Skip to main content

Mechanism of Action of Aminoglycoside Antibiotics

  • Chapter
Aminoglycoside Antibiotics

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 62))

Abstract

Aminoglycoside antibiotics are, in general, bactericidal, showing a broad antimicrobial spectrum, and are active against mycobacteria, staphylococci, and gramnegative bacteria. Spectinomycin and kasugamycin are bateriostatic. Since the early finding that streptomycin affects protein synthesis in susceptible cells (Fitzgerald et al. 1948), extensive studies have been carried out on the effects of aminoglycosides on sensitive bacteria. Eukaryotic cells are resistant to most aminoglycosides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akiyama T, Tanaka K, Tanaka N, Nonomura Y (1978) Interaction of viomycin and aminoglycoside antibiotics with tubulin and microtubules. J Antibiot (Tokyo) 31:1306–1309

    CAS  Google Scholar 

  • Alexander AM, Gonda I, Harpur ES, Kayes JB (1979) Interaction of aminoglycoside antibiotics with phospholipid liposomes studied by microelectrophoresis. J Antibiot (Tokyo) 32:504–510

    CAS  Google Scholar 

  • Anand N, Davis BD (1960) Effect of streptomycin on Escherichia coli. Nature 185:22–23

    Article  PubMed  CAS  Google Scholar 

  • Anand N, Davis BD, Armitage AK (1960) Uptake of streptomycin byEscherichia coli. Nature 185:23–24

    Article  PubMed  CAS  Google Scholar 

  • Anderson P, Davies J, Davis BD (1967) Effect of spectinomycin on polypeptide synthesis in extracts of Escherichia coli J Mol Biol 29:203–215

    Article  PubMed  CAS  Google Scholar 

  • Andry K, Bockrath RC (1974) Dihydrostreptomycin accumulation in E.coli Nature 251:534–536

    Article  PubMed  CAS  Google Scholar 

  • Beggs WH, Andrews FA (1976) Inhibition of dihydrostreptomycin binding to Mycobacterium smegmatis by monovalent and divalent cation salts. Antimicrob Agents Chemother 9:393–396

    PubMed  CAS  Google Scholar 

  • Bermingham MAC, Deol BS, Still JL (1970) Effect of streptomycin on lipid composition with particular reference to cyclic depsipeptide biosynthesis in Serratia marcescens and other micro-organisms. Biochem J 119:861–869

    PubMed  CAS  Google Scholar 

  • Birge EA, Kurland CG (1969) Altered ribosomal protein in streptomycin-dependentEscherichia coli Science 166:1282–1284

    Article  PubMed  CAS  Google Scholar 

  • Birge EA, Kurland CG (1970) Reversion of streptomycin dependent strain ofEscherichia coli Mol Gen Genet 109:356–369

    Article  PubMed  CAS  Google Scholar 

  • Bissel DM (1965) Formation of an altered enzyme in E.coli in the presence of neomycin. J Mol Biol 14:619–622

    Article  Google Scholar 

  • Biswas DK, Gorini L (1972) The attachment site of streptomycin to the 30 S ribosomal sub-unit. Proc Natl Acad Sci USA 69:2141–2144

    Article  PubMed  CAS  Google Scholar 

  • Bollen A, Davies J, Ozaki M, Mizushima S (1969) Ribosomal protein conferring sensitivity to the antibiotic spectinomycin inEscherichia coli Science 165:85–86

    Article  PubMed  CAS  Google Scholar 

  • Bollen A, Cabezón T, Wilde MDE, Villarroel R, Herzog A (1975) Alteration of ribosomal protein S17 by mutation linked to neamine resistance inEscherichia coli J Mol Biol 99:795–806

    Article  PubMed  CAS  Google Scholar 

  • Brakier-Gingras L, Lacoste L, Boileau G (1974) Streptomycin resistance and ribosomal proteins: amino acid substitution in the str protein of one streptomycin-resistant mutant of Escherichia coli K12 after mutagenesis with ethylmethanesulfonate. Can J Biochem 52:304–309

    Article  PubMed  CAS  Google Scholar 

  • Branscomb EW, Galas DJ (1975) Progressive decrease in protein synthesis accuracy induced by streptomycin in Escherichia coli Nature 254:161–163

    Article  PubMed  CAS  Google Scholar 

  • Bryan LE, van den Elzen HM (1976) Streptomycin accumulation in susceptible and resistant strains of Escherichia coli and Pseudomonas aeruginosa Antimicrob Agents Chemother 9:928–938

    PubMed  CAS  Google Scholar 

  • Bryan LE, van den Elzen HM (1977) Effects of membrane-energy mutations and cations on streptomycin and gentamicin accumulation by bacteria: A model for entry of streptomycin and gentamicin in susceptible and resistant bacteria. Antimicrob Agents Chemother 12:163–177

    PubMed  CAS  Google Scholar 

  • Bryan LE, Haraphonge R, van den Elzen HM (1976) Gentamicin resistance in clinical isolates of Pseudomonas aeruginosa associated with diminished gentamicin accumulation and no detectable enzymatic modification. J Antibiot (Tokyo) 29:743–753

    CAS  Google Scholar 

  • Buckel P, Buchberger A, Böck A, Wittmann HG (1977) Alteration of ribosomal protein L 6 in mutants ofEscherichia coli resistant to gentamicin. Mol Gen Genet 158:47–54

