Skip to main content

Vigilanz — ihre Regulation und die Rolle der Neurotransmittersysteme

  • Chapter
Hirnorganische Psychosyndrome im Alter

Zusammenfassung

Bevor wir auf die Regulierung der Vigilanz und die Rolle der Neurotransmitter näher eingehen, ist es notwendig, das Objekt, das reguliert wird, so zu definieren und als Modell zu konzipieren, daß es in seiner Größe gemessen werden kann. Zudem ist es notwendig, diesem Objekt — der Vigilanz — einen neuralen Unterbau zuzuordnen, der als Empfängerorgan auf neurale und/oder humorale regulierende Eingänge anspricht und so der Übermittlung der regulierenden Information auf die (verhaltensbezogene) Vigilanz dienen kann.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Akert K, Koella WP, Hess R Jr (1952) Sleep produced by electrical stimulation of the thalamus. Am J Physiol 168:260–267

    PubMed  CAS  Google Scholar 

  • Akimoto H, Yamaguchi N, Okabe KL, Nakagawa T, Nakamura I, Abe KL, Torii H, Masahashi K (1956) On the sleep induced through electrical stimulation on dog thalamus. Folia Psychiatr Neurol Jpn 10:117–146

    Google Scholar 

  • Andén NE, Strombom U, Svensson TH (1973) Dopamine and noradrenaline receptor stimulation:Reversal of reserpine-induced suppression of motor activity. Psychopharmacologia (Berlin) 29:289-298

    Google Scholar 

  • Andén NE, Grabowska-Anden M, Wachtel H (1979) Effects of GABA receptor agonist muscimol on the turnover of brain dopamine and on the motor activity of rats. Acta Pharmacol Toxicol 44:191–196

    Google Scholar 

  • Anlezark GM, Crow TJ, Greenway AP (1973 a) Evidence that the noradrenergic innervation of the cerebral cortex is necessary for learning. J Physiol (Lond) 231:119

    Google Scholar 

  • Anlezark GM, Crow TJ, Greenway AP (1973 b) Impaired learning and decreased cortical norepinephrine after bilateral locus coeruleus lesions. Science 181:682–684

    CAS  Google Scholar 

  • Arnt J, Scheel-Krüge RJ (1980) Intranigral GABA antagonists produce dopamine-independent biting in rats. Eur J Pharmacol 62:51–61

    PubMed  CAS  Google Scholar 

  • Benkert O, Kohler B (1972) Intrahypothalamic and intrastriatal dopamine and norepinephrine injections in relation to motor hyperactivity in rats. Psychopharmacologia (Berlin) 24:318–325

    CAS  Google Scholar 

  • Bloom FE, Hoffer BJ, Siggins GR, Barker JL, Nicoll RA (1972) Effects of serotonin on central neurons:Microiontophoretic administration. Fed Proc 31:97–106

    PubMed  CAS  Google Scholar 

  • Bremer F, Chatonnet J (1949) Acétylcholine et cortex cérébral. Arch Int Physiol 57:106–109

    PubMed  CAS  Google Scholar 

  • Buckingham RL, Radulovaiki M (1975) 5-hydroxyindoleacetic acid in cerebrospinal fluid, an indicator of slow wave sleep. Brain Res 99:440–443

    PubMed  CAS  Google Scholar 

  • Chu N-S, Bloom FE (1973) Norepinephrine-containing neurons:Changes in spontaneous discharge patterns during sleep and waking. Science 179:908–910

    PubMed  CAS  Google Scholar 

  • Chu N-S, Bloom FE (1974) Activity patterns of catecholamine containing pontine neurons in the dorsolateral tegmentum of unrestrained cats. J Neurobiol 5:527–544

    PubMed  CAS  Google Scholar 

  • Costa E, Guidotti A (1979) Molecular mechanisms in the receptor action of benzodiazepines. Annu Rev Pharmacol Toxicol 19:531–545

    PubMed  CAS  Google Scholar 

  • daVanzo JP, Sydow M (1979) Inhibition of isolation-induced aggressive behavior with GABA transaminase inhibitors. Psychopharmacology (Berlin):62:23–27

    Google Scholar 

  • Delorme F (1966) Monoamines et sommeil. Etude polygraphique neuropharmacologique et histochimique des états de sommeil chez le chat. Thèse Université de Lyon

    Google Scholar 

  • Delormef, Froment JL, Jouvetm (1966)

    Google Scholar 

  • Suppression du sommeil par la p-chloromethamphetamine et la p-chlorophenylalanine. CR Soc Biol (Paris) 160:2347–2351

    Google Scholar 

  • Deutsch JA (1971) The cholinergic synapse and the site of memory. Science 174:788–794

    PubMed  CAS  Google Scholar 

  • Deutsch JA, Rocklin KW (1967) Amnesia induced by scopolamine and its temporal variations. Nature 216:89–90

    PubMed  CAS  Google Scholar 

  • Dillier N, Laszlo J, Müller B, Koella WP, Olpe H-R (1978) Activation of an inhibitory noradrenaline pathway projecting from the locus coeruleus to the cingulate cortex of the rat. Brain Res 154:61–68

    PubMed  CAS  Google Scholar 

  • Domino EF, Yamamoto K (1965) Nicotine: Effect on the sleep cycle of the cat. Science 150:637–638

    PubMed  CAS  Google Scholar 

  • Feltz P (1970) Dopamine, amino-acids and caudate unitary responses to nigral stimulation. J Physiol (Lond) 205:8–9

    Google Scholar 

  • Fencl V, Koski G, Pappenheimer JR (1971) Factors in cerebrospinal fluid from goats that affect sleep and activity in rats. J Physiol 216:565–589

    PubMed  CAS  Google Scholar 

  • File SE (1977) Raised brain GABA levels, motor activity and exploration in the rat. Brain Res 131:180–183

    PubMed  CAS  Google Scholar 

  • Freed WJ, Michaelis EK (1976) Effects of intracisternal GABA and glutamic acid upon behavioral activity in the rat. Pharmacol Biochem Behav 5:11–14

    PubMed  CAS  Google Scholar 

  • Froment J-L, Petitjean F, Bertrand N, Cointy C, Jouvet M (1974) Effects de l’injection intracérébrale de 5,6-hydroxytryptamine sur les monoamines cérébrales et les états de sommeil du chat. Brain Res 67:405–417

    PubMed  CAS  Google Scholar 

  • Fuxe K, Hanson LCF (1967) Central catecholamine neurons and conditional avoidance behavior. Psychopharmacologia (Berlin) 11:439–444

    CAS  Google Scholar 

  • Gadea-Ciria M, Stadler H, Lloyd KG, Bartholini G (1973) Acetylcholine release within the cat striatum during the sleep-wakefulness cycle. Nature 243:518–519

    PubMed  CAS  Google Scholar 

  • George R, Haslett WL, Jenden DJ (1964) A cholinergic mechanism in the brain stem reticular formation:Induction of paradoxical sleep. Int J Neuropharmacol 3:541–552

    PubMed  CAS  Google Scholar 

  • Geyer MA, Segal DS, Mandell AJ (1972) Effect of intraventricular infusion of dopamine and norepinephrine on motor activity. Physiol Behav 8:653–658

    PubMed  CAS  Google Scholar 

  • Haefely W, Ruch-Monachon M-A, Jalfre M, Schaffner R (1976) Interaction of psychotropic agents with central neurotransmitters as revealed by their effect on PGO waves in the cat. Arzneim Forsch 26:1036–1039

    CAS  Google Scholar 

  • Haranath PSRK, Venkatakrishna-Bhatt H (1973) Release of acetylcholine from perfused cerebral ventricles in unanaesthetized dogs during waking and sleep. Jpn J Physiol 23:241–250

    PubMed  CAS  Google Scholar 

  • Haranath PSRK, Indira G, Krishnamurthy A (1977) Effects of cholinomimetic drugs and their antagonists injected into vertebral artery of unanaesthetized dogs. Pharmacol Biochem Behav 6:259–263

    PubMed  CAS  Google Scholar 

  • Hazra J (1970) Effect of hemicholinium-3 on slow wave and paradoxical sleep of cat. Eur J Pharmacol 11:395–397

    PubMed  CAS  Google Scholar 

  • Hearst E, Whalen R (1963) Facilitating effects of d-amphetamine on discriminated-avoidance performance. J Comp Physiol Psychol 56:124–128

    Google Scholar 

  • Hess WR (1924/25) Über die Wechselbeziehungen zwischen psychischen und vegetativen Funktionen. Schweiz Arch Neurol Psychiatr 15/16:1–60

    Google Scholar 

  • Hess WR (1944) Das Schlafsyndrom als Folge dienzephaler Reizung. Helv. Physiol Acta 2:305–344

    Google Scholar 

  • Hess WR (1948) Die funktionelle Organisation des vegetativen Nervensystems. Schwabe, Basel

    Google Scholar 

  • Hess WR(1949) Das Zwischenhirn:Syndrome, Lokalisationen, Funktionen. Schwabe, Basel

    Google Scholar 

  • Hoffer BJ, Siggins GR, Oliver AP, Bloom FE (1973) Activation of the pathway from the locus coeruleus to rat cerebellar Purkinje neurons:Pharmacological evidence of noradrenergic central inhibition. J Pharmacol Exp Ther 184:553–569

