Skip to main content

Cyclic Nucleotides and Fever

  • Chapter
Book cover Pyretics and Antipyretics

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 60))

Abstract

The events taking place intracellularly within the central nervous system when pyrogens, putative neurotransmitters or other pharmacologically active substances raise body temperature during fever are poorly understood. Recognition of cyclic AMP as an intracellular mediator of adrenaline and glucagon-induced activation of hepatic glycolysis (Sutherland and Rall 1960) may further the understanding of these central events. Cyclic AMP is at present thought to modulate metabolic activities in many tissue and cell types including those of the mammalian brain (see reviews by Weiss and Kidman 1969; Greengard and Costa 1970; Robison et al. 1971; Bloom 1975; Daly 1975 a, b; Drummond and Ma 1975; Kebabian 1977; Nathanson 1977).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

AMP:

adenosine 5′-monophosphate;

ADP:

adenosine 5′-diphosphate;

ATP:

adenosine 5′-triphosphate;

cyclic AMP:

adenosine 3′,5′-monophosphate;

cyclic GMP:

guanosine 3′,5′-monophosphate;

Db-cAMP:

N 6-2′- O-dibutyryl adenosine 3′ ,5′ -monophosphate;

Db-cGMP:

N 2 -2′-0-dibutyryl guanosine 3′ ,5′-monophosphate;

GMP:

guanosine 5′ -monophosphate;

GTP:

guanosine 5′ -triphosphate;

References

  • Adams MME (1973) Cholera: new aids in treatment and prevention. Science 179:552–555

    Article  PubMed  CAS  Google Scholar 

  • Amer MS, Mayol RF (1973) Studies with phosphodiesterase. III. Two forms of the enzyme from human blood platelets. Biochim Biophys Acta 309:149–156

    Google Scholar 

  • Beavo J A, Hardman JG, Sutherland EW (1970 a) Hydrolysis of cyclic guanosine and adenosine 3/,5/-monophosphates by rat an bovine tissues. J Biol Chem 245:5649–5655

    PubMed  CAS  Google Scholar 

  • Beavo JA, Rogers NL, Crofford OB, Hardman JG, Sutherland EW, Newman EV (1970 b) Effects of xanthine derivatives on lipolysis and on adenosine 3/,5/-monophosphate phosphodiesterase activity. Mol Pharmacol 6:597–603

    PubMed  CAS  Google Scholar 

  • Beckman B, Flores J, Witkum PA, Sharp GWG (1974) Studies on the mode of action of cholera toxin. Effects on solubilized adenylate cyclase.J Clin Invest 53:1202–1205

    Google Scholar 

  • Beebee TJC, Bond RPM (1973) Effect of the exotoxin of Bacillus thuringiensis on normal and ecdysone-stimulated ribonucleic acid polymerase activity in intact nuclei from the fat-body of Sarcophaga bullata larvae. Biochem J 136:1–7

    PubMed  CAS  Google Scholar 

  • Beebee T, Korner A (1972) Differential inhibition of mammalian ribonucleic acid polymerases by an exotoxin from Bacillus thuringiensis. The direct observation of nucleoplasmic ribonucleic acid polymerase activity in intact nuclei. Biochem J 127:619–624

    Google Scholar 

  • Beer B, Chasin M, Clody DE, Vogel JR, Horovitz ZP (1972) Cyclic adenosine monophosphate phosphodiesterase in brain: effect of anxiety. Science 176:428–430

    Article  PubMed  CAS  Google Scholar 

  • Berry LJ, Smythe DS (1959) Effects of bacterial endotoxin on metabolism. II. Protein-carbohydrate balance following cortisone. Inhibition of intestinal absorption and adrenal response to ACTH. J Exp Med 110:407–418

    Google Scholar 

  • Berry LJ, Smythe DS, Young LG (1959) Effects of bacterial endotoxin on metabolism. I. Carbohydrate depletion and the protective role of cortisone. J Exp Med 110:389–405

    Google Scholar 

  • Bitensky M, Gorman RE, Miller WH (1971 a) Adenyl cyclase as a link between photon capture and changes in membrane permeability of frog photoreceptors. Proc Nat Acad Sci USA 68:561–562

    Article  PubMed  CAS  Google Scholar 

  • Bitensky MW, Gorman RE, Thomas L (1971b) Selective stimulation of epinephrine-responsive adenyl cyclase in mice by endotoxin. Proc Soc Exp Biol Med 138:773–775

    PubMed  CAS  Google Scholar 

  • Blecher M, Hunt NH (1972) Enzymatic deacylation of mono- and dibutyryl derivatives of cyclic adenosine 3/,5/-monophosphate by extracts of rat tissues. J Biol Chem 247:7479- 7484

    PubMed  CAS  Google Scholar 

  • Bloom FE (1975) The role of cyclic nucleotides in central synaptic function. Rev Physiol Biochem Pharmacol 74:1–103

    PubMed  CAS  Google Scholar 

  • Bockaert J, Roy C, Jard S (1972) Oxytocin-sensitive adenylate cyclase in frog bladder epithelial cells: role of calcium, nucleotides, and other factors in hormonal stimulation. J Biol Chem 247:7073–7081

    PubMed  CAS  Google Scholar 

  • Bond RPM, Boyce CBC, Brown VK, Tipton JD (1969) Some chemical and biological studies on an exotoxin from Bacillus thuringiensis var.thuringiensis Berliner. Biochem J 114:1 p

    Google Scholar 

  • Bonnet KA (1975) Regional alterations in cyclic nucleotide levels with acute and chronic morphine treatment. Life Sci 16:1877–1882

    Article  PubMed  CAS  Google Scholar 

  • Booth DA (1972) Unlearned and learned effects of intrahypothalamic cyclic AMP injection on feeding. Nature New Biol 237:222–224

    PubMed  CAS  Google Scholar 

  • Bourne HR (1973) Cholera enterotoxin: failure of anti-inflammatory agents to prevent cyclic AMP accumulation. Nature 241:399

    Article  PubMed  CAS  Google Scholar 

  • Bourne HR, Lehrer RI, Lichtenstein LM, Weissmann G, Zurier R (1973) Effects of cholera enterotoxin on adenosine 3/,5/-monophosphate and neutrophil function. Comparison with other compounds which stimulate leukocyte adenyl cyclase.J Clin Invest 52:698–708

    Article  PubMed  CAS  Google Scholar 

  • Bowman WC, Hall MT (1970) Inhibition of rabbit intestine mediated by a- and /ß- adrenoceptors. Br J Pharmacol 38:399–415

    PubMed  CAS  Google Scholar 

  • Boyle JM, Gardiner JD (1974) Sequence of events mediating the effect of cholera toxin on rat thymocytes.J Clin Invest 53:1149–1158

    Article  PubMed  CAS  Google Scholar 

  • Breckenridge BMcL (1964) The measurement of cyclic adenylate in tissues. Proc Nat Acad Sci USA 52:1580–1586

    Article  PubMed  CAS  Google Scholar 

  • Breckenridge BMcL, Lisk RD (1969) Cyclic adenylate and hypothalamic regulatory functions. Proc Soc Exp Biol Med 131:934–935

    PubMed  CAS  Google Scholar 

  • Brittain RJ, Handley SL (1967) Temperature changes produced by the injection of catecholamines and 5-hydroxytryptamine into the cerebral ventricles of the conscious mouse. J Physiol (Lond) 192:805–813

    CAS  Google Scholar 

  • Broadus AE, Kaminsky NI, Hardman JG, Sutherland EW, Liddle GW (1970) Kinetic parameters and renal clearances of plasma adenosine 3/,5/-monophosphate and guanosine 3/,5/-monophosphate in man.J Clin Invest 49:2222–2236

    Article  PubMed  CAS  Google Scholar 

  • Brooker G, Thomas LJ Jr, Appleman MM (1968) The assay of adenosine 3/,5/-cyclic monophosphate in biological materials by enzymatic radioisotopic displacement. Biochemistry 7:4177–4181

    Article  PubMed  CAS  Google Scholar 

  • Brostrom CO, Huang YC, Breckenridge BMcL, Wolff DJ (1975) Identification of a calcium-binding protein as a calcium-dependent regulator of brain adenylate cyclase. Proc Nat Acad Sci USA 72:64–68

    Article  PubMed  CAS  Google Scholar 

  • Burkard WP (1972) Catecholamine induced increase of cyclic adenosine 3/,5/-monophosphate in rat brain in vivo. J Neurochem 19:2615–2619

    Article  PubMed  CAS  Google Scholar 

  • Butcher RW (1968) Role of cyclic AMP in hormone actions. N Engl J Med 279:1378–1384