    Article  PubMed  CAS  Google Scholar 

  • Cabañas MJ, Vázquez D, Modolell J (1978 a) Dual interference of hygromycin B with ribosomal translocation and with aminoacyl-tRNA recognition. Eur J Biochem 87:21–27

    Article  PubMed  Google Scholar 

  • Cabañas MJ, Vázquez D, Modolell J (1978 b) Inhibition of ribosomal translocation by aminoglycoside antibiotics. Biochem Biophys Res Commun 83:991–997

    Article  PubMed  Google Scholar 

  • Campuzano S, Vázquez D, Modolell J (1979) Functional interaction of neomycin B and related antibiotics with 30 S and 50 S ribosomal subunits. Biochem Biophys Res Commun 87:960–966

    Article  PubMed  CAS  Google Scholar 

  • Carrado AP, Prado WA, Pimenta de Morais I (1975) Competitive antagonism between calcium and aminoglycoside antibiotics in skeletal and smooth muscles. In: Rocha e Silva M, Suarez-Kurts G (eds) Concepts of membranes in regulation and excitation. Raven, New York, p 212

    Google Scholar 

  • Caskey T, Scolnick E, Tompkins R, Goldstein J, Milman G (1969) Peptide chain termination, codon, protein factor and ribosomal requirements. Cold Spring Harbor Symp Quant Biol 34:479–88

    PubMed  CAS  Google Scholar 

  • ÄŒerná J, Rychlík I, Jonák J (1973) Peptidyl-transferase activity of Escherichia coli ribosomes digested by ribonuclease T1. Eur J Biochem 34:551–556

    Article  PubMed  Google Scholar 

  • Chang FN, Flaks JG (1970) Topography of the Escherichia coli 30 S ribosomal subunit andstreptomycin binding. Proc Natl Acad Sci USA 67:1321–1328

    Article  PubMed  CAS  Google Scholar 

  • Chang FN, Flaks JG (1972 a) The binding of dihydrostreptomycin toE.coli ribosomes: characteristics and equilibrium of the reaction. Antimicrob Agents Chemother 2:294–307

    PubMed  CAS  Google Scholar 

  • Chang FN, Flaks JG (1972b) The binding of dihydrostreptomycin to E.coli ribosomes: kinetics of the reaction. Antimicrob Agents Chemother 2:308–319

    PubMed  CAS  Google Scholar 

  • Choi EC, Misumi M, Nishimura T, Tanaka N, Nomoto S, Teshima T, Shiba T (1979) Viomycin resistance: alterations of either ribosomal subunit affect the binding of the antibiotic to the pair subunit and the entire ribosome becomes resistant to the drug. Biochem Biophys Res Commun 87:904–910

    Article  PubMed  CAS  Google Scholar 

  • Choi EC, Nishimura T, Tanaka N (1980) Mutational alterations of either large or small ribosomal subunit for the kanamycin resistance. Biochem Biophys Res Commun 94:755–762

    Article  PubMed  CAS  Google Scholar 

  • Cox EC, White JR, Flaks JG (1964) Streptomycin action and the ribosome. Proc Natl Acad Sci USA 51:703–709

    Article  PubMed  CAS  Google Scholar 

  • Davies J (1970) Structure-activity relationships among aminoglycoside antibiotics: comparison of the neomycins and hybrimycins. Biochim Biophys Acta 222:674–676

    Article  PubMed  CAS  Google Scholar 

  • Davies J, Davis BD (1968) Misreading of RNA code words induced by aminoglycoside antibiotics: The effect of drug concentration. J Biol Chem 243:3312–3316

    PubMed  CAS  Google Scholar 

  • Davies J, Gilbert W, Gorini L (1964) Streptomycin, suppression and the code. Proc Natl Acad Sci USA 51:883–890

    Article  PubMed  CAS  Google Scholar 

  • Davies J, Gorini L, Davis BD (1965) Misreading of RNA code words induced by aminoglycoside antibiotics. Mol Pharmacol 1:93–106

    CAS  Google Scholar 

  • Davies J, Jones DS, Khorana HG (1966) A further study of misreading of codons induced by streptomycin and neomycin using ribopolynucleotides containing two nucleotides in alternating sequence as templates. J Mol Biol 18:48–57

    Article  PubMed  CAS  Google Scholar 

  • Davis BD, Tai P-C, Wallace BJ (1974) Complex interactions of antibiotics with the ribosome. In: Nomura M, Tissieres A, Langyel P (eds) Ribosomes. Cold Spring Harbor Laboratory, Cold Spring Harber, New York, p 771–789

    Google Scholar 

  • Dubin DT, Davis BD (1961) The effect of streptomycin on potassium flux inEscherichia coli Biochim Biophys Acta 52:400–402

    Article  PubMed  CAS  Google Scholar 

  • Dubin DT, Hancock R, Davis BD (1963) The sequence of some effects of streptomycin in Escherichia coli Biochim Biophys Acta 74:476–489

    Article  PubMed  CAS  Google Scholar 

  • Fitzgerald RJ, Bernheim F, Fitzgerald DB (1948) The inhibition by streptomycin of adaptive enzyme formation in Mycobacteria. J Biol Chem 175:195–200

    PubMed  CAS  Google Scholar 

  • Flaks JG, Cox EC, Witting ML, White JR (1962) Polypeptide synthesis with ribosomes from streptomycin-resistant and dependent E.coli Biochem Biophys Res Commun 7:390–393

