Skip to main content

Mechanisms of Normal Biological Mineralization of Calcium Carbonates

  • Conference paper

Part of the book series: Dahlem Workshop Reports ((DAHLEM LIFE,volume 23))

Abstract

Normal biogenic calcium carbonate is deposited as calcite or aragonite with preferred crystal orientation. The site of mineralization is isolated, and the parent medium may have a unique composition. In most cases, the mineral is deposited on an organic matrix. The insoluble matrical fraction is composed of varying quantities of different classes of macro-molecules, and its surface may be hydrophobic. The soluble matrical fraction from bivalve molluscs is primarily a sulfated, high molecular weight glycoprotein that selectively binds calcium. This glycoprotein is assigned a primary role in crystal nucleation in the ionotropic nucleation hypothesis. Postnucleation growth may be controlled in varying degrees by the bathing medium and by the insoluble matrix.

This paper is dedicated to Professor Karl M. Wilbur on his retirement.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abell, A.K.; Crenshaw, M.A.; and Turner, D.T. 1981. Limiting hardness of polymer-ceramic composites. In Biomedical and Dental Applications of Polymers, ed. F.F. Koblitz, pp. 347–355. Oxford: Pergamon Press.

    Google Scholar 

  2. Adamson, A.W. 1976. Physical Chemistry of Surfaces. New York: John Wiley and Sons.

    Google Scholar 

  3. Beedham, G.E. 1954. Properties of the non-calcareous material in the shell of Anodonta cygnea. Nature (London) 174: 750.

    Article  CAS  Google Scholar 

  4. Crenshaw, M.A. 1972. The inorganic composition of molluscan extrapallial fluid. Biol. Bull. 143: 506–512.

    Article  CAS  Google Scholar 

  5. Crenshaw, M.A. 1972. The soluble matrix from Mercenaria mercenaria shell. Biomin. Res. Rep. 6: 6–11.

    CAS  Google Scholar 

  6. Crenshaw, M.A. 1980. Mechanisms of shell formation and dissolution. In Skeletal Growth of Aquatic Organisms, eds. D.C. Rhoads and R.A. Lutz, pp. 115–132. New York: Plenum Press.

    Google Scholar 

  7. Crenshaw, M.A., and Heely, J.D. 1967. Sudanophilia at sites of mineralization in molluscs. J. Dent. Res. 49B: 65.

    Google Scholar 

  8. Crenshaw, M.A., and Ristedt, H. 1976. The histochemical localization of reactive groups in the septal nacre from Nautilus pompilius L. In Mechanisms of Mineralization in the Invertebrates and Plants, eds. N. Watabe and K.M. Wilbur, pp. 335–367. Columbia: University of South Carolina Press.

    Google Scholar 

  9. Grégoire, C. 1972. Structure of the molluscan shell. In Chemical Zoology, eds. M. Florkin and B. Scheer, vol. 7, pp. 45–102. New York: Academic Press.

    Google Scholar 

  10. Iwata, K. 1975. Ultrastructure of the conchiolin matrices in molluscan nacreous layer. J. Fac. Sci. Hokkaido Univ. Ser. 4 17: 173–229.

    Google Scholar 

  11. de Jong, L.W.; Dam, W.; Westbroek, P.; and Crenshaw, M.A. 1976. Aspects of calcification in Emiliania huxley. In Mechanisms of Mineralization in the Invertebrates and Plants, eds. N. Watabe and K.M. Wilbur, pp. 135–153. Columbia: University of South Carolina Press.

    Google Scholar 

  12. Kitano, Y.; Kanamori, N.; and Yoshioka, S. 1976. Influence of chemical on the crystal type of calcium carbonate. In Mechanisms of Mineralization in the Invertebrates and Plants, eds. N. Watabe and K.M. Wilbur, pp. 191–202. Columbia: University of South Carolina Press.

    Google Scholar 

  13. Kitano, Y.; Kanamori, N.; and Yoshioka, S. 1980. Aragonite to calcite transformation in corals in aquatic environment. In The Mechanisms of Biomineralization in Animals and Plants, eds. M. Omori and N. Watabe, pp. 269–278. Tokyo: Tokai University Press.

    Google Scholar 

  14. Krampitz, G.; Engels, J.; and Cazaux, C. 1976. Biochemical studies on water-soluble proteins and related compounds of gastropod shells. In Mechanisms of Mineralization in the Invertebrates and Plants, eds. N. Watabe and K.M. Wilbur, pp. 155–193. Columbia: University of South Carolina Press.

    Google Scholar 

  15. Nakahara, H. 1979. An electron microscope study of the growing surface of nacre in two gastropod species, Turbo cornutus and Tegula pfeifferi. Venus (Jap. J. Malac.) 38: 205–211.

    Google Scholar 

  16. Nordstrom, K.K.; Plummer, L.N.; Wigley, T.M.L.; Wolery, T.J.; Ball, J.W.; Jenne, E.A.; Bassett, R.L.; Crerar, D.A.; Florence, T.M.; Fritz, B.; Hoffman, M.; Holdern, G.R.; Lafon, G.M.; Mattigod, S.V.; McDuff, R.E.; Morel, F.; Reddy, M.M.; Sposito, G.; and Thrailkill, J. 1979. A comparison of computerized chemical models for equilibrium calculations in aqueous systems. In Chemical Modeling in Aqueous Solutions, ed. E.A. Jenne, pp. 857–892. Washington: American Chemical Society.

    Chapter  Google Scholar 

  17. Plummer, L.N.; Parkhurst, D.L.; and Wigley, T.M.L. 1979. Critical review of the kinetics of calcite dissolution and precipitation. In Chemical Modeling in Aqueous Solutions, ed. E.A. Jenne, pp. 537–573. Washington: American Chemical Society.

    Chapter  Google Scholar 

  18. Reddy, M.M. 1977. Crystallization of calcium carbonate in the presence of trace concentrations of phosphorus-containing anions. J. Cryst. Growth 41: 287–295.

    Article  CAS  Google Scholar 

  19. Richardson, C.A.; Crisp, D.J.; and Runham, N.W. 1981. Factors influencing shell deposition during a tidal cycle in the intertidal bivalve Cerastoderma edule. J. Mar. Bioil. Ass. U.K. 61: 465–476.

    Article  Google Scholar 

  20. Tanford, C. 1980. The Hydrophobic Effect: Formation of Micelles and Biological Membranes. New York: John Wiley and Sons.

    Google Scholar 

  21. Wada, K. 1980. Initiation of mineralization in bivalve molluscs. In The Mechanisms of Biomineralization in Animals and Plants, eds. M. Omori and N. Watabe, pp. 79–92. Tokyo: Tokai University Press.

    Google Scholar 

  22. Wada, K., and Fujinuki, T. 1976. Biomineralization in bivalve molluscs with emphasis on the chemical composition of the extrapallial fluid. In Mechanisms of Mineralization in the Invertebrates and Plants, eds. N. Watabe and K.M. Wilbur, pp. 175–190. Columbia: University of South Carolina Press.

    Google Scholar 

  23. Waller, T.R. 1980. Scanning electron microscopy of shell and mantle in the order Arcoida (Mollusca: Bivalvia). Smithsonian Contributions to Zoology (Washington) 313.

    Google Scholar 

  24. Watabe, N. 1981. Crystal growth of calcium carbonate in invertebrates. In Progress in Crystal Growth and Characterization, ed. B. Ramplin, vol. 4. Oxford: Pergamon Press.

    Google Scholar 

  25. Watabe, N., and Erben, H.K. 1974. Crystal formation and growth in bivalve nacre. Nature (London) 248: 128–130.

    Article  Google Scholar 

  26. Weiner, S., and Hood, L. 1975. Soluble protein of the organic matrix of mollusk shells: A potential template for shell formation. Science 190: 987–989.

    Article  PubMed  CAS  Google Scholar 

  27. Weiner, S.; Lowenstam, H.A.; and Hood, L. 1977. Discrete molecular weight components of the organic matrices of mollusc shells. J. Exp. Mar. Biol. Ecol. 30: 45–51.

    Article  CAS  Google Scholar 

  28. Weiner, S., and Traub, W. 1981. Organic-matrix-mineral relationships in mollusk-shell nacreous layers. In Structural Aspects of Recognition and Assembly in Biological Macromolecules, eds. M. Balaban, J. Sussman, A. Yonat, and W. Traub, pp. 467–482. Glenside: International Sciences Services.

    Google Scholar 

  29. Wheeler, A.P.; George, J.W.; and Evans, C.A. 1981. Control of calcium carbonate nucleation and crystal growth by soluble matrix of oyster shell. Science 212: 1397–1398.

    Article  PubMed  CAS  Google Scholar 

  30. Wijsman, T.C.M. 1975. pH fluctuations in Mytilus edulis, L. in relation to shell movements under aerobic and anaerobic conditions. In The Biochemistry, Physiology and Behavior of Marine Organisms in Relation to Their Ecology, ed. H. Barnes, pp. 139–149. Aberdeen: University of Aberdeen Press.

    Google Scholar 

  31. Wilbur, K.M. 1964. Shell formation and regeneration. In Physiology of Mollusca, eds. K.M. Wilbur and C.M. Yonge, vol. 1, pp. 243–282. New York: Academic Press.

    Google Scholar 

  32. Wilbur, K.M. 1976. Recent studies of invertebrate mineralization. In Mechanisms of Mineralization in the Invertebrates and Plants, eds. N. Watabe and K.M. Wilbur, pp. 79–108. Columbia: University of South Carolina Press.

    Google Scholar 

  33. Wilbur, K.M., and Simkiss, K. 1968. Calcified shells. In Comprehensive Biochemistry, eds. M. Florkin and E.H. Stotz, vol. 26A, pp. 229–295. Amsterdam: Elsevier.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Dr. S. Bernhard, Dahlem Konferenzen, Berlin

About this paper

Cite this paper

Crenshaw, M.A. (1982). Mechanisms of Normal Biological Mineralization of Calcium Carbonates. In: Nancollas, G.H. (eds) Biological Mineralization and Demineralization. Dahlem Workshop Reports, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68574-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68574-3_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68576-7

  • Online ISBN: 978-3-642-68574-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics