Mechanisms of Normal Biological Mineralization of Calcium Carbonates

  • M. A. Crenshaw
Part of the Dahlem Workshop Reports book series (DAHLEM, volume 23)

Abstract

Normal biogenic calcium carbonate is deposited as calcite or aragonite with preferred crystal orientation. The site of mineralization is isolated, and the parent medium may have a unique composition. In most cases, the mineral is deposited on an organic matrix. The insoluble matrical fraction is composed of varying quantities of different classes of macro-molecules, and its surface may be hydrophobic. The soluble matrical fraction from bivalve molluscs is primarily a sulfated, high molecular weight glycoprotein that selectively binds calcium. This glycoprotein is assigned a primary role in crystal nucleation in the ionotropic nucleation hypothesis. Postnucleation growth may be controlled in varying degrees by the bathing medium and by the insoluble matrix.

Keywords

Crystallization Hydrocarbon Glycine Polysaccharide Serine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    Abell, A.K.; Crenshaw, M.A.; and Turner, D.T. 1981. Limiting hardness of polymer-ceramic composites. In Biomedical and Dental Applications of Polymers, ed. F.F. Koblitz, pp. 347–355. Oxford: Pergamon Press.Google Scholar
  2. (2).
    Adamson, A.W. 1976. Physical Chemistry of Surfaces. New York: John Wiley and Sons.Google Scholar
  3. (3).
    Beedham, G.E. 1954. Properties of the non-calcareous material in the shell of Anodonta cygnea. Nature (London) 174: 750.CrossRefGoogle Scholar
  4. (4).
    Crenshaw, M.A. 1972. The inorganic composition of molluscan extrapallial fluid. Biol. Bull. 143: 506–512.CrossRefGoogle Scholar
  5. (5).
    Crenshaw, M.A. 1972. The soluble matrix from Mercenaria mercenaria shell. Biomin. Res. Rep. 6: 6–11.Google Scholar
  6. (6).
    Crenshaw, M.A. 1980. Mechanisms of shell formation and dissolution. In Skeletal Growth of Aquatic Organisms, eds. D.C. Rhoads and R.A. Lutz, pp. 115–132. New York: Plenum Press.Google Scholar
  7. (7).
    Crenshaw, M.A., and Heely, J.D. 1967. Sudanophilia at sites of mineralization in molluscs. J. Dent. Res. 49B: 65.Google Scholar
  8. (8).
    Crenshaw, M.A., and Ristedt, H. 1976. The histochemical localization of reactive groups in the septal nacre from Nautilus pompilius L. In Mechanisms of Mineralization in the Invertebrates and Plants, eds. N. Watabe and K.M. Wilbur, pp. 335–367. Columbia: University of South Carolina Press.Google Scholar
  9. (9).
    Grégoire, C. 1972. Structure of the molluscan shell. In Chemical Zoology, eds. M. Florkin and B. Scheer, vol. 7, pp. 45–102. New York: Academic Press.Google Scholar
  10. (10).
    Iwata, K. 1975. Ultrastructure of the conchiolin matrices in molluscan nacreous layer. J. Fac. Sci. Hokkaido Univ. Ser. 4 17: 173–229.Google Scholar
  11. (11).
    de Jong, L.W.; Dam, W.; Westbroek, P.; and Crenshaw, M.A. 1976. Aspects of calcification in Emiliania huxley. In Mechanisms of Mineralization in the Invertebrates and Plants, eds. N. Watabe and K.M. Wilbur, pp. 135–153. Columbia: University of South Carolina Press.Google Scholar
  12. (12).
    Kitano, Y.; Kanamori, N.; and Yoshioka, S. 1976. Influence of chemical on the crystal type of calcium carbonate. In Mechanisms of Mineralization in the Invertebrates and Plants, eds. N. Watabe and K.M. Wilbur, pp. 191–202. Columbia: University of South Carolina Press.Google Scholar
  13. (13).
    Kitano, Y.; Kanamori, N.; and Yoshioka, S. 1980. Aragonite to calcite transformation in corals in aquatic environment. In The Mechanisms of Biomineralization in Animals and Plants, eds. M. Omori and N. Watabe, pp. 269–278. Tokyo: Tokai University Press.Google Scholar
  14. (14).
    Krampitz, G.; Engels, J.; and Cazaux, C. 1976. Biochemical studies on water-soluble proteins and related compounds of gastropod shells. In Mechanisms of Mineralization in the Invertebrates and Plants, eds. N. Watabe and K.M. Wilbur, pp. 155–193. Columbia: University of South Carolina Press.Google Scholar
  15. (15).
    Nakahara, H. 1979. An electron microscope study of the growing surface of nacre in two gastropod species, Turbo cornutus and Tegula pfeifferi. Venus (Jap. J. Malac.) 38: 205–211.Google Scholar
  16. (16).