    Article  PubMed  CAS  Google Scholar 

  • Friedman SM, Berezney R, Weinstein IB (1968) Fidelity in protein synthesis — The role of the ribosome. J Biol Chem 243:5044–5048

    PubMed  CAS  Google Scholar 

  • Funatsu G, Wittmann HG (1972) Ribosomal proteins. XXXIII. Location of amino-acid replacements in protein S12 isolated from Escherichia coli mutants resistant to streptomycin. J Mol Biol 68:547–550

    Article  PubMed  CAS  Google Scholar 

  • Funatsu G, Nierhaus K, Wittmann-Liebold B (1972 a) Ribosomal proteins. XXII. Studies on the altered protein S 5 from a spectinomycin-resistant mutant of Escherichia coli J Mol Biol 64:201–209

    Article  PubMed  CAS  Google Scholar 

  • Funatsu G, Nierhaus K, Wittmann HG (1972 b) Ribosomal proteins. XXXVII. Determination of allele types and amino acid exchanges in proteins S12 of three streptomycin-resistant mutants of Escherichia coli Biochim Biophys Acta 287:282–291

    PubMed  CAS  Google Scholar 

  • Garcia-Patrone M, Perazzolo CA, Baralle F, Gonzalez NS, Algranati ID (1971) Studies on dissociation factor of bacterial ribosomes: effect of antibiotics. Biochim Biophys Acta 246:291–299

    PubMed  CAS  Google Scholar 

  • Garvin RT, Biswas DK, Gorini L (1974) The effects of streptomycin or dihydrostreptomycin binding to 16 S RNA or to 30 S ribosomal subunits. Proc Natl Acad Sci USA 71:3814–3818

    Article  PubMed  CAS  Google Scholar 

  • Ginzburg I, Miskin R, Zamir A (1973) N-Ethyl maleimide as a probe for the study of functional sites and conformations of 30 S ribosomal subunits. J Mol Biol 79:481–494

    Article  PubMed  CAS  Google Scholar 

  • Girshovich AS, Bochkareva ES, Ouchinnikov YA (1976) Identification of components of the streptomycin-binding center of E. coli MRE 600 ribosomes by photo-affinity labelling. Mol Gen Genet 144:205–212

    Article  PubMed  CAS  Google Scholar 

  • González A, Jiménez A, Vázquez D, Davies JE, Schindler D (1978) Studies on the mode of action of hygromycin B, an inhibitor of translocation in eukaryotes. Biochim Biophys Acta 521:459–469

    PubMed  Google Scholar 

  • Gorini L, Kataja E (1964) Phenotypic repair by streptomycin of defective genotypes in E.coli Proc Natl Acad Sci USA 51:487–493

    Article  PubMed  CAS  Google Scholar 

  • Gorini L, Kataja E (1965) Suppression activated by streptomycin and related antibiotics in drug-sensitive strains. Biochem Biophys Res Commun 18:656–663

    Article  CAS  Google Scholar 

  • Gurgo C, Apirion D, Schlessinger D (1969) Polyribosome metabolism in Escherichia coli treated with chloramphenicol, neomycin, spectinomycin or tetracycline. J Mol Biol 45:205–220

    Article  PubMed  CAS  Google Scholar 

  • Hall FJ (1977) Anaphylaxis after gentamicin. Lancet 11:455

    Article  Google Scholar 

  • Hancock R (1962 a) Uptake of 14C-streptomycin by Bacillus megaterium J Gen Microbiol 28:503–516

    PubMed  CAS  Google Scholar 

  • Hancock R (1962 b) Uptake of 14C-streptomycin by some microorganisms and its relation to their streptomycin sensitivity. J Gen Microbiol 28:493–501

    PubMed  CAS  Google Scholar 

  • Hasenbank R, Guthrie C, Stöffler G, Wittmann HG, Rosen L, Apirion D (1973) Electrophoretic and immunological studies on ribosomal proteins of 100 Escherichia coli revertants from streptomycin dependence. Mol Gen Genet 127:1–18

    Article  PubMed  CAS  Google Scholar 

  • Heiser TL, Davies JE, Dahlberg JE (1971) Change in methylation of 16S ribosomal RNA associated with mutation to kasugamycin resistance in Escherichia coli. Nature New Biol 233:12–14

    Google Scholar 

  • Heiser TL, Davies JE, Dahlberg JE (1972) Mechanism of kasugamycin resistance in Escherichia coli Nature New Biol 235:6–9

    Google Scholar 

  • Herzog A (1964) An effect of streptomycin on the dissociation ofEscherichia coli 70S ribosomes. Biochem Biophys Res Commun 15:172–176

    Article  CAS  Google Scholar 

  • Herzog A, Ghysen A, Bollen A (1971) Sensitivity and resistance to streptomycin in relation with factor-mediated dissociation of ribosomes. FEBS Lett 15:291–294

    Article  PubMed  CAS  Google Scholar 

  • Hurwitz C, Rosano CL (1962) Accumulation of label from 14C-streptomycin by Escherichia coli J Bacteriol 83:1193–1201

    PubMed  CAS  Google Scholar 

  • Iida K, Koike M (1974) Cell wall alterations of Gram-negative bacteria by aminoglycoside antibiotics. Antimicrob Agents Chemother 5:95–97

    PubMed  CAS  Google Scholar 

  • Inoue-Yokosawa N, Ishikawa C, Kaziro Y (1974) The role of guanosine triphosphate in translation reaction catalyzed by elongation factor G. J Biol Chem 249:4321–4323

    PubMed  CAS  Google Scholar 

  • Kaji H, Kaji A (1965) Specific binding of sRNA to ribosomes: Effect of streptomycin. Proc Natl Acad Sci USA 54: 213–219

    Article  PubMed  CAS  Google Scholar 

  • Kaji H, Tanaka Y (1968) Binding of dihydrostreptomycin to ribosomal subunits. J Mol Biol 32:221–230

    Article  PubMed  CAS  Google Scholar 

  • Kaji H, Suzuka I, Kaji A (1966) Binding of specific soluble ribonucleic acid to ribosomes: Binding of soluble ribonucleic acid to the template-30 S subunits complex. J Biol Chem 241:1251–1256

    PubMed  CAS  Google Scholar 

  • Kogut M, Prizant E (1970) Effects of dihydrostreptomycin treatment in vivo on the ribo-some cycle inEscherichia coli FEBS Lett 12:17–20

    Article  PubMed  CAS  Google Scholar 

  • Kogut M, Lightbown JW, Isaacson P (1965) Streptomycin action and anaerobiosis. J Gen Microbiol 39:155–164

    PubMed  CAS  Google Scholar 

  • Kondo S, Shibahara S, Takahashi K, Maeda K, Umezawa H (1971) Negamycin, a novel hydrazide antibiotic. J Am Chem Soc 93:6305–6306

    Article  PubMed  CAS  Google Scholar 

  • Kono M, O’Hara K (1976) Mechanism of streptomycin(SM)-resistance of highly SM-resistant Pseudomonas aeruginosa strains. J Antibiot (Tokyo) 29:169–175

    CAS  Google Scholar 

  • Kono M, O’Hara K (1977) Kanamycin-resistance mechanism of Pseudomonas aeruginosa governed by an R-plasmid independently of inactivating enzymes. J Antibiot (Tokyo) 30:688–690

    CAS  Google Scholar 

  • Kozak M, Nathans D (1972) Differential inhibition of coliphage MS 2 protein synthesis by ribosomal-directed antibiotics. J Mol Biol 70:41–55

    Article  PubMed  CAS  Google Scholar 

  • Kühberger R, Piepersberg W, Petzet A, Buckel P, Böck A (1979) Alteration of ribosomal protein L 6 in gentamicin-resistant strains of Escherichia coli Effects on fidelity of protein synthesis. Biochemistry 18:187–193

    Article  PubMed  Google Scholar 

  • Kurz DI (1974) Fidelity of protein synthesis with chicken embryo mitochondrial and cytoplasmic ribosomes. Biochemistry 13:572–577

    Article  Google Scholar 

  • Lake JA (1976) Ribosome structure determined by electron microscopy of Escherichia coli small subunits, large subunits and monomeric ribosomes. J Mol Biol 105:131–159

    Article  PubMed  CAS  Google Scholar 

  • Lando D, Cousin MA, Privat de Garilhe M (1973) Misreading, a fundamental aspect of the mechanism of action of several aminoglycosides. Biochemistry 12:4528–4533

    Article  PubMed  CAS  Google Scholar 

  • Lando D, Cousin MA, Ojasoo T, Raynaud J-P (1976) Paromomycin and dihydrostreptomycin binding to Escherichia coli ribosomes. Eur J Biochem 66:597–606

    Article  PubMed  CAS  Google Scholar 

  • Le Goffic F, Tangy F, Moreau B, Capmau M-L (1979) Binding of tobramycin to Escherichia coli ribosomes: characteristics and equilibrium of the reaction. J Antibiot (Tokyo) 32:1288–1292

    Google Scholar 

  • Lelong JC, Cousin MA, Gros D, Grunberg-Manago M, Gros F (1971) Streptomycin induced release of fMet-tRNAF from the ribosomal initiation complex. Biochem Biophys Res Commun 42:530–537

    Article  PubMed  CAS  Google Scholar 

  • Lelong JC, Gros D, Gros F, Bollen A, Maschler R, Stöffler G (1974) Function of individual 30 S subunit proteins ofEscherichia coli Effect of specific immunoglobulin fragments (Fab) on activities of ribosomal decoding sites. Proc Natl Acad Sci USA 71:248–252

    Article  PubMed  CAS  Google Scholar 

  • Lennette ET, Apirion D (1970) The level of fMet-tRNA on ribosomes from streptomycin treated cells. Biochem Biophys Res Commun 41:804–811

    Article  PubMed  CAS  Google Scholar 

  • Leon SA, Brock TD (1967) Effect of streptomycin and neomycin on physical properties of the ribosome. J Mol Biol 24:391–404

    Article  CAS  Google Scholar 

  • Likover TE, Kurland CG (1967) Ribosomes from a streptomycin-dependent strain ofEscherichia coli J Mol Biol 25:497–504

    Article  CAS  Google Scholar 

  • Liou Y-F, Tanaka N (1976) Dual actions of viomycin on the ribosomal functions. Biochem Biophys Res Commun 71:477–483

    Article  PubMed  CAS  Google Scholar 

  • Luzzatto L, Apirion D, Schlessinger D (1968) Mechanism of action of streptomycin in E. coli Interruption of the ribosome cycle at the initiation of protein synthesis. Proc Natl Acad Sci USA 60:873–880

    Article  PubMed  CAS  Google Scholar 

  • Luzzatto L, Apirion D, Schlessinger D (1969 a) Streptomycin action: greater inhibition of Escherichia coli ribosome function with exogenous than with endogenous messenger ribonucleic acid. J Bacteriol 99:206–209

    PubMed  CAS  Google Scholar 

  • Luzzatto L, Apirion D, Schlessinger D (1969 b) Polyribosome depletion and blockage of the ribosome cycle by streptomycin in Escherichia coli J Mol Biol 42:315–335

    Article  PubMed  CAS  Google Scholar 

  • Mager J, Benedict M, Artman M (1962) A common site of action for polyamines and streptomycin. Biochim Biophys Acta 62:202–204

    Article  PubMed  CAS  Google Scholar 

  • Masukawa H (1969) Localization of sensitivity to kanamycin and streptomycin in 30 S ribosomal proteins ofEscherichia coli J Antibiot (Tokyo) 22:612–623

    CAS  Google Scholar 

  • Masukawa H, Tanaka N (1968) Miscoding activity of aminosugars. J Antibiot (Tokyo) 21:70–72

    CAS  Google Scholar 

  • Masukawa H, Tanaka N, Umezawa H (1968 a) Inhibition by kasugamycin of protein synthesis in Piricularia oryzae J Antibiot 21:73–74

    PubMed  CAS  Google Scholar 

  • Masukawa H, Tanaka N, Umezawa H (1968 b) Localization of kanamycin sensitivity in the 23S core of 30S ribosomes of E.coli J Antibiot 21:517–518

    PubMed  CAS  Google Scholar 

  • Misumi M, Tanaka N (1980) Mechanism of inhibition of translocation by kanamycin and viomycin: a comparative study with fusidic acid. Biochem Biophys Res Commun 92:647–654

    Article  PubMed  CAS  Google Scholar 

  • Misumi M, Tanaka N, Shiba T (1978 a) Binding of [14C]tuberactinomycin O, an antibiotic closely related to viomycin to the bacterial ribosome. Biochem Biophys Res Commun 82:971–976

    Article  PubMed  CAS  Google Scholar 

  • Misumi M, Nishimura T, Komai T, Tanaka N (1978 b) Interaction of kanamycin and related antibiotics with the large ribosomal subunit of ribosomes and the inhibition of translocation. Biochem Biophys Res Commun 84:358–365

    Article  PubMed  CAS  Google Scholar 

  • Miyoshi Y, Yamagata H (1975) Sucrose-dependent spectinomycin resistant mutants of Escherichia coli J Bacteriol 125:142–148

    Google Scholar 

  • Mizuno S, Nitta K, Umezawa H (1970) Mechanism of action of negamycin in E. coli K12. II. Miscoding activity in polypeptide synthesis directed by synthetic polynucleotide. J Antibiot (Tokyo) 23:589–594

    CAS  Google Scholar 

  • Mizuno T, Yamada H, Yamagata H, Mizushima S (1975) Coordinated alterations in ribosomes and cytoplasmic membrane in sucrose-dependent, spectinomycin-resistant mutants ofEscherichia coli J Bacteriol 125:524–530

    Google Scholar 

  • Mizuno T, Yamagata H, Mizushima S (1977) Interaction of cytoplasmic membrane and ribosomes in Escherichia coli Spectinomycin-induced disappearance of membrane protein 1–19. J Bacteriol 129:326–332

    PubMed  CAS  Google Scholar 

  • Modolell J, Davis BD (1968) Rapid inhibition of polypeptide chain extension by streptomycin. Proc Natl Acad Sci USA 61:1279–1286

    Article  PubMed  CAS  Google Scholar 

  • Modolell J, Davis BD (1970) Breakdown by streptomycin of initiation complexes formed on ribosomes of Escherichia coli Proc Natl Acad Sci USA 67:1148–1155

    Article  PubMed  CAS  Google Scholar 

  • Modolell J, Vazquez D (1977) The inhibition of ribosomal translocation by viomycin. Eur J Biochem 81:491–497

    Article  PubMed  CAS  Google Scholar 

  • Okuyama A, Tanaka N (1972) Differential effects of aminoglycosides on cistron-specific initiation of protein synthesis. Biochem Biophys Res Commun 49:951–957

    Article  PubMed  CAS  Google Scholar 

  • Okuyama A, Tanaka N (1973) Studies on the ribosomal binding sites of natural messenger RNA. Biochem Biophys Res Commun 52:1463–1469

    Article  PubMed  CAS  Google Scholar 

  • Okuyama A, Machiyama N, Kinoshita T, Tanaka N (1971) Inhibition by kasugamycin of initiation complex formation on 30 S ribosomes. Biochem Biophys Res Commun 43:196–199

    Article  PubMed  CAS  Google Scholar 

  • Okuyama A, Watanabe T, Tanaka N (1972) Effects of aminoglycoside antibiotics on initiation of viral RNA-directed protein synthesis. J Antibiot (Tokyo) 25:212–218

    CAS  Google Scholar 

  • Okuyama A, Yoshikawa M, Tanaka N (1974) Alteration of ribosomal protein S 2 in kasugamycin-resistant mutant derived from Escherichia coli AB 312. Biochem Biophys Res Commun 60:1163–1169

    Article  PubMed  CAS  Google Scholar 

  • Okuyama A, Tanaka N, Komai T (1975) The binding of kasugamycin to the Escherichia coli ribosomes. J Antibiot (Tokyo) 28:903–905

    CAS  Google Scholar 

  • Olsson M, Isaksson L, Kurland CG (1974) Pleiotropic effects of ribosomal protein S 4 studied in Escherichia coli mutants. Mol Gen Genet 135:191–202

    Article  PubMed  CAS  Google Scholar 

  • Orsulakova A, Stockhorst E, Schacht J (1976) Effect of neomycin on phosphoinositide labelling and calcium binding in guinea-pig inner ear tissues in vivo and in vitro J Neurochem 26:285–290

    Article  PubMed  CAS  Google Scholar 

  • Ozaki M, Mizushima S, Nomura M (1969) Identification and functional characterization of the protein controlled by the streptomycin-resistant locus in E. coli Nature 222:333–339

    Article  PubMed  CAS  Google Scholar 

  • Palmer E, Wilhelm JM, Sherman F (1979) Phenotypic suppression of nonsense mutants in yeast by aminoglycoside antibiotics. Nature 277:148–150

    Article  PubMed  CAS  Google Scholar 

  • Perzynski S, Cannon M, Cundliffe E, Chahwala SB, Davies J (1979) Effects of apramycin, a novel aminoglycoside antibiotic, on bacterial protein synthesis. Eur J Biochem 99:623–628

    Article  PubMed  CAS  Google Scholar 

  • Pestka S (1977) Inhibitors of protein synthesis. In: Weissbach H, Pestka S (eds) Molecular mechanisms of protein biosynthesis. Academic Press, New York, pp 467–553

    Google Scholar 

  • Pestka S, Marshall R, Nirenberg M (1965) RNA codewords and protein synthesis. V. Effect of streptomycin on the formation of ribosome-sRNA complexes. Proc Natl Acad Sci USA 53:639–646

    Article  PubMed  CAS  Google Scholar 

  • Pestka S, Walter H, Wayne LG (1977) Altered surface properties ofEscherichia coli associated with a specific amino acid change in the S12 ribosomal protein of streptomycinresistant mutants. Antimicrob Agents Chemother 11:978–983

    PubMed  CAS  Google Scholar 

  • Pinkett MO, Brownstein BL (1974) Streptomycin-induced synthesis of abnormal protein in an Escherichia coli mutant. J Bacteriol 119:345–350

    PubMed  CAS  Google Scholar 

  • Pliotz PH, Dubin DT, Davis BD (1963) Influence of salts on the uptake of streptomycin by Escherichia coli Nature 191:1324–1325

    Article  Google Scholar 

  • Pongs O, Erdmann YA (1973) Affinity labeling of E.coli ribosomes with a streptomycin-analogue. FEBS Lett 37:47–50

    Article  PubMed  CAS  Google Scholar 

  • Ramirez-Ronda CH, Holmes RK, Sanford JP (1975) Effect of divalent cations on binding of aminoglycoside antibiotics to human serum proteins and to bacteria. Antimicrob Agents Chemother 7:238–245

    Google Scholar 

  • Revel M, Greenshpan H, Herzberg M (1970) Specificity in the binding of Escherichia coli ribosomes to natural messenger RNA. Eur J Biochem 16:117–122

    Article  PubMed  CAS  Google Scholar 

  • Schlanger G, Friedman SM (1973) Ambiguity in a polypeptide-synthesizing extract from Saccharomyces cerevisiae J Bacteriol 115:129–138

    PubMed  CAS  Google Scholar 

  • Schlessinger D, Medoff G (1975) Streptomycin, dihydrostreptomycin and the gentamicins. In: Corcoran JW, Hahn FE (eds) Antibiotics, vol III. Springer, Berlin Heidelberg New York, pp 535–549

    Google Scholar 

  • Schreiner G, Nierhaus KH (1973) Protein involved in the binding of dihydrostreptomycin to ribosomes of Escherichia coli J Mol Biol 81:71–82

    Article  PubMed  CAS  Google Scholar 

  • Shelanski ML, Gaskin F, Cantor CR (1973) Microtubule assembly in the absence of added nucleotides. Proc Natl Acad Sci USA 70:765–786

    Article  PubMed  CAS  Google Scholar 

  • Shibahara S, Kondo S, Maeda K, Umezawa H, Ohno M (1972) The total synthesis of negamycin and the antipode. J Am Chem Soc 94:4353–4354

    Article  PubMed  CAS  Google Scholar 

  • Shine J, Dalgarno L (1975) Determinant of cistron specificity in bacterial ribosomes. Nature 254:34–36

    Article  PubMed  CAS  Google Scholar 

  • Singh A, Ursic D, Davies J (1979) Phenotypic suppression and misreading in Saccharomyces cerevisiae Nature 277:146–148

    Article  PubMed  CAS  Google Scholar 

  • Someya A, Tanaka N (1979) Interaction of aminoglycosides and other antibiotics with actin. J Antibiot 32:156–160

    PubMed  CAS  Google Scholar 

  • Sparling PF (1970) Kasugamycin resistance: 30 S ribosomal mutation with an unusual location on theEscherichia coli chromosome. Science 167:56–58

    Article  PubMed  CAS  Google Scholar 

  • Speyer JF, Langyel P, Basillo C (1962) Ribosomal localization of streptomycin sensitivity. Proc Natl Acad Sci USA 48:684–686

    Article  PubMed  CAS  Google Scholar 

  • Spotts CR, Stanier RY (1961) Mechanism of streptomycin action on bacteria: a unitary hypothesis. Nature 192:633–637

    Article  PubMed  CAS  Google Scholar 

  • Spratt BG (1977) Properties of the penicillin-binding proteins of Escherichia coli K12. Eur J Biochem 72:341–352

    Article  PubMed  CAS  Google Scholar 

  • Stavy L (1968) Miscoding in a cell-free system from spleen. Proc Natl Acad Sci USA 61:347–353

    Article  PubMed  CAS  Google Scholar 

  • Steitz JA (1969) Polypeptide chain initiation: Nucleotide sequence of the three ribosomal binding sites in bacteriophage R17 RNA. Nature 224:957–964

    Article  PubMed  CAS  Google Scholar 

  • Stern JL, Barner HD, Cohen SS (1966) The lethality of streptomycin and the stimulation of RNA synthesis in the absence of protein synthesis. J Mol Biol 17:188–217

    Article  PubMed  CAS  Google Scholar 

  • Stockhorst E, Schachat J (1977) Radioactive labelling of phospholipids and proteins by cochlear perfusion in the guinea pig and the effect of neomycin. Acta Otolaryngol (Stockh) 83:401–409

    Article  CAS  Google Scholar 

  • Stöffler G, Wittmann HG (1977) Primary structure and three-dimensional arrangement of proteins within Escherichia coli ribosomes. In: Weissbach H, Pestka S (eds) Molecular mechanisms of protein biosynthesis. Academic Press, New York, pp 117–202

    Google Scholar 

  • Tai P-C, Davis BD (1979) Triphasic concentration effects of gentamicin on activity and misreading in protein synthesis. Biochemistry 18:193–198

    Article  PubMed  CAS  Google Scholar 

  • Tai P-C, Wallace BJ, Davis BD (1978) Streptomycin causes misreading of natural messenger by interacting with ribosomes after initiation. Proc Natl Acad Sci USA 75:275–279

    Article  PubMed  CAS  Google Scholar 

  • Tanaka N (1975 a) Aminoglycoside antibiotics. In: Corcoran JW, Hahn FE (eds) Antibiotics, vol III. Springer, Berlin Heidelberg New York, pp 340–364

    Google Scholar 

  • Tanaka N (1975 b) Fusidic acid. In: Corcoran JW, Hahn FE (eds) Antibiotics, vol III. Springer, Berlin Heidelberg New York, pp 436–447

    Google Scholar 

  • Tanaka N, Igusa S (1968) Effects of viomycin and polymyxin B on protein synthesis in vitro J Antibiot 21:239–240

    PubMed  CAS  Google Scholar 

  • Tanaka N, Nishimura T, Yamaguchi H, Yamamoto C, Yoshida Y, Sashikata K, Umezawa H (1965) Mechanism of action of kasugamycin. J Antibiot (Tokyo) 18:139–144

    CAS  Google Scholar 

  • Tanaka N, Yoshida Y, Sashikata K, Yamaguchi H, Umezawa H (1966 a) Inhibition of polypeptide synthesis by kasugamycin, an aminoglycosidic antibiotic. J Antibiot (Tokyo) 19:65–68

    CAS  Google Scholar 

  • Tanaka N, Yamaguchi H, Umezawa H (1966 b) Mechanism of kasugamycin action on polypeptide synthesis. J Biochem 60:429–434

    PubMed  CAS  Google Scholar 

  • Tanaka N, Masukawa H, Umezawa H (1967) Structural basis of kanamycin for miscoding activity. Biochem Biophys Res Commun 26:544–549

    Article  PubMed  CAS  Google Scholar 

  • Tanaka N, Kinoshita T, Masukawa H (1968) Mechanism of protein synthesis inhibition by fusidic acid and related antibiotics. Biochem Biophys Res Commun 30:278–283

    Article  PubMed  CAS  Google Scholar 

  • Tseng JT, Bryan LE, van den Elzen HM (1972) Mechanism and spectrum of streptomycin resistance in a natural population of Pseudomonas aeruginosa Antimicrob Agents Chemother 2:136–141

    PubMed  CAS  Google Scholar 

  • Turnock G (1970) The action of streptomycin in a mutant of Escherichia coli with increased sensitivity to the antibiotic. Biochem J 118:659–666

    PubMed  CAS  Google Scholar 

  • Turnock G, Erickson SK, Ackrell BAC, Birch B (1972) A mutant of Escherichia coli with a defect in energy metabolism. J Gen Microbiol 70:507–515

    PubMed  CAS  Google Scholar 

  • Uehara Y, Kondo S, Umezawa H, Suzukake K, Hori M (1972) Negamycin, a miscoding antibiotic with a unique structure. J Antibiot (Tokyo) 25:685–688

    CAS  Google Scholar 

  • Uehara Y, Hori M, Umezawa H (1974) Negamycin inhibits termination of protein synthesis directed by phage f2 RNA in vitro Biochim Biophys Acta 374:82–95

    PubMed  CAS  Google Scholar 

  • Uehara Y, Hori M, Umezawa H (1976 a) Specific inhibition of the termination process of protein synthesis by negamycin. Biochim Biophys Acta 442:251–262