    Article  PubMed  CAS  Google Scholar 

  • Butcher RW, Sutherland EW (1962) Adenosine 3/,5/-phosphate in biological materials. I. Purification and properties of cyclic 3/,5/-nucleotide phosphodiesterase and use of this enzyme to characterize adenosine 3/,5/-phosphate in human urine. J Biol Chem 237:1244–1250

    PubMed  CAS  Google Scholar 

  • Campbell MT, Oliver IT (1972) 3/:5/-Cyclic nucleotide phosphodiesterase in rat tissues. Eur J Biochem 28:30–37

    Article  Google Scholar 

  • Chambaut AM, Eboue-Bonis D, Hanoune J, Clauser H (1969) Antagonistic actions between dibutyryl adenosine-3/,5/-cyclic monophosphate and insulin on the metabolism of the surviving rat diaphragm. Biochem Biophys Res Commun 34:283–290

    Article  PubMed  CAS  Google Scholar 

  • Chasin M (1971) A potent new cyclic nucleotide phosphodiesterase (PDE) inhibitor. Fed Proc 30:1268

    Google Scholar 

  • Chasin M, Harris DN (1976) Inhibitors and activators of cyclic nucleotide phosphodiesterase. Adv Cyclic Nucleotide Res 7:225–264

    PubMed  CAS  Google Scholar 

  • Cheung WY (1966) Inhibition of cyclic nucleotide phosphodiesterase by adenosine 5/-triphosphate and inorganic pyrophosphate. Biochem Biophys Res Commun 23:214–219

    Article  PubMed  CAS  Google Scholar 

  • Cheung WY (1967) Properties of cyclic 3/,5/-nucleotide phosphodiesterase from rat brain. Biochemistry 6:1079–1087

    Article  PubMed  CAS  Google Scholar 

  • Cheung WY (1969) Cyclic 3/,5/-nucleotide phosphodiesterase. Preparation of a partially inactive enzyme and its subsequent stimulation by snake venom. Biochim Biophys Acta 191:303–315

    PubMed  CAS  Google Scholar 

  • Cheung WY (1970 a) Cyclic nucleotide phosphodiesterase. Adv Biochem Psychopharmacol 3:51–65

    PubMed  CAS  Google Scholar 

  • Cheung WY (1970 b) Cyclic 3/,5/-nucleotide phosphodiesterase. Demonstration of an activator. Biochem Biophys Res Commun 38:533–538

    Article  PubMed  CAS  Google Scholar 

  • Cheung WY (1971) Cyclic 3/,5/-nucleotide phosphodiesterase. Evidence for and properties of a protein activator. J Biol Chem 246:2859–2869

    PubMed  CAS  Google Scholar 

  • Cheung WY, Salganicoff L (1967) Cyclic 3/,5/-nucleotide phosphodiesterase: localization and latent activity in rat brain. Nature 214:90–91

    Article  PubMed  CAS  Google Scholar 

  • Cheung WY, Bradham LS, Lynch TJ, Lin YM, Tallant EA (1975) Protein activator of cyclic 3/,5/-nucleotide phosphodiesterase of bovine or rat brain also activates its adenylate cyclase. Biochem Biophys Res Commun 66:1055–1062

    Article  PubMed  CAS  Google Scholar 

  • Cho WS, Ho AKS, Loh HH (1971) Neurohormones on brain adenyl cyclase activity in vivo. Nature New Biol 233:280–281

    Article  Google Scholar 

  • Čižnár I, Shands JW Jr (1971) Effect of alkali-treated lipopolysaccharide on erythrocyte membrane stability. Infect Immun 4:362–367

    PubMed  Google Scholar 

  • Clark RB, Perkins JP (1971) Regulation of adenosine 3/:5/-cyclic monophosphate concentration in cultured human astrocytoma cells by catecholamines and histamine. Proc Nat Acad Sci USA 68:2757–2760

    Article  PubMed  CAS  Google Scholar 

  • Clark WG (1978) Effects of third cerebral ventricular injections of cyclic guanosine nucleotides on body temperature of cats. Proc Soc Exp Biol Med 158:655–657

    PubMed  CAS  Google Scholar 

  • Clark WG, Cumby HR, Davis HE IV (1974) The hyperthermic effect of intracerebroventricular cholera enterotoxin in the unanaesthetized cat. J Physiol (Lond) 240:493–504

    CAS  Google Scholar 

  • Cooper KE, Veale WL (1972 a) Potentiation of fever, produced by intravenous leucocyte pyrogen, following the injection of paraffin oil in the cerebral ventricles of the unanaesthetized rabbit. Experientia 28:917–918

    Article  PubMed  CAS  Google Scholar 

  • Cooper KE, Veale WL (1972 b) The effect of injecting an inert oil into the cerebral ventricular system upon fever produced by intravenous leucocyte pyrogen. Can J Physiol Pharmacol 50:1066–1071

    Article  PubMed  CAS  Google Scholar 

  • Cramer H, Paul MI, Silbergeld S, Forn J (1971) Determination of regional distribution of adenosine 3/,5/-monophosphate in rat brain. J Neurochem 18:1605–1608

    Article  PubMed  CAS  Google Scholar 

  • Cramer H, Goodwin FK, Post RM, Bunney WE Jr (1972 a) Effects of probenecid and exercise on cerebrospinal-fluid cyclic A.M.P. in affective illness. Lancet 1:1346–1347

    Article  PubMed  CAS  Google Scholar 

  • Cramer H, Ng LKY, Chase TN (1972 b) Effect of probenecid on levels of cyclic A.M.P. in human cerebrospinal fluid. J Neurochem 19:1601—1602

    Article  PubMed  Google Scholar 

  • Cuatrecasas P (1973) Gangliosides and membrane receptors for cholera toxin. Biochemistry 12:3558–3566

    Article  PubMed  CAS  Google Scholar 

  • Curnow RT, Rayfield EJ, George DT, Zenser TV, DeRubertis FR (1976) Altered hepatic glycogen metabolism and glucoregulatory hormones during sepsis. Am J Physiol 230:1296–1301

    PubMed  CAS  Google Scholar 

  • Daly J (1975 a) Role of cyclic nucleotides in the nervous system. In: Iversen LL, Iversen SD, Snyder SH (eds) Handbook of psychopharmacology, vol 5. Plenum, New York London, pp 47–130

    Google Scholar 

  • Daly JW (1975 b) Cyclic adenosine 3/,5/-monophosphate role in the physiology and pharmacology of the central nervous system. Biochem Pharmacol 24:159–164

    Article  PubMed  CAS  Google Scholar 

  • Dascombe MJ (1977) Effects of methylxanthine drugs on pyrogen-induced hyperthermia. Eur J Pharmacol 45:389–392

    Article  PubMed  CAS  Google Scholar 

  • Dascombe MJ, Milton AS (1972) The effect of caffeine on the antipyretic action of aspirin administered during endotoxin induced fever. Br J Pharmacol 46:548–549 P

    Google Scholar 

  • Dascombe MJ, Milton AS (1975 a) The effects of cyclic 3/,5/-adenosine monophosphate and other adenine nucleotides on body temperature. J Physiol (Lond) 250:143–160

    CAS  Google Scholar 

  • Dascombe MJ, Milton AS (1975 b) Cyclic adenosine-3/,5/-monophosphate in cerebrospinal fluid during fever and antipyresis. J Physiol (Lond) 247:29–31 P

    Google Scholar 

  • Dascombe MJ, Milton AS (1975 c) Cyclic adenosine 3/,5/-monophosphate in cerebrospinal fluid. Br J Pharmacol 54:254–255 P

    Google Scholar 

  • Dascombe MJ, Milton AS (1976) Cyclic adenosine 3/,5/-monophosphate in cerebrospinal fluid during thermoregulation and fever. J Physiol (Lond) 263:441–463

    CAS  Google Scholar 

  • Dascombe MJ, Milton AS (1979) Study on the possible entry of bacterial endotoxin and prostaglandin E2 into the central nervous system from the blood. Br J Pharmacol 66:565–572

    PubMed  CAS  Google Scholar 

  • Davoren PR, Sutherland EW (1963) The effect of 1-epinephrine and other agents on the synthesis and release of adenosine 3/,5/-phosphate by whole pigeon erythrocytes. J Biol Chem 238:3009–3015

    PubMed  CAS  Google Scholar 

  • Delapaz RL, Dickman SR, Grosser BI (1975) Effects of stress on rat brain adenosine 3/,5/- monophosphate in vivo. Brain Res 85:171–175

    Article  PubMed  CAS  Google Scholar 

  • De Robertis E, Arnaiz R de LG, Alberici M, Butcher RW, Sutherland EW (1967) Subcellular distribution of adenyl cyclase and cyclic phosphodiesterase in rat brain cortex. J Biol Chem 242:3487–3493

    Google Scholar 

  • Dey PK, Feldberg W, Gupta KP, Milton AS, Wendlandt S (1974) Further studies on the role of prostaglandin in fever. J Physiol (Lond) 241:629–646

    CAS  Google Scholar 

  • Doggett NS, Spencer PS J (1971) Pharmacological properties of centrally administered ouabain and their modification by other drugs. Br J Pharmacol 42:242–253

    PubMed  CAS  Google Scholar 

  • Doggett NS, Spencer PS (1973) Pharmacological properties of centrally administered agents which interfere with neurotransmitter function: a comparison with the central depressant effects of ouabain. Br J Pharmacol 47:26–38

    PubMed  CAS  Google Scholar 

  • Donlon MA, Walker RI (1976) Adenyl cyclase activity of mouse liver membranes after incubation with endotoxin and epinephrine. Experientia 32:179–181

    Article  PubMed  CAS  Google Scholar 

  • Dorner F, Mayer P (1975)Escherichia coli enterotoxin: stimulation of adenylate cyclase in broken-cell preparations. Infect Immun 11:429–435

    Google Scholar 

  • Drummond GI, Ma Y (1975) Metabolism and functions of cyclic AMP in nerve. Prog Neurobiol 2:119–176

    Article  Google Scholar 

  • Drummond GI, Perrott-Yee S (1961) Enzymatic hydrolysis of adenosine 3/,5/-phosphoric acid. J Biol Chem 236:1126–1129

    PubMed  CAS  Google Scholar 

  • Drummond GI, Powell AC (1970) Analogues of adenosine 3/,5/-cyclic phosphate as activators of Phosphorylase b kinase and as substrates for cyclic 3/,5/-nucleotide phosphodiesterase. Mol Pharmacol 6:24–30

    PubMed  CAS  Google Scholar 

  • Dubocovich ML, Langer SZ, Pelayo F (1978) Effect of cyclic nucleotides on [3H] - neurotransmitter release induced by potassium stimulation in the rat pineal gland. Br J Pharmacol 62:383–384 P

    Google Scholar 

  • Duff GW, Cranston WI, Luff RH (1972) Cyclic 3/,5/ adenosine monophosphate in central control of body temperature. Proc Fifth Int Congr Pharmacol Abstr 360. Karger, Basel, p 60

    Google Scholar 

  • Duffy MJ, Schwarz V (1974) The effects of adenosine 3/,5/-cyclic monophosphate and adenosine triphosphate on calcium ion binding in erythrocyte membranes. Biochem Soc Trans 2:406–407

    CAS  Google Scholar 

  • Evans DG, Evans DJ, Pierce NF (1973) Differences in the response of rabbit small intestine to heat-labile and heat-stable enterotoxins of Escherichia coli. Infect Immun 7:873–880

    PubMed  CAS  Google Scholar 

  • Evans DJ, Chen LC, Curlin GT, Evans DG (1972) Stimulation of adenyl cyclase byEscherichia coli enterotoxin. Nature New Biol 236:137–138

    Article  PubMed  CAS  Google Scholar 

  • Feldberg W, Gupta KP (1973) Pyrogen fever and prostaglandin-like activity in cerebrospinal fluid. J Physiol (Lond) 228:41–53

    CAS  Google Scholar 

  • Feldberg W, Saxena PN (1970) Mechanism of action of pyrogen. J Physiol (Lond) 211:245–261

    CAS  Google Scholar 

  • Feldberg W, Myers RD, Veale WL (1970) Perfusion from cerebral ventricle to cisterna magna in unanaesthetized cat. Effect of calcium on body temperature. J Physiol (Lond) 207:403–416

    Google Scholar 

  • Feldberg W, Gupta KP, Milton AS, Wendlandt S (1973) Effect of pyrogen and antipyretics on prostaglandin activity in cisternal c.s.f. of unanaesthetized cats. J Physiol (Lond) 234:279–303

    CAS  Google Scholar 

  • Ferrendelli JA, Chang MM, Kinscherf DA (1974) Elevation of cyclic GMP levels in central nervous system by excitatory and inhibitory amino acids. J Neurochem 22:535–540

    Article  PubMed  CAS  Google Scholar 

  • Ferrendelli JA, Steiner AL, McDougal DB Jr, Kipnis DM (1970) The effect of oxotremorine and atropine on cGMP and cAMP levels in mouse cerebral cortex and cerebellum. Biochem Biophys Res Commun 41:1061–1067

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein RA, LoSpalluto J J (1969) Pathogenesis of experimental cholera. Preparation and isolation of choleragen and choleragenoid. J Exp Med 130:185–202

    Google Scholar 

  • Finkelstein RA, LoSpalluto J J (1970) Production of highly purified choleragen and choleragenoid. J Infect Dis 121:S63-S72

    Article  CAS  Google Scholar 

  • Finkelstein RA, LoSpalluto J J (1972) Crystalline cholera toxin and toxoid. Science 175:529- 530

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein RA, Boesman M, Neoh SH, Larve MK, Delaney R (1974) Dissociation and recombination of the subunits of the cholera enterotoxin (choleragen). J Immunol 113:145–150

    PubMed  CAS  Google Scholar 

  • Florendo NT, Barnnett RJ, Greengard P (1971) Cyclic 3/,5/-nucleotide phosphodiesterase: cytochemical localization in cerebral cortex. Science 173:745–747

    Article  PubMed  CAS  Google Scholar 

  • Flores J, Sharp GWG (1975) Effects of cholera toxin on adenylate cyclase: studies with guanylylimidodiphosphate.J Clin Invest 56:1345–1349

    Article  PubMed  CAS  Google Scholar 

  • Franks DJ, Macmanus JP (1971) Cyclic GMP stimulation and inhibition of cyclic AMP phosphodiesterase from thymic lymphocytes. Biochem Biophys Res Commun 42:844–849

    Article  PubMed  CAS  Google Scholar 

  • Gartner SL (1975) Hepatic levels of cyclic AMP in normal and lead-sensitized rats after treatment with bacterial endotoxin. Experientia 31:566–567

    Article  PubMed  CAS  Google Scholar 

  • George WJ, Poison JB, O’Toole AG, Goldberg ND (1970) Elevation of guanosine 3/,5/-cyclic phosphate in rat heart after perfusion with acetylcholine. Proc Nat Acad Sei USA 66:398–403

    Article  CAS  Google Scholar 

  • Gessa GL, Krishna G, Forn J, Tagliamonte A, Brodie BB (1970) Behavioral and vegetative effects produced by dibutyryl cyclic AMP injected into different areas of the brain. In: Greengard P, Costa E (eds) Role of cyclic AMP in cell function. Raven, New York, pp 371–381

    Google Scholar 

  • Gill DM (1977) Mechanism of action of cholera toxin. Adv Cyclic Nucleotide Res 8:85–118

    PubMed  CAS  Google Scholar 

  • Gilman AG, Nirenberg M (1971) Effects of catecholamines on adenosine 3/,5/-monophos- phate concentrations of clonal satellite cells of neurons. Proc Nat Acad Sei USA 68:2165–2168

    Article  CAS  Google Scholar 

  • Gilman AG, Schrier BK (1972) Adenosine cyclic 3/,5/-monophosphate in fetal rat brain cell cultures. I. Effect of catecholamines. Mol Pharmacol 8:410–416

    Google Scholar 

  • Gimpel LP, Hodgins DS, Jacobson ED (1971) Effect of endotoxin on liver adenyl cyclase. Clin Res 19:475

    Google Scholar 

  • Goldberg ND, Dietz SB, O’Toole AG (1969) Cyclic guanosine 3/,5/-monophosphate in mammalian tissues and urine. J Biol Chem 244:4458–4466

    PubMed  CAS  Google Scholar 

  • Goldberg ND, O’Dea RF, Haddox MK (1973) Cyclic GMP. Adv Cyclic Nucleotide Res 3:155–223

    PubMed  CAS  Google Scholar 

  • Goldfine ID, Roth J, Birnbaumer L (1972) Glucagon receptors in ß-cells. Binding of 125I-glucagon and activation of adenylate cyclase. J Biol Chem 247:1211–1218

    PubMed  CAS  Google Scholar 

  • Gopinath RM, Vincenzi FF (1977) Phosphodiesterase protein activator mimics red blood cell cytoplasmic activator of (Ca2+-Mg2+) ATPase. Biochem Biophys Res Commun 77:1203–1209

    Article  PubMed  CAS  Google Scholar 

  • Goren EN, Rosen OM (1971) The effect of nucleotides and a nondialyzable factor on the hydrolysis of cyclic AMP by a cyclic nucleotide phosphodiesterase from beef heart. Arch Biochem Biophys 142:720–723

    Article  PubMed  CAS  Google Scholar 

  • Goren EN, Rosen OM (1972) Purification and properties of a cyclic nucleotide phosphodiesterase from bovine heart. Arch Biochem Biophys 153:384–397

    Article  PubMed  CAS  Google Scholar 

  • Gorman RE, Bitensky MW (1972) Selective effects of cholera toxin on the adrenaline responsive component of hepatic adenyl cyclase. Nature 235:439–440

    Article  PubMed  CAS  Google Scholar 

  • Grahame-Smith DG, Isaac P, Heal DJ (1975) Inhibition of adenyl cyclase by an exotoxin of Bacillus thuringiensis. Nature 253:58–60

    Article  PubMed  CAS  Google Scholar 

  • Grand RJ, Torti FM, Jaksina S (1973) Development of intestinal adenyl cyclase and its response to cholera enterotoxin.J Clin Invest 52:2053–2059

    Article  PubMed  CAS  Google Scholar 

  • Greengard P, Costa E (eds) (1970) Role of cyclic AMP in cell function. Raven, New York

    Google Scholar 

  • Greengard P, Kuo JF (1970) On the mechanism of action of cyclic AMP. In: Greengard P, Costa E (eds) Role of cyclic AMP in cell function. Raven, New York, pp 287–306

    Google Scholar 

  • Guerrant RL, Chen LC, Sharp GWG (1972) Intestinal adenyl-cyclase activity in canine cholera: correlation with fluid accumulation. J Infect Dis 125:377–381

    Article  PubMed  CAS  Google Scholar 

  • Guerrant RL, Brunton LL, Schnaitman TC, Rebhun LI, Gilman AG (1974) Cyclic adenosine monophosphate and alteration of Chinese hamster ovary cell morphology: a rapid, sensitive in vitro assay for the enterotoxins of Vibrio cholerae and Escherichia coli. Infect Immun 10:320–327

    PubMed  CAS  Google Scholar 

  • Gullis R, Traber J, Hamprecht B (1975) Morphine elevates levels of cyclic GMP in a neuroblastoma x glioma hybrid cell line. Nature 256:57–59

    Article  PubMed  Google Scholar 

  • Hadley ME, Goldman JM (1969) Effects of cyclic 3/,5/-AMP and other adenine nucleotides on the melanophores of the lizard (Anolis carolinensis). Br J Pharmacol 37:650–658

    PubMed  CAS  Google Scholar 

  • Hardman JG, Sutherland EW (1969) Guanyl cyclase, an enzyme catalyzing the formation of guanosine 3/,5/-monophosphate from guanosine triphosphate. J Biol Chem 244:6363–6370

    PubMed  CAS  Google Scholar 

  • Hardman JG, Davis JW, Sutherland EW (1969) Effects of some hormonal and other factors on the excretion of guanosine 3/,5/-monophosphate and adenosine 3/,5/-monophos- phate in rat urine. J Biol Chem 244:6354–6362

    PubMed  CAS  Google Scholar 

  • Harris DN, Phillips MB, Goldenberg HJ (1971) Interaction of cyclic nucleotides with cyclic nucleotide phosphodiesterases of the cat heart. Fed Proc 30:219

    Google Scholar 

  • Harris DN, Chasin M, Phillips MB, Goldenberg H, Samaniego S, Hess SM (1973) Effect of cyclic nucleotides on activity of cyclic 3/,5/-adenosine monophosphate phosphodiesterase. Biochem Pharmacol 22:221–228

    Article  PubMed  CAS  Google Scholar 

  • Hegstrand LR, Kanof PD, Greengard P (1976) Histamine-sensitive adenylate cyclase in mammalian brain. Nature 260:163–165

    Article  PubMed  CAS  Google Scholar 

  • Henion WF, Sutherland EW (1971) Cyclic AMP and hormone action. In: Robison GA, Butcher RW, Sutherland EW (eds) Cyclic AMP. Academic Press, New York London, pp 17–47

    Google Scholar 

  • Henion WF, Sutherland EW, Posternak T (1967) Effects of derivatives of adenosine 3/,5/- phosphate on liver slices and intact animals. Biochim Biophys Acta 148:106–113

    Article  PubMed  CAS  Google Scholar 

  • Herman ZS (1973) Behavioural effects of dibutyryl cyclic 3’,5’ AMP, noradrenaline and cyclic 3/,5/ AMP in rats. Neuropharmacology 12:705–709

    Article  PubMed  CAS  Google Scholar 

  • Herman ZS, Szkilnik R (1977) Central effects of dibutyryl cyclic 3/,5/ AMP and dibutyryl cyclic 3/,5/ GMP in mice. Acta Med Pol 18:1–6

    PubMed  CAS  Google Scholar 

  • Hilz H, Tarnowski W (1970) Opposite effects of cyclic AMP and its dibutyryl derivative on glycogen levels in HeLa cells. Biochem Biophys Res Commun 40:973–981

    Article  PubMed  CAS  Google Scholar 

  • Honda F, Imamura H (1968) Inhibition of cyclic 3’,5’-nucleotide phosphodiesterase by phenothiazine and reserpine derivatives. Biochim Biophys Acta 161:267–269

    PubMed  CAS  Google Scholar 

  • Hynie S, Rašková H, Sechser T et al. (1974) Stimulation of intestinal and liver adenyl cyclase by enterotoxin from strains ofEscherichia coli enteropathogenic for calves. Toxicon 12:173–179

    Article  PubMed  CAS  Google Scholar 

  • Isaac P, Grahame-Smith DG (1972) Adenosine 3/,5/-cyclic monophosphate and adenyl cyclase in subcellular fractions of rat brain. Biochem J 126:14 P

    Google Scholar 

  • Ishikawa E, Ishikawa S, Davis JW, Sutherland EW (1969) Determination of guanosine 3/,5/-monophosphate in tissues and of guanyl cyclase in rat intestine. J Biol Chem 244:6371–6376

    PubMed  CAS  Google Scholar 

  • Isom GE, McCarthy TA, Eells JT, Wimer ER (1978) Influence of intracerebroventricular injections of N6,02-dibutyryl adenosine 3/,5/-cyclic monophosphate on sodium pentobarbital-induced narcosis in rats. Neuropharmacology 17:53–58

    Article  PubMed  CAS  Google Scholar 

  • Iversen LL, Glowinski J (1966) Regional studies of catecholamines in the rat brain. II. Rate of turnover of catecholamines in various brain regions. J Neurochem 13:671–682

    Google Scholar 

  • Iwangoff P, Enz A (1973) Inhibition of phoshodiesterase by dihydroergotamine and hydergine in various organs of the cat in vitro. Experientia 29:1067–1069

    Article  PubMed  CAS  Google Scholar 

  • Jacks TM, Wu BJ, Braemer AC, Bidlack DE (1973) Properties of the enterotoxic component in Escherichia coli enteropathogenic for swine. Infect Immun 7:178–189

    PubMed  CAS  Google Scholar 

  • Jancsó G, Wollemann M (1977) The effect of capsaicin on the adenylate cyclase activity of rat brain. Brain Res 123:323–329

    Article  PubMed  Google Scholar 

  • Jancsó VN, Jancso-Gabor A (1965) Die Wirkungen des Capsaicins auf die hypothalami- schen Thermoreceptoren. Naunyn-Schmiedeberg Arch Exp Pathol Pharmacol 251:136–137

    Article  Google Scholar 

  • Jancsó-Gábor A, Szolcsányi J, Janscó N (1970 a) Irreversible impairment of thermoregulation induced by capsaicin and similar pungent substances in rats. J Physiol (Lond) 206:495–507

    Google Scholar 

  • Jancsó-Gabor A, Szolcsányi J, Jancsó N (1970 b) Stimulation and desensitization of the hypothalamic heat-sensitive structures by capsaicin in rats. J Physiol (Lond) 208:449–459

    Google Scholar 

  • Jard S, Bernard M (1970) Presence of two 3/,5/-cyclic AMP phosphodiesterases in rat kidney and frog bladder epithelial cells extracts. Biochem Biophys Res Commun 41:781–788

    Article  PubMed  CAS  Google Scholar 

  • Jarrett HW, Penniston JT (1977) Partial purification of the Ca2+-Mg2+ ATPase activator from human erythrocytes: its similarity to the activator of 3/,5/-cyclic nucleotide phosphodiesterase. Biochem Biophys Res Commun 77:1210–1216

    Article  PubMed  CAS  Google Scholar 

  • Jona JL (1916) A contribution to the experimental study of fever. J Hyg (Lond) 15:169–194

    Article  CAS  Google Scholar 

  • Jones DJ, Stavinoha WB (1977) Levels of cyclic nucleotides in mouse regional brain following 300 ms microwave inactivation. J Neurochem 28:759–763

    Article  PubMed  CAS  Google Scholar 

  • Jones DJ, Medina MA, Ross DH, Stavinoha WB (1974) Rate of inactivation of adenyl cyclase and phosphodiesterase: determinants of brain cAMP. Life Sci 14:1577–1585

    Article  PubMed  CAS  Google Scholar 

  • Joo F, Rakonczay Z, Wollemann M (1975) cAMP-mediated regulation of the permeability in the brain capillaries. Experientia 31:582–584

    Article  PubMed  CAS  Google Scholar 

  • Kakiuchi S, Rail TW (1968) Studies on adenosine 3/,5/-phosphate in rabbit cerebral cortex. Mol Pharmacol 4:379–388

    PubMed  CAS  Google Scholar 

  • Kakiuchi S, Yamazaki R, Teshima Y (1971) Cyclic 3/,5/-nucleotide phosphodiesterase. IV. Two enzymes with different properties from brain. Biochem Biophys Res Commun 42:968–974

    Google Scholar 

  • Kakiuchi S, Yamazaki R, Teshima Y, Uenishi K (1973) Regulation of nucleoside cyclic 3/,5/-monophosphate phosphodiesterase activity from rat brain by a modulator and Ca2 +. Proc Nat Acad Sci USA 70:3526–3530

    Article  PubMed  CAS  Google Scholar 

  • Kantor HS, Tao P, Wisdom C (1974) Action ofEscherichia coli enterotoxin: adenylate cyclase behaviour of intestinal epithelial cells in culture. Infect Immun 9:1003–1010

    PubMed  CAS  Google Scholar 

  • Kaukel E, Hilz H (1972) Permeation of dibutyryl cAMP into HeLa cells and its conversion to monobutyryl cAMP. Biochem Biophys Res Commun 46:1011–1018

    Article  PubMed  CAS  Google Scholar 

  • Kaukel E, Mundhenk K, Hilz H (1972) N6-Monobutyryladenosine 3/,5/-monophospliate as the biologically active derivative of dibutyryladenosine 3/,5/-monophosphate in HeLa S3 cells. Eur J Biochem 27:197–200

    Article  PubMed  CAS  Google Scholar 

  • Kebabian JW (1977) Biochemical regulation and physiological significance of cyclic nucleotides in the nervous system. Adv Cyclic Nucleotide Res 8:421–508

    PubMed  CAS  Google Scholar 

  • Kebabian JW, Bloom FE, Steiner AL, Greengard P (1975) Neurotransmitters increase cyclic nucleotides in postganglionic neurones: immunocytochemical demonstration. Science 190:157–159

    Article  PubMed  CAS  Google Scholar 

  • Kim TS, Shulman J, Levine RA (1968) Relaxant effect of cyclic adenosine 3/,5/-monophosphate on the isolated rabbit ileum. J Pharmacol Exp Ther 163:36–42

    PubMed  CAS  Google Scholar 

  • Kimberg DV, Field M, Johnson J, Henderson A, Gershon E (1971) Stimulation of intestinal mucosal adenyl cyclase by cholera enterotoxin and prostaglandins.J Clin Invest 50:1218–1230

    Article  PubMed  CAS  Google Scholar 

  • Kimberg DV, Field M, Gershon E, Henderson A (1974) Effects of prostaglandins and cholera enterotoxin on intestinal mucosal cyclic AMP accumulation. Evidence against an essential role for prostaglandins in the action of toxin.J Clin Invest 53:941–949

    Google Scholar 

  • Kimura H, Murad F (1974) Evidence for two different forms of guanylate cyclase in rat heart. J Biol Chem 249:6910–6916

    PubMed  CAS  Google Scholar 

  • Kimura H, Murad F (1975) Localization of particulate guanylate cyclase in plasma membranes and microsomes of rat liver. J Biol Chem 250:4810–4817

    PubMed  CAS  Google Scholar 

  • Kimura H, Mittal CK, Murad F (1975) Increases in cyclic GMP levels in brain and liver with sodium azide an activator of guanylate cyclase. Nature 257:700–702

    Article  PubMed  CAS  Google Scholar 

  • Klainer LM, Chi YM, Freidberg SL, Rail TW, Sutherland EW (1962) Adenyl cyclase: the effects of neurohormones on the formation of adenosine 3/,5/-phosphate by preparations from brain and other tissues. J Biol Chem 237:1239–1243

    PubMed  CAS  Google Scholar 

  • Kornbluth I, Siegel RA, Conforti N, Chowers I (1977) cAMP in temperature- and ADH-regulating centers after thermal stress. J Appl Physiol 42:257–261

    PubMed  CAS  Google Scholar 

  • Krishna G, Harwood JP (1972) Requirement for guanosine triphosphate in the prostaglandin activation of adenylate cyclase of platelet membranes. J Biol Chem 247:2253–2254

    PubMed  CAS  Google Scholar 

  • Krishna G, Weiss B, Davies JI, Hynie S (1966) Mechanism of nicotinic acid inhibition of hormone-induced lipolysis. Fed Proc 25:719

    Google Scholar 

  • Krishna G, Weiss B, Brodie BB (1968) A simple sensitive method for the assay of adenyl cyclase. J Pharmacol Exp Ther 163:379–385

    PubMed  CAS  Google Scholar 

  • Kuo JF, Greengard P (1970) Cyclic nucleotide-dependent protein kinases. Isolation and partial purification of a protein kinase activated by guanosine 3/,5/-monophosphate. J Biol Chem 245:2493–2498

    PubMed  CAS  Google Scholar 

  • Kuo JF, Lee TP, Reyes PL, Walton KG, Donnelly TE Jr, Greengard P (1972) Cyclic nucleotide-dependent kinases. X. An assay method for measurement of guanosine 3/,5/-monophosphate in various biological materials and a study of agents regulating its levels in heart and brain. J Biol Chem 247:16–22

    PubMed  CAS  Google Scholar 

  • Laburn H, Rosendorff C, Willies G, Woolf C (1974) A role for noradrenaline and cyclic AMP in prostaglandin E 1 fever. J Physiol (Lond) 240:49–50 P

    Google Scholar 

  • Lee TP, Kuo JF, Greengard P (1972) Role of muscarinic cholinergic receptors in regulation of guanosine 3/,5/-cyclic monophosphate content in mammalian brain, heart muscle, and intestinal smooth muscle. Proc Nat Acad Sci USA 69:3287–3291

    Article  PubMed  CAS  Google Scholar 

  • Lefkowitz RJ (1975) Guanosine triphosphate binding sites in solubilized myocardium. Relation to adenylate cyclase activity. J Biol Chem 250:1006–1011

    CAS  Google Scholar 

  • Lenox RH, Meyerhoff JL, Gandhi OP, Wray HL (1977) Regional levels of cyclic AMP in rat brain: pitfalls of microwave inactivation. J Cyclic Nucleotide Res 3:367–379

    PubMed  CAS  Google Scholar 

  • Leonard BE (1972) Effect of phentolamine on the increase in brain glycolysis following the intraventricular administration of dibutyryl-3,5-cyclic adenosine monophosphate and sodium fluoride to mice. Biochem Pharmacol 21:115–117

    Article  PubMed  CAS  Google Scholar 

  • Leray FA, Chambaut AM, Hanoune J (1972) Role of GTP in epinephrine and glucagon activation of adenyl cyclase of liver plasma membrane. Biochem Biophys Res Commun 48:1385–1391

    Article  PubMed  CAS  Google Scholar 

  • Levine RA, Lewis SE, Shulman J, Washington A (1969) Metabolism of cyclic adenosine 3/,5/-monophosphate-8-14C by isolated perfused rat liver. J Biol Chem 244:4017–4022

    PubMed  CAS  Google Scholar 

  • Lichtenstein LM, Henney CS, Bourne HR, Greenough WB III (1973) Effects of cholera toxin on in vitro models of immediate and delayed hypersensitivity. Further evidence for the role of cyclic adenosine 3/,5/-monophosphate.J Clin Invest 52:691–697

    Article  PubMed  CAS  Google Scholar 

  • Lin YM, Liu YP, Cheung WY (1974) Cyclic 3/,5/-nucleotide phosphodiesterase. Purification, characterization, and active form of the protein activator from bovine brain. J Biol Chem 249:4943–4954

    Google Scholar 

  • Lipton JM, Fossler DE (1974) Fever produced in the squirrel monkey by intravenous and intracerebral endotoxin. Am J Physiol 226:1022–1027

    PubMed  CAS  Google Scholar 

  • Londos C, Salomon Y, Lin MC, Harwood JP, Schramm M, Wolff J, Rodbell M (1974) 5’- Guanylylimidodiphosphate, a potent activator of adenylate cyclase systems in eukaryotic cells. Proc Nat Acad Sci USA 71:3087–3090

    Article  PubMed  CAS  Google Scholar 

  • Lust WD, Passonneau JV (1973) Influence of certain drugs on cyclic nucleotide levels in mouse brain following electroconvulsive shock. Trans Am Soc Neurochem 4:115