    Nordstrom, K.K.; Plummer, L.N.; Wigley, T.M.L.; Wolery, T.J.; Ball, J.W.; Jenne, E.A.; Bassett, R.L.; Crerar, D.A.; Florence, T.M.; Fritz, B.; Hoffman, M.; Holdern, G.R.; Lafon, G.M.; Mattigod, S.V.; McDuff, R.E.; Morel, F.; Reddy, M.M.; Sposito, G.; and Thrailkill, J. 1979. A comparison of computerized chemical models for equilibrium calculations in aqueous systems. In Chemical Modeling in Aqueous Solutions, ed. E.A. Jenne, pp. 857–892. Washington: American Chemical Society.CrossRefGoogle Scholar
  17. (17).
    Plummer, L.N.; Parkhurst, D.L.; and Wigley, T.M.L. 1979. Critical review of the kinetics of calcite dissolution and precipitation. In Chemical Modeling in Aqueous Solutions, ed. E.A. Jenne, pp. 537–573. Washington: American Chemical Society.CrossRefGoogle Scholar
  18. (18).
    Reddy, M.M. 1977. Crystallization of calcium carbonate in the presence of trace concentrations of phosphorus-containing anions. J. Cryst. Growth 41: 287–295.CrossRefGoogle Scholar
  19. (19).
    Richardson, C.A.; Crisp, D.J.; and Runham, N.W. 1981. Factors influencing shell deposition during a tidal cycle in the intertidal bivalve Cerastoderma edule. J. Mar. Bioil. Ass. U.K. 61: 465–476.CrossRefGoogle Scholar
  20. (20).
    Tanford, C. 1980. The Hydrophobic Effect: Formation of Micelles and Biological Membranes. New York: John Wiley and Sons.Google Scholar
  21. (21).
    Wada, K. 1980. Initiation of mineralization in bivalve molluscs. In The Mechanisms of Biomineralization in Animals and Plants, eds. M. Omori and N. Watabe, pp. 79–92. Tokyo: Tokai University Press.Google Scholar
  22. (22).
    Wada, K., and Fujinuki, T. 1976. Biomineralization in bivalve molluscs with emphasis on the chemical composition of the extrapallial fluid. In Mechanisms of Mineralization in the Invertebrates and Plants, eds. N. Watabe and K.M. Wilbur, pp. 175–190. Columbia: University of South Carolina Press.Google Scholar
  23. (23).
    Waller, T.R. 1980. Scanning electron microscopy of shell and mantle in the order Arcoida (Mollusca: Bivalvia). Smithsonian Contributions to Zoology (Washington) 313.Google Scholar
  24. (24).
    Watabe, N. 1981. Crystal growth of calcium carbonate in invertebrates. In Progress in Crystal Growth and Characterization, ed. B. Ramplin, vol. 4. Oxford: Pergamon Press.Google Scholar
  25. (25).
    Watabe, N., and Erben, H.K. 1974. Crystal formation and growth in bivalve nacre. Nature (London) 248: 128–130.CrossRefGoogle Scholar
  26. (26).
    Weiner, S., and Hood, L. 1975. Soluble protein of the organic matrix of mollusk shells: A potential template for shell formation. Science 190: 987–989.PubMedCrossRefGoogle Scholar
  27. (27).
    Weiner, S.; Lowenstam, H.A.; and Hood, L. 1977. Discrete molecular weight components of the organic matrices of mollusc shells. J. Exp. Mar. Biol. Ecol. 30: 45–51.CrossRefGoogle Scholar
  28. (28).
    Weiner, S., and Traub, W. 1981. Organic-matrix-mineral relationships in mollusk-shell nacreous layers. In Structural Aspects of Recognition and Assembly in Biological Macromolecules, eds. M. Balaban, J. Sussman, A. Yonat, and W. Traub, pp. 467–482. Glenside: International Sciences Services.Google Scholar
  29. (29).
    Wheeler, A.P.; George, J.W.; and Evans, C.A. 1981. Control of calcium carbonate nucleation and crystal growth by soluble matrix of oyster shell. Science 212: 1397–1398.PubMedCrossRefGoogle Scholar
  30. (30).
    Wijsman, T.C.M. 1975. pH fluctuations in Mytilus edulis, L. in relation to shell movements under aerobic and anaerobic conditions. In The Biochemistry, Physiology and Behavior of Marine Organisms in Relation to Their Ecology, ed. H. Barnes, pp. 139–149. Aberdeen: University of Aberdeen Press.Google Scholar
  31. (31).
    Wilbur, K.M. 1964. Shell formation and regeneration. In Physiology of Mollusca, eds. K.M. Wilbur and C.M. Yonge, vol. 1, pp. 243–282. New York: Academic Press.Google Scholar
  32. (32).
    Wilbur, K.M. 1976. Recent studies of invertebrate mineralization. In Mechanisms of Mineralization in the Invertebrates and Plants, eds. N. Watabe and K.M. Wilbur, pp. 79–108. Columbia: University of South Carolina Press.Google Scholar
  33. (33).
    Wilbur, K.M., and Simkiss, K. 1968. Calcified shells. In Comprehensive Biochemistry, eds. M. Florkin and E.H. Stotz, vol. 26A, pp. 229–295. Amsterdam: Elsevier.Google Scholar

Copyright information

© Dr. S. Bernhard, Dahlem Konferenzen, Berlin 1982

Authors and Affiliations

  • M. A. Crenshaw
    • 1
  1. 1.Dental Research Center and Dept. of PedodonticsUniversity of North CarolinaChapel HillUSA

Personalised recommendations