    PubMed  CAS  Google Scholar 

  • Uehara Y, Hori M, Umezawa H (1976 b) Inhibitory effect of negamycin on polysomal ribosomes of Escherichia coli Biochim Biophys Acta 447:406–412

    PubMed  CAS  Google Scholar 

  • Vázquez D (1979) Inhibitors of protein biosynthesis. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Wallace BJ, Davis BD (1973) Cyclic blockade of initiation sites by streptomycin-damaged ribosomes in Escherichia coli An explanation for dominance of sensitivity. J Mol Biol 75:377–390

    Article  PubMed  CAS  Google Scholar 

  • Wallace BJ, Tai P-C, Davis BD (1973 a) Effect of streptomycin on the response of Escherichia coli ribosomes to the dissociation factor. J Mol Biol 75:391–400

    Article  PubMed  CAS  Google Scholar 

  • Wallace BJ, Tai P-C, Herzog EL, Davis BD (1973 b) Partial inhibition of polysomal ribosomes of Escherichia coli by streptomycin. Proc Natl Acad Sci USA 70:1234–1237

    Article  PubMed  CAS  Google Scholar 

  • Wallace BJ, Tai P-C, Davis BD (1974) Selective inhibition of initiating ribosomes by spectinomycin. Proc Natl Acad Sci USA 71:1634–1638

    Article  PubMed  CAS  Google Scholar 

  • Wallace BJ, Tai P-C, Davis BD (1979) Streptomycin and related antibiotics. In: Hahn EF (ed) Antibiotics, vol V/l. Springer, Berlin Heidelberg New York, pp 272–303

    Google Scholar 

  • Watanabe S (1972) Interaction of siomycin with the acceptor site of Escherichia coli ribosomes. J Mol Biol 67:443–457

    Article  PubMed  CAS  Google Scholar 

  • Weinstein IB, Ochoa M Jr, Friedman SM (1966) Fidelity in the translation of messenger ribonucleic acids in mammalian subcellular systems. Biochemistry 5:3332–3339

    Article  PubMed  CAS  Google Scholar 

  • White JR, White HL (1964) Streptomycinoid antibiotics: Synergism by puromycin. Science 146:772–774

    Article  PubMed  CAS  Google Scholar 

  • Wilhelm JM, Pettitt SE, Jessop JJ (1978 a) Aminoglycoside antibiotics and eukaryotic protein synthesis: Structure-function relationships in the stimulation of misreading with a wheat embryo system. Biochemistry 17:1143–1149

    Article  PubMed  CAS  Google Scholar 

  • Wilhelm JM, Jessop JJ, Pettitt SE (1978 b) Aminoglycoside antibiotics and eukaryotic protein synthesis: Stimulation errors in the translation of natural messengers in extracts of cultured human cells. Biochemistry 17:1149–1153

    Article  PubMed  CAS  Google Scholar 

  • Wittmann HG, Apirion D (1975) Analysis of ribosomal proteins in streptomycin resistant and dependent mutants isolated from streptomycin independent Escherichia coli strains. Mol Gen Genet 141:331–341

    Article  PubMed  CAS  Google Scholar 

  • Wolfgang RW, Lawrence NL (1967) Binding of streptomycin by ribosomes of sensitive, resistant and dependent Bacillus megaterium J Mol Biol 29:531–535

    Article  CAS  Google Scholar 

  • Wyatt PJ, Berkman RM, Phillips DT (1972) Osmotic sensitivity in Staphylococcus aureus induced by streptomycin. J Bacteriol 110:523–528

    PubMed  CAS  Google Scholar 

  • Yaguchi M, Wittmann HG (1976) Alteration of ribosomal protein S17 by mutation linked to neamine resistance in Escherichia coli II. Localization of the amino acid replacement in protein S17 from a nea A mutant. J Mol Biol 104:617–620

    Article  PubMed  CAS  Google Scholar 

  • Yamada T, Masuda K, Shoji K, Hori M (1972) Analysis of ribosomes from viomycin-sen-sitive and -resistant strains of Mycobacterium smegmatis J Bacteriol 112:1–6

    PubMed  CAS  Google Scholar 

  • Yamada T, Masuda K, Mizuguchi Y, Suga K (1976) Altered ribosomes in antibiotic-resistant mutants ofMycobacterium smegmatis Antimicrob Agents Chemother 9:817–823

    PubMed  CAS  Google Scholar 

  • Yamada T, Mizuguchi Y, Nierhaus KH, Wittmann HG (1978) Resistance to viomycin conferred by RNA of either ribosomal subunit. Nature 275:460–461

    Article  PubMed  CAS  Google Scholar 

  • Yamaki H, Tanaka N (1963) Effects of protein synthesis inhibitors on the lethal action of kanamycin and streptomycin. J Antibiot (Tokyo) 16:222–226

    CAS  Google Scholar 

  • Zierhut G, Piepersberg W, Böck A (1979) Comparative analysis of the effect of aminoglycosides on bacterial protein synthesis in vitro Eur J Biochem 98:577–583

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tanaka, N. (1982). Mechanism of Action of Aminoglycoside Antibiotics. In: Umezawa, H., Hooper, I.R. (eds) Aminoglycoside Antibiotics. Handbook of Experimental Pharmacology, vol 62. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68579-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68579-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68581-1

  • Online ISBN: 978-3-642-68579-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics