Hypotheses based on development research: In Environments As Therapy of Brain Dysfunction, eds. R.N. Walsh and W.T. Greenough, pp. 10–50. New York: Plenum Press.Google Scholar
  22. (22).
    Hecaen, H. 1976. Acquired aphasia in children and the ontogenesis of hemispheric functional specialization. Brain Lang. 3: 114–134.PubMedCrossRefGoogle Scholar
  23. (23).
    Hoffer, B.J.; Siggins, G.A.R.; Woodward, D.J.; and Bloom, F.E. 1971. Spontaneous discharge of Purkinje neurons after destruction of catecholamine-containing afferents by 6-hydroxy-dopamine. Brain Res. 30: 425–430.PubMedCrossRefGoogle Scholar
  24. (24).
    Hubel, D.H.; Wiesel, T.N.; and LeVay, S. 1977. Plasticity of ocular dominance columns in monkey striate cortex. Phil. Trans. Roy. Soc. Lond. B 278: 377–409.Google Scholar
  25. (25).
    Humphrey, N.K. 1974. Vision in a monkey without striate cortex: A case study. Percep. 3: 324–337.Google Scholar
  26. (26).
    Innocenti, G.M., and Frost, D.O. 1980. The postnatal development of visual callosal connections in the absence of visual experience or of the eyes. Exp. Brain Res. 39: 365–375.PubMedCrossRefGoogle Scholar
  27. (27).
    Kalil, K. 1980. Functional role of regrowing pyramidal tract fibres in the neonatal hamster. Soc. Neurosci. Abstr. 235: 6.Google Scholar
  28. (28).
    Kasamatsu, T.; Pettigrew, J.D.; and Ary, M. 1979. Restoration of visual cortical plasticity by local microperfusion of norepinephrine. J. comp. Neurol. 185: 163– 181.PubMedGoogle Scholar
  29. (29).
    Kratz, K.E.; Spear, P.D.; and Smith, D.C. 1976. Post-critical period reversal of effects of monocular deprivation on striate cortex cells in the cat. J. Neurophysiol. 39: 501–511.PubMedGoogle Scholar
  30. (30).
    Latto, R. 1978. The effects of bilateral frontal eye-field, posterior parietal or superior collicular lesions on visual search in the rhesus monkey. Brain Res. 146: 35–50.PubMedCrossRefGoogle Scholar
  31. (31).
    LeVay, S.; Wiesel, T.N.; and Hubel, D.H. 1980. The development of ocular dominance columns in normal and visually deprived monkeys. J. comp. Neurol. 191: 1–51.PubMedCrossRefGoogle Scholar
  32. (32).
    Lynch, G.S. 1974. The formation of new synaptic connections after brain damage and their possible role in recovery of function. Neurosci. Res. Progr. Bull. 12: 228–233Google Scholar
  33. (33).
    Nakamura, Y.; Mizuno, M.; Konishi, A.; and Sato, M. 1974. Synaptic reorganization of the red nucleus after chronic deafferentiation from cerebello-rubral fibers: An electron microscopic study in the cat. Brain Res. 82: 298–301.PubMedCrossRefGoogle Scholar
  34. (34).
    Melville Jones, G. 1977. Plasticity in the adult vestibulo–ocular reflex arc. Phil. Trans. Roy. Soc. Lond. 278: 319–334.CrossRefGoogle Scholar
  35. (35).
    Merrill, E.G., and Wall, P.D. 1978. Plasticity of connections in the adult nervous system. In Neuronal Plasticity, ed. C.W. Cotman, pp. 97–111. New York: Raven PressGoogle Scholar
  36. (36).
    Nottebohm, F. 1980. Brain pathways for vocal learning in birds: A review of the first 10 years. Progr. Psychobiol. Physiol. Psychol. 9: 85–124.Google Scholar
  37. (37).
    Passingham, R.; Perry, H.; and Wilkinson, F. 1978. Failure to develop a precision grip in monkeys with uni-lateral neocortical lesions made in infancy. Brain Res. 145: 410–414.PubMedCrossRefGoogle Scholar
  38. (38).
    Perenin, M.T., and Jeannerod, M. 1975. Residual vision in cortically blind hemifields. Neuropsychologia 13: 1–7.PubMedCrossRefGoogle Scholar
  39. (39).
    Perenin, M.T., and Jeannerod, M. 1978. Visual function within the hemianopic field following early cerebral hemi-decortication in man. I. Spatial localization. Neuropsychologia 16: 1–13.PubMedCrossRefGoogle Scholar
  40. (40).
    Poppel, E.; Held, R.; and Frost, D. 1973. Residual visual function after brain wounds involving the central visual pathways. Nature 243: 295–296.PubMedCrossRefGoogle Scholar
  41. (41).
    Raisman, G. 1969. Neuronal plasticity in the septal nuclei of the adult rat. Brain Res. 14: 25–48.PubMedCrossRefGoogle Scholar
  42. (42).
    Rauschecker, J.P., and Singer, W. 1981. The effects of early visual experience on the cat’s visual cortex and their possible explanation by Hebb synapses. J. Physiol. 310: 215–239.PubMedGoogle Scholar
  43. (43).
    Rezak, M., and Benevento, L.A. 1979. A comparison of the organization of the projections of the dorsal geniculate nucleus, in the inferior pulvinar and adjacent lateral pulvinar to primary visual cortex (Area 17) in the macaque monkey. Brain Res. 167: 19–40.PubMedCrossRefGoogle Scholar
  44. (44).
    Scheibel, M.E., and Scheibel, A.B. 1965. The response of reticular units to repetitive stimuli. Arch. ital. Biol. 103: 279–299.Google Scholar
  45. (45).
    Schiller, P.H.; True, S.D.; and Conway, J.L. 1980. Deficits in eye movements following frontal eye-field and superior colliculus ablations. J. Neurophysiol. 44: 1175– 1189.PubMedGoogle Scholar
  46. (46).
    Schneider, G.E., and Jhaveri, P.R. 1974. Neuroanatomical correlates of spared or altered function after brain lesions in the newborn hamster. In Plasticity and Recovery of Function in the Central Nervous System, eds. D.G. Stein, J.J. Rosen, and N. Butters, pp. 65–110. New York, London, San Francisco: Academic Press.Google Scholar
  47. (47).
    Singer, W. 1979. Central-core control of visual cortex functions. In The Neurosciences, Fourth Study Program, eds. F.O. Schmitt and F.G. Worden, pp. 1093–1109. Cambridge, MA: MIT Press.Google Scholar
  48. (48).
    Singer, W. 1982. Central core control of developmental plasticity in the kitten visual cortex: I. Diencephalic lesions. Exp. Brain Res., in press.Google Scholar
  49. (49).
    Singer, W., and Rauschecker, J.P. 1982. Central core control of developmental plasticity in the kitten visual cortex: II. Electrical activation of mesencephalic and diencephalic projections. Exp. Brain Res., in press.Google Scholar
  50. (50).
    Singer, W.; Tretter, F.; and Cynader, M. 1976. The effect of reticular stimulation on spontaneous and evoked activity in the cat visual cortex. Brain Res. 102: 71–90.PubMedCrossRefGoogle Scholar
  51. (51).
    Singer, W.; Tretter, F.; and Yinon, U. 1982a. Central gating of developmental plasticity in kitten visual cortex. J. Physiol. 324: in press.Google Scholar
  52. (52).
    Singer, W.; Tretter, F.; and Yinon, U. 1982b. Evidence for long-term functional plasticity in the visual cortex of adult cats. J. Physiol. 324: in press.Google Scholar
  53. (53).
    Sireteanu, R., and Fronius, M. 1981. Naso-temporal asymmetries in amblyopic vision: consequence of long-term interocular suppression. Vision Res. 21: 1055–1063.PubMedCrossRefGoogle Scholar
  54. (54).
    Sokolov, E. 1960. Neuronal models and the orienting reflex. In Central Nervous System and Behaviour, ed. M. Brazier, pp. 187–276. New York: J. Macy Found.Google Scholar
  55. (55).
    Wall, P.D. 1977. The presence of ineffective synapses and the circumstances which unmask them. Phil. Trans. Roy. Soc. Lond. B 278: 361–372.CrossRefGoogle Scholar
  56. (56).
    Weiskrantz, L.; Cowey, A.; and Passingham, C. 1977. Spatial responses to brief stimuli by monkey with striate cortex ablations. Brain 100: 655–670.PubMedCrossRefGoogle Scholar
  57. (57).
    Weiskrantz, L.; Warrington, E.K.; Sanders, M.D.; and Marshall, J. 1974. Visual capacity in the hemianopic field following a restricted occipital ablation. Brain 97: 709–728.PubMedCrossRefGoogle Scholar
  58. (58).
    Wiesel, T.N., and Hubel, D.H. 1963a. Effects of visual deprivation on morphology and physiology of cells in the cat’s lateral geniculate body. J. Neurophysiol. 26: 978–993.PubMedGoogle Scholar
  59. (59).
    Wiesel, T.N., and Hubel, D.H. 1963b. Single-cell responses in striate cortex of kittens deprived of vision in one eye. J. Neurophysiol. 26: 1003–1017.PubMedGoogle Scholar
  60. (60).
    Wurtz, R.M., and Albano, J. 1980. Visual motor functions of the primate superior colliculus. Ann. Rev. Neurosci. 3: 189–226.PubMedCrossRefGoogle Scholar
  61. (61).
    Zieglgansberger, W.; Fry, J.P.; and Lambert, A.L. 1980. Iontophoretically applied morphine and met-enkephalin may interact with different receptors in the brain. In Endogenous and Exogenous Opiate Agonists and Antagonists, ed. E.L. Way, pp. 139–142. New York: Pergamon Press.Google Scholar
  62. (62).
    Zihl, J. 1981. Recovery of visual functions in patients with cerebral blindness. Effect of specific practice with saccadic localization. Exp. Brain Res. 44: 159–169.PubMedCrossRefGoogle Scholar
  63. (63).
    Zihl, J., and von Cramon, D. 1980. Registration of light stimuli in the cortically blind hemifield and its effect on localization. Behav. Brain Res. 1: 287–298.PubMedCrossRefGoogle Scholar

Copyright information

© Dr. S. Bernhard, Dahlem Konferenzen, Berlin 1982

Authors and Affiliations

  • W. Singer
    • 1
  1. 1.Abt. NeurophysiologieMax-Planck-Institut für PsychiatrieMünchen 40Germany

Personalised recommendations