    PubMed  CAS  Google Scholar 

  • Jasper HH, Tessier J (1971) Acetylcholine liberation from cerebral cortex during paradoxical ( REM) sleep. Science 172:601–602

    PubMed  CAS  Google Scholar 

  • Jones B (1970) The double role of catecholamines in waking and paradoxical sleep:A neuropharmacological problem. PhD thesis, University of Delaware

    Google Scholar 

  • Jones B, Bobillier P, Jouvet M (1969) Effets de la destruction des neurones contenant des catécholamines du mésencéphale sur le cycle veillesommeil du chat. CR Soc Biol (Paris) 163: 176–180

    CAS  Google Scholar 

  • Jones BE, Bobillier P, Pin C, Jouvet M (1973) The effect of lesions of catecholamine-containing neurons upon monoamine content of the brain and EEG and behavioral waking in the cat. Brain Res 58: 157–177

    PubMed  CAS  Google Scholar 

  • Jones BE, Harper ST, Halaris AE (1977) Effects of locus coeruleus lesions upon cerebral monoamine content, sleep-wakefulness states and the response to amphetamine in the cat. Brain Res 124: 473–496

    PubMed  CAS  Google Scholar 

  • Jouvet M (1967) Mechanism of the states of sleep: A neuropharmacological approach. In: Kety SS, Evarts EV, Williams HL (eds) Sleep and altered states of consciousness. Williams & Wilkins, Baltimore, pp 86–126

    Google Scholar 

  • Jouvet M (1969) Biogenic amines and the states of sleep. Science 163: 32–41

    PubMed  CAS  Google Scholar 

  • Jouvet M (1972) The role of monoamines and acetylcholine-containing neurons in the regulation of the sleep-waking cycle. Ergeb Physiol 64: 166–307

    PubMed  CAS  Google Scholar 

  • Jouvet M, Vimon T P, Delorme F (1965) Suppression élective du sommeil paradoxal chez le chat par les inhibiteurs de la monoamine oxydase. CR Soc Biol (Paris) 159: 1595–1599

    CAS  Google Scholar 

  • Kafi S, Gaillard JM (im Druck) Pre- and postsynaptic effect of yohimbine on rat paradoxical sleep. IN: Koella WP(ed) Sleep 1980, Proc. 5th Europ. Congress on Sleep Research. Karger, Basel

    Google Scholar 

  • Karczmar A, Longo VG, ScottideCarolis A (1970) A pharmacological model of paradoxical sleep:The role of cholinergic and monoamine systems. Physiol Behav 5:175–182

    PubMed  CAS  Google Scholar 

  • Kelley A, Stinus L, Iversen SD (1980) Interaction between D-ala-metenkephaline, Aio-dopaminergic neurons, and spontaneous behavior in the rat. Behav Brain 1:3–24

    CAS  Google Scholar 

  • Kelly PH, Seviour PW, Iversen SD (1975) Amphetamine and apomorphine responses in the rat following 6-OHDA lesions of the nucleus accumbens septi and corpus striatum. Brain Res 94:507–522

    PubMed  CAS  Google Scholar 

  • Kent EW, Fedinets P (1976) Effects of G AB A blockade on lateral hypothalamic selfstimulation. Brain Res 107:628–632

    PubMed  CAS  Google Scholar 

  • Khazan N, Sawyer CH (1964) Mechanisms of paradoxical sleep as revealed by neurophysiologic and pharmacologic approaches in the rabbit. Psychopharmacologia (Berlin) 5:457–466

    CAS  Google Scholar 

  • Kiianmaa K, Fuxe K (1977) The effects of 5,7-dihydroxytryptamine-induced lesions of the ascending 5-hydroxytryptamine pathways on the sleep-wakefulness cycle. Brain Res 131:287–301

    PubMed  CAS  Google Scholar 

  • King CD, Jewett RE (1971) The effects of a-methyltyrosine on sleep and brain norepinephrine in cats. J Pharmacol Exp Ther 177:188–194

    PubMed  CAS  Google Scholar 

  • Kleinlogel H, Scholtysik G, Sayers AC (1975) Effects of Clonidine and BS 100-141 on the EEG sleep pattern in rats. Eur J Pharmacol 33:159–163

    PubMed  CAS  Google Scholar 

  • Koella WP(1970) Serotonin oder Somnotonin? Schweiz Med Wochenschr 100:357–364,424–430

    PubMed  CAS  Google Scholar 

  • Koella WP(1974) Serotonin — a hypnogenic transmitter and an antiwaking agent. Adv Biochem Psychopharmacol 11:181–186

    PubMed  CAS  Google Scholar 

  • Koella WP (1977) Neurophysiologische und biochemische Aspekte der Vigilanz. VerhDtsch Ges Inn Med 83:933–945

    CAS  Google Scholar 

  • Koella WP (1979) Vigilance — a concept and its neurophysiological and biochemical implications. IN: Passouant P, Oswald I (eds) Pharmacology of the states of alterness. Pergamon, Oxford New York, pp 171–178

    Google Scholar 

  • Koella WP, Czicman JS (1963) Influence of serotonin upon optic evoked potentials, EEG, and blood pressure in the cat. Am J Physiol 204:873–880

    PubMed  CAS  Google Scholar 

  • Koella WP, Czicman J (1966) Mechanism of the EEG-synchronizing action of serotonin. Am J Physiol 211:926–934

    PubMed  CAS  Google Scholar 

  • Koella WP, Hess R Jr, Akert K (1951) Zur Technik der Registrierung hirnelektrischer Erscheinungen im Rahmen des subcorticalen Reizversuches bei der Katze. Helv Physiol Acta 9:316–325

    CAS  Google Scholar 

  • Koella WP, Feldstein A, Czicman J (1968) The effect of parachlorophenylalanine on the sleep of cats. Electroencephalogr Clin Neurophysiol 25:481–490

    PubMed  CAS  Google Scholar 

  • Kostowski W, Giacalone E, Garattini S, Valzelli L (1968) Studies on behavioral and biochemical changes in rats after lesion of midbrain rephé. Eur J Pharmacol 4:371–376

    PubMed  CAS  Google Scholar 

  • Kostowski W, Giacalone E, Garattini S, Valzelli L (1969) Electrical stimulation of midbrain raphé:Biochemical, behavioral and bioelectrical effects. Eur J Pharmacol 7:170–175

    PubMed  CAS  Google Scholar 

  • Kovačević R, Radulovacki M (1976) Monoamine changes in the brain of cats during slow-wave sleep. Science 193:1025–1027

    PubMed  Google Scholar 

  • Krueger JM, Pappenheimer JR, Karnovsky ML (1978) Sleep promoting factor S:Purification and properties. Proc Natl Acad Sci USA 75:5235–5238

    PubMed  CAS  Google Scholar 

  • Lanfumey L, Adrien L (im Druck) Effects of a noradrenergic agonist on sleep in the rat. IN: Koel-La WP(ed) Sleep 1980, Proc. 5th Europ. Congress on Sleep research. Karger, Basel

    Google Scholar 

  • Leppëvuori A, Putkonen PTS (1980) Alpha-adrenoceptive influences on the control of the sleep-waking cycle in the cat. Brain Res 193:95–115

    Google Scholar 

  • Lidbrink P (1974) The effect of lesions of ascending noradrenaline pathways on sleep and waking in the rat. Brain Res 74:19–40

    PubMed  CAS  Google Scholar 

  • Loizzo A, Longo VG (1968) A pharmacological approach to paradoxical sleep. Physiol Behav 3:91–97

    Google Scholar 

  • Marantz R, Rechtschaffen A (1967) Effect of alpha-methyltyrosine on sleep in the rat. Percept Mot Skills 25:805–808

    PubMed  CAS  Google Scholar 

  • Matsuyama S, Coindet J, Mouret J (1973) 6-Hydroxydopamine intracysternale et sommeil chez le rat. Brain Res 57:85–95

    PubMed  CAS  Google Scholar 

  • Matsuzaki M (1969) Differential effects of sodium butyrate and physostigmine upon the activities of para-sleep in acute brain stem preparations. Brain Res 13:247–265

    PubMed  CAS  Google Scholar 

  • Moïses HC, Woodward DJ, Hoffer BJ, Freedman R (1979) Interactions of norepinephrine with Purkinje cell responses to putative amino acid neurotransmitters applied by microiontophoresis. Exp Neurol 64:NNIER493–515

    PubMed  Google Scholar 

  • Mo M, Schoenenberger G (1977) Characterization, sequence, synthesis and specificity of a delta (EEG)-sleep-inducing peptide. IN: Koella WP, Levin P (eds) Sleep 1976, Proc. of the Third Europ. Congress on Sleep Research. Karger, Basel, pp 257–265

    Google Scholar 

  • Morgane PJ (1969) Chemical mapping of hypnogenic and arousal systems in the brain. Psychophysiology 6:219

    Google Scholar 

  • Moruzzi G, Magoun HW(1949) Brain stem reticular formation and activation of the EEG. Electroencephalogr Clin Neurophysiol 1:455–473

    PubMed  CAS  Google Scholar 

  • Olpe H-R, Koella WP (1977) The response of striatal cells upon stimulation of the dorsal and median raphé nuclei. Brain Res 122:357–360

    PubMed  CAS  Google Scholar 

  • Olpe H-R, Glatt A, Laszlo J, Schellenberg A (1980) Some electrophysiological and pharmacological properties of the cortical noradrenergic projection of the locus coeruleus in