    Google Scholar 

  • Lust WD, Passonneau JV, Veech RL (1973) Cyclic adenosine monophosphate, metabolites, and phoshorylase in neural tissue: a comparison of methods of fixation. Science 181:280–282

    Article  PubMed  CAS  Google Scholar 

  • Mao CC, Guidotti A, Lehne R, Costa E (1973) Effect of cold exposure on adenosine 3/,5/-monophosphate (cyclic AMP) and guanosine 3/,5/-monophosphate (cyclic GMP) concentrations of rat cerebellum and striatum. Trans Am Soc Neurochem 4:116

    Google Scholar 

  • Mao CC, Guidotti A, Costa E (1974 a) Interactions between y-aminobutyric acid and guanosine cyclic 3/,5/-monophosphate in rat cerebellum. Mol Pharmacol 10:736–745

    CAS  Google Scholar 

  • Mao CC, Guidotti A, Costa E (1974 b) The regulation of cyclic guanosine monophosphate in rat cerebellum: possible involvement of putative amino acid neurotransmitters. Brain Res 79:510–514

    Article  PubMed  CAS  Google Scholar 

  • Marley E, Nistico G (1972) Effects of catecholamines and adenosine derivatives given into the brain of fowls. Br J Pharmacol 46:619–636

    PubMed  CAS  Google Scholar 

  • Mashiter K, Mashiter GD, Hauger RL, Field JB (1973) Effects of cholera and E.coli enterotoxins on cyclic adenosine 3/,5/-monophosphate levels and intermediary metabolism in the thyroid. Endocrinology 92:541–549

    Article  PubMed  CAS  Google Scholar 

  • McKean CM, Peterson NA, Raghupathy E (1969) Effects of N6-2’-0-dibutyryladenosine-3/,5/-phosphate introduced into the cerebral ventricles of cats. Fed Proc 28:776

    Google Scholar 

  • Menahan LA, Hepp KD, Wieland O (1969) Liver 3/:5/-nucleotide phosphodiesterase and its activity in rat livers perfused with insulin. Eur J Biochem 8:435–443

    Article  PubMed  CAS  Google Scholar 

  • Merritt JH, Chamness AF, Allen SJ (1978) Studies on blood-brain barrier permeability after microwave - radiation. Radiat Environ Biophys 15:367–377

    Article  PubMed  CAS  Google Scholar 

  • Mertens RB, Wheeler HO, Mayer SE (1974) Effects of cholera toxin and phosphodiesterase inhibitors on fluid transport and cyclic adenosine 3/,5/-monophosphate concentrations in rabbit gall bladder. Gastroenterology 67:898–906

    PubMed  CAS  Google Scholar 

  • Miller RJ, Kelly PH (1975) Dopamine-like effects of cholera toxin in the central nervous system. Nature 255:163–166

    Article  PubMed  CAS  Google Scholar 

  • Minneman KP, Iversen LL (1976 a) Cholera toxin induces pineal enzymes in culture. Science 192:803–805

    Article  PubMed  CAS  Google Scholar 

  • Minneman KP, Iversen LL (1976 b) Enkephalin and opiate narcotics increase cGMP accumulation in slices of rat neostriatum. Nature 262:313–314

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto E, Kuo JF, Greengard P (1969 a) Adenosine 3/,5’-monophosphate-dependent protein kinase from brain. Science 165:63–65

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto E, Kuo JF, Greengard P (1969 b) Cyclic nucleotide-dependent protein kinases. III. Purification and properties of adenosine 3/,5/-monophosphate-dependent protein kinase from bovine brain. J Biol Chem 244:6395–6402

    PubMed  CAS  Google Scholar 

  • Monn E, Christiansen RO (1971) Adenosine 3/,5/-monophosphate phosphodiesterase: multiple molecular forms. Science 173:540–542

    Article  PubMed  CAS  Google Scholar 

  • Muschek LD, McNeill JH (1971) The effect of tricyclic antidepressants and promethazine on 3/,5/-cyclic AMP phosphodiesterase from rat brain. Fed Proc 30:330

    Google Scholar 

  • Myllylā VV, Eeikkinen ER, Similā S, Hokkanen E, Vapaatalo H (1975) Cerebrospinal fluid concentration and urinary excretion of cyclic adenosine-3/,5/-monophosphate in various diseases in children. Z Kinderheilkd 118:259–264

    Article  PubMed  Google Scholar 

  • Nahorski SR, Rogers KJ (1973) The adenosine 3/,5/-monophosphate content of brain tissue obtained by an ultra-rapid freezing technique. Brain Res 51:332–336

    Article  PubMed  CAS  Google Scholar 

  • Nathanson JA (1977) Cyclic nucleotides and nervous system function. Physiol Rev 57:157–256

    PubMed  CAS  Google Scholar 

  • Neelon FA, Birch BM (1973) Cyclic adenosine 3/,5/-monophosphate-dependent protein kinase. Interaction with butyrylated analogues of cyclic adenosine 3/,5/-monophosphate. J Biol Chem 248:8361–8365

    CAS  Google Scholar 

  • Nistico G, Macchia V, Mandato E (1978) Molecular mechanisms of motor effects of dopamine and cholera toxin in chicks. J Pharm Pharmacol 30:49–50

    Article  PubMed  CAS  Google Scholar 

  • Nowotny N (1971) Chemical and biological heterogeneity of endotoxins. In: Weinbaum G, Kadis S, Ajl SJ (eds) Microbial toxins, vol 4. Academic Press, New York, pp 309–329

    Google Scholar 

  • Ono H, Taira N, Hashimoto K (1976) Behavioural and vegetative effects of dibutyryl cyclic AMP on conscious dogs. Neuropharmacology 15:571–575

    Article  PubMed  CAS  Google Scholar 

  • Palmer GC (1973) Adenyl cyclase in neuronal and glial-enriched fractions from rat and rabbit brain. Res Commun Chem Pathol Pharmacol 5:603–613

    PubMed  CAS  Google Scholar 

  • Palmer GC, Duszynski CR (1975) Regional cyclic GMP content in incubated tissue slices of rat brain. Eur J Pharmacol 32:375–379

    Article  PubMed  CAS  Google Scholar 

  • Pettinger WA, Bautz GT, Wiggan GA, Sheppard H (1970) Cyclic AMP as a mediator of vasodilation: indirect evidence. Pharmacologist 12:291

    Google Scholar 

  • Pfeuffer T, Helmreich EJM (1975) Activation of pigeon erythrocyte membrane adenylate cyclase by guanylnucleotide analogues and separation of a nucleotide binding protein. J Biol Chem 250:867–876

    PubMed  CAS  Google Scholar 

  • Philipp-Dormston WK (1975) Cyclic AMP synthesis in rabbit brain during experimental fever. Proc Tenth Meet Eur Biochem Soc, Paris Abstr 1330. Soc de Chimic Biologique, Paris

    Google Scholar 

  • Philipp-Dormston WK (1976) Evidence for the involvement of adenosine 3/,5/-cyclic monophosphate in fever genesis. Pfluegers Arch 362:223–227

    Article  CAS  Google Scholar 

  • Philipp-Dormston WK, Siegert R (1975 a) Fever produced in rabbits by N6,02-dibutyryl adenosine 3/,5/-cyclic monophosphate. Experientia 31:471–472

    Article  PubMed  CAS  Google Scholar 

  • Philipp-Dormston WK, Siegert R (1975 b) Adenosine 3/,5/-cyclic monophosphate in rabbit cerebrospinal fluid during fever induced by E. coli-endotoxin. Med Microbiol Immunol 161:11–13

    Article  PubMed  CAS  Google Scholar 

  • Pichard AL, Hanoune J, Kaplan JC (1973) Multiple forms of cyclic adenosine 3/,5/-monophosphate phosphodiesterase from human blood platelets. Biochim Biophys Acta 315:370–377

    CAS  Google Scholar 

  • Pledger WJ, Stancel GM, Thompson WJ, Strada SJ (1974) Separation of multiple forms of cyclic nucleotide phosphodiesterases from rat brain by isoelectrofocusing. Biochim Biophys Acta 370:242–248

    PubMed  CAS  Google Scholar 

  • Posternak T (1971) Chemistry of cyclic nucleoside phosphates and synthesis of analogs. In: Robison GA, Butcher RW, Sutherland EW (eds) Cyclic AMP. Academic Press, New York London, pp 48–68

    Google Scholar 

  • Posternak T, Sutherland EW, Henion WF (1962) Derivatives of cyclic 3/,5/-adenosine monophosphate. Biochim Biophys Acta 65:558–560

    Article  PubMed  CAS  Google Scholar 

  • Quenzer LF, Galli CL, Neff NH (1977) Activation of the nigrostriatal dopaminergic pathway by injection of cholera enterotoxin into the substantia nigra. Science 195:78–80

    Article  PubMed  CAS  Google Scholar 

  • Rail TW, Sutherland EW (1958) Formation of a cyclic adenine ribonucleotide by tissue particles. J Biol Chem 232:1065–1076

    Google Scholar 

  • Rail TW, Sutherland EW (1962) Adenyl cyclase. II. The enzymatically catalyzed formation of adenosine 3/,5/-phosphate and inorganic pyrophosphate from adenosine triphosphate. J Biol Chem 237:1228–1232

    Google Scholar 

  • Rindi G, Sciorelli G, Poloni M, Acanfora F (1972) Induction of ingestive responses by cAMP applied into the rat hypothalamus. Experientia 28:1047–1049

    Article  PubMed  CAS  Google Scholar 

  • Robison GA, Butcher RW, Sutherland EW (eds) (1971) Cyclic AMP. Academic Press, New York London

    Google Scholar 

  • Rodbell M, Birnbaumer L, Pohl SL, Krans HMJ (1971) The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. V. An obligatory role of guanyl nucleotides in glucagon action. J Biol Chem 246:1877–1882

    Google Scholar 

  • Rosen OM (1970) Interaction of cyclic GMP and cyclic AMP with a cyclic nucleotide phosphodiesterase of the frog erythrocyte. Arch Biochem Biophys 139:447–449

    Article  PubMed  CAS  Google Scholar 

  • Rothfield L, Home RW (1967) Reassociation of purified lipopolysaccharide and phospholipid of the bacterial cell envelope: electron microscopic and monolayer studies. J Bacteriol 93:1705–1721

    PubMed  CAS  Google Scholar 

  • Russell TR, Terasaki WL, Appleman MM (1973) Separate phosphodiesterases for the hydrolysis of cyclic adenosine 3/,5/-monophosphate and cyclic guanosine 3/,5/-monophosphate in rat liver. J Biol Chem 248:1334–1340

    PubMed  CAS  Google Scholar 

  • Ryan WL, Heidrick ML (1968) Inhibition of cell growth in vitro by adenosine 3/,5/-monophosphate. Science 162:1484–1485

    Article  PubMed  CAS  Google Scholar 

  • Sahyoun N, Cuatrecasas P (1975) Mechanism of activation of adenylate cyclase by cholera toxin. Proc Nat Acad Sei USA 72:3438–3442

    Article  CAS  Google Scholar 

  • Sattin A, Rail TW (1970) The effects of adenosine and adenine nucleotides on the cyclic adenosine 3/,5/-phosphate content of guinea pig cerebral cortex slices. Mol Pharmacol 6:13–23

    PubMed  CAS  Google Scholar 

  • Schmidt MJ, Schmidt DE, Robison GA (1971) Cyclic adenosine monophosphate in brain areas: microwave irradiation as a means of tissue fixation. Science 173:1142–1143

    Article  PubMed  CAS  Google Scholar 

  • Schmidt MJ, Schmidt DE, Robison GA (1972) Cyclic AMP in the rat brain: microwave irradiation as a means of tissue fixation. Adv Cyclic Nucleotide Res 1:425–434

    PubMed  CAS  Google Scholar 

  • Schramm M, Rodbell M (1975) A persistent active state of the adenylate cyclase system produced by the combined actions of isoproterenol and guanyl imidodiphosphate in frog erythrocyte membranes. J Biol Chem 250:2232–2237

    PubMed  CAS  Google Scholar 

  • Schröder J, Rickenberg HV (1973) Partial purification and properties of the cyclic AMP and the cyclic GMP phosphodiesterase of bovine liver. Biochem Biophys Acta 302:50–63

    PubMed  Google Scholar 

  • Schultz G, Senft G, Losert W, Sitt R (1966) Biochemische Grundlagen der Diazoxid-Hyperglykämie. Naunyn-Schmiedeberg Arch Exp Pathol Pharmakol 253:372–387

    Article  CAS  Google Scholar 

  • Schultz G, Böhme E, Munske K (1969) Guanyl cyclase. Determination of enzyme activity. Life Sci 8:1323–1332

    Google Scholar 

  • Schultz J, Hamprecht B, Daly JW (1972) Accumulation of adenosine 3/,5/-cyclic monophosphate in clonal glial cells: labeling of intracellular adenine nucleotides with radioactive adenine. Proc Nat Acad Sei USA 69:1266–1270

    Article  CAS  Google Scholar 

  • Sebens JB, Korf J (1975) Cyclic AMP in cerebrospinal fluid: accumulation following probenecid and biogenic amines. Exp Neurol 46:333–344

    Article  PubMed  CAS  Google Scholar 

  • Sebesta K, Horskä K (1968) Inhibition of DNA-dependent RNA polymerase by the exotoxin of Bacillus thuringiensis var. gelechiae. Biochim Biophys Acta 169:281–282

    PubMed  CAS  Google Scholar 

  • Shands JW Jr (1973) Affinity of endotoxin for membranes. J Infect Dis 128:S 197-S201

    Article  PubMed  Google Scholar 

  • Sheppard H, Wiggan G (1971a) Different sensitivities of the phosphodiesterases (adenosine-3/,5/-cyclic phosphate 3’-phosphohydrolase) of dog cerebral cortex and erythrocytes to inhibition by synthetic agents and cold. Biochem Pharmacol 20:2128–2130

    Article  PubMed  CAS  Google Scholar 

  • Sheppard H, Wiggan G (1971b) Analogues of 4-(3,4-dimethoxybenzyl)-2-imidazolidinone as potent inhibitors of rat erythrocyte adenosine cyclic 3/,5/-phosphate phosphodiesterase. Mol Pharmacol 7:111–115

    PubMed  CAS  Google Scholar 

  • Sheppard H, Wiggan G, Tsien WH (1971) The differential inhibition of the phosphodiesterase (PD) preparations from canine cerebral cortex and erythrocytes by chemical agents and cold. Fed Proc 30:330

    Google Scholar 

  • Siegel RA Kornbluth I, Conforti N, Chowers I (1976) The effect of acute heat exposure on cyclic adenosine-3/,5/-monophosphate concentrations in the preoptic area, posterior medial hypothalamus, supraoptic-paraventricular nuclei and neurohypophysis of the rat. Isr J Med Sei 12:1060–1062

    Google Scholar 

  • Siegert R, Philipp-Dormston WK, Radsak K, Menzel H (1975) Inhibition of Newcastle disease virus-induced fever in rabbits by cycloheximide. Arch Virol 48:367–373

    Article  PubMed  CAS  Google Scholar 

  • Siegert R, Philipp-Dormston WK, Radsak K, Menzel H (1976) Mechanism of fever induction in rabbits. Infect Immun 14:1130–1137

    PubMed  CAS  Google Scholar 

  • Siggins GR, Henriksen SJ (1975) Analogs of cyclic adenosine monophosphate: correlation of inhibition of Purkinje neurons with protein kinase activation. Science 189:559–561

    Article  PubMed  CAS  Google Scholar 

  • Solomon SS, Brush JS, Kitabchi AE (1970) Divergent biological effects of adenosine and dibutyryl adenosine 3/,5/-monophosphate on the isolated fat cell. Science 169:387–388

    Article  PubMed  CAS  Google Scholar 

  • Spiegel AM, Aurbach GD (1974) Binding of 5’-guanylyl-imidodiphosphate to turkey erythrocyte membranes and effects on /?-adrenergic-activated adenylate cyclase. J Biol Chem 249:7630–7636

    PubMed  CAS  Google Scholar 

  • Spitzer J A, Kovách AGB, Sándor P, Spitzer J J, Storck R (1973) Adipose tissue and endotoxin shock. Acta Physiol Acad Sci Hung 44:183–194

    PubMed  CAS  Google Scholar 

  • Stavric S, Speirs JI, Konowalchuk J, Jeffrey D (1978) Stimulation of cyclic AMP secretion in Vero cells by enterotoxins of Escherichia coli and Vibrio cholerae. Infect Immun 21:514–517

    PubMed  CAS  Google Scholar 

  • Steiner AL, Ferrendelli JA, Kipnis DM (1972) Radioimmunoassay for cyclic nucleotides. III. Effect of ischemia, changes during development and regional distribution of adenosine 3/,5/-monophosphate and guanosine 3/,5/-monophosphate in mouse brain. J Biol Chem 247:1121–1124

    PubMed  CAS  Google Scholar 

  • Sutherland EW, Rail TW (1958) Fractionation and characterization of a cyclic adenine ribonucleotide formed by tissue particles. J Biol Chem 232:1077–1091

    PubMed  CAS  Google Scholar 

  • Sutherland EW, Rail TW (1960) The relation of adenosine-3/,5/-phosphate and phosphorylase to the actions of catecholamines and other hormones. Pharmacol Rev 12:265–299

    CAS  Google Scholar 

  • Sutherland EW, Rail TW, Menon T (1962) Adenyl cyclase. I. Distribution, preparation, and properties. J Biol Chem 237:1220–1227

    Google Scholar 

  • Teo TS, Wang TH, Wang JH (1973) Purification and properties of the protein activator of bovine heart cyclic adenosine 3/,5/-monophosphate phosphodiesterase. J Biol Chem 248:588–595

    PubMed  CAS  Google Scholar 

  • Thompson WJ, Appleman MM (1971 a) Multiple cyclic nucleotide phosphodiesterase activities from rat brain. Biochemistry 10:311–316

    Article  PubMed  CAS  Google Scholar 

  • Thompson WJ, Appleman MM (1971 b) Characterization of cyclic nucleotide phosphodiesterases of rat tissues. J Biol Chem 246:3145–3150

    PubMed  CAS  Google Scholar 

  • Triner L, Vulliemoz Y, Schwartz I, Nahas GG (1970) Cyclic phosphodiesterase activity and the action of papaverine. Biochem Biophys Res Commun 40:64–69

    Article  PubMed  CAS  Google Scholar 

  • Uzunov P, Weiss B (1971) Inhibition by phenothiazine tranquilizers of the cyclic 3/,5/-AMP system of rat brain. Fed Proc 30:330

    Google Scholar 

  • Uzunov P, Weiss B (1972) Separation of multiple molecular forms of cyclic adenosine-3/,5/-monophosphate phosphodiesterase in rat cerebellum by polyacrylamide gel electrophoresis. Biochim Biophys Acta 284:220–226

    PubMed  CAS  Google Scholar 

  • Uzunov P, Shein HM, Weiss B (1973) Cyclic AMP phosphodiesterase in cloned astrocytoma cells: norepinephrine induces a specific enzyme form. Science 180:304–306

    Article  PubMed  CAS  Google Scholar 

  • Uzunov P, Shein HM, Weiss B (1974) Multiple forms of cyclic 3/,5/-AMP phosphodiesterase of rat cerebrum and cloned astrocytoma and neuroblastoma cells. Neuropharmacology 13:377–391

    Article  PubMed  CAS  Google Scholar 

  • Van Heyningen S (1974) Cholera toxin: interaction of subunits with ganglioside GM1. Science 183:656–657

    Article  Google Scholar 

  • Van Heyningen S, King CA (1975) Subunit A from cholera toxin is an activator of adenylate cyclase in pigeon erythrocytes. Biochem J 146:269–271

    PubMed  Google Scholar 

  • Varagic VM, Beleslin DB (1973) The effect of cyclic N-2–0-dibutyryl-adenosine-3/,5/-monophosphate, adenosine triphosphate and butyrate on the body temperature of conscious cats. Brain Res 57:252–254

    Article  PubMed  CAS  Google Scholar 

  • Veninga TS (1972) The role of monoamines in the hyperthermia produced in cats and rabbits by irradiation of the hypothalamic area. Br J Pharmacol 45:163–164 P

    Google Scholar 

  • Veninga T, Diekema A (1974) Elevation of body temperature in rabbits by X-irradiation of the trunk. Life Sci 14:1777–1784

    Article  PubMed  CAS  Google Scholar 

  • Voigt KM, Krishna G (1967) Correlation between the distribution of adenyl cyclase (AC), cyclic 3/,5/-AMP phosphodiesterase (PD) and various biological amines in various areas of brain. Pharmacologist 9:239

    Google Scholar 

  • Watanabe H, Passonneau JV (1974) The effect of trauma on cerebral glycogen and related metabolites and enzymes. Brain Res 66:147–159

    Article  CAS  Google Scholar 

  • Watanabe H, Passonneau JV (1975) Cyclic adenosine monophosphate in cerebral cortex. Alterations following trauma. Arch Neurol 32:181–185

    PubMed  CAS  Google Scholar 

  • Weiner M, Olson JW (1973) The behavioral effects of dibutyryl cyclic AMP in mice. Life Sci 12:345–356

    Article  CAS  Google Scholar 

  • Weiss B, Costa E (1967) Adenyl cyclase activity in rat pineal gland: effects of chronic denervation and norepinephrine. Science 156:1750–1752

    Article  PubMed  CAS  Google Scholar 

  • Weiss B, Costa E (1968) Regional and subcellular distribution of adenyl cyclase and 3/,5/- cyclic nucleotide phosphodiesterase in brain and pineal gland. Biochem Pharmacol 17:2107–2116

    Article  PubMed  CAS  Google Scholar 

  • Weiss B, Kidman AD (1969) Neurobiological significance of cyclic 3/,5/-adenosine monophosphate. Adv Biochem Psychopharmacol 1:131–164

    PubMed  CAS  Google Scholar 

  • Weiss B, Fertel R, Figlin R, Uzunov P (1974) Selective alteration of the activity of the multiple forms of adenosine 3/,5/-monophosphate phosphodiesterase of rat cerebrum. Mol Pharmacol 10:615–625

    CAS  Google Scholar 

  • Wellmann W, Schwabe U (1973) Effects of prostaglandins El5 E2 and F2a on cyclic AMP levels in brain in vivo. Brain Res 59:371–378

    Article  PubMed  CAS  Google Scholar 

  • White AA, Aurbach GD (1969) Detection of guanyl cyclase in mammalian tissues. Biochim Biophys Acta 191:686–697

    PubMed  CAS  Google Scholar 

  • White A A, Aurbach GD, Carlson SJ (1969) Identification of guanyl cyclase in mammalian tissues. Fed Proc 28:473

    Google Scholar 

  • Williams RH, Little SA, Ensinck JW (1969) Adenyl cyclase and phosphodiesterase activities in brain areas of man, monkey and rat. Am J Med Sci 258:190–202

    Article  PubMed  CAS  Google Scholar 

  • Willies GH, Woolf CJ, Rosendorff C (1976 a) The effect of an inhibitor of adenylate cyclase on the development of pyrogen, prostaglandin and cyclic AMP fevers in the rabbit. Pfluegers Arch 367:177–181

    Article  Google Scholar 

  • Willies GH, Woolf CJ, Rosendorff C (1976 b) The effect of sodium salicylate on dibutyryl cyclic AMP fever in the conscious rabbit. Neuropharmacology 15:9–10

    Article  Google Scholar 

  • Wolff DJ, Brostrom CO (1974) Calcium-binding phosphoprotein from pig brain: identification as a calcium-dependent regulator of brain cyclic nucleotide phosphodiesterase. Arch Biochem Biophys 163:349–358

    Article  PubMed  CAS  Google Scholar 

  • Wolff J, Cook GH (1973) Activation of thyroid membrane adenylate cyclase by purine nucleotides. J Biol Chem 248:350–355

    PubMed  CAS  Google Scholar 

  • Woolf CJ, Willies GH, Laburn H, Rosendorff C (1975) Pyrogen and prostaglandin fever in the rabbit. I. Effects of salicylate and the role of cyclic AMP. Neuropharmacology 14:397–403

    Google Scholar 

  • Woolf CJ, Willies GH, Rosendorff C (1976) Does cyclic AMP have a role in the pathogenesis of fever in the rabbit? Naturwissenschaften 63:94–95

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto M, Massey KL (1969) Cyclic 3/,5/-nucleotide phosphodiesterase of fish (Salmo gairdnerii) brain. Comp Biochem Physiol 30:941–954

    Article  PubMed  CAS  Google Scholar 

  • Yamashita K, Field JB (1972) Elevation of cyclic guanosine 3/,5/-monophosphate levels in dog thyroid slices caused by acetylcholine and sodium fluoride. J Biol Chem 247:7062–7066

    PubMed  CAS  Google Scholar 

  • Yount RG, Babcock D, Ballantyne W, Ojala D (1971) Adenylyl imidodiphosphate, an adenosine triphosphate analog containing a P-N-P linkage. Biochemistry 10:2484–2489

    Article  PubMed  CAS  Google Scholar 

  • Zenser TV, Metzger JF (1974) Comparison of the action of Escherichia coli enterotoxin on the thymocyte adenylate cyclase-cyclic adenosine monophosphate system to that of cholera toxin and prostaglandin Ex. Infect Immun 10:503–509

    PubMed  CAS  Google Scholar 

  • Zenser TV, DeRubertis FR, George DT, Rayfield EJ (1974) Infection-induced hypergluca- gonemia and altered hepatic response to glucagon in the rat. Am J Physiol 227:1299–1305

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dascombe, M.J. (1982). Cyclic Nucleotides and Fever. In: Milton, A.S. (eds) Pyretics and Antipyretics. Handbook of Experimental Pharmacology, vol 60. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68569-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68569-9_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68571-2

  • Online ISBN: 978-3-642-68569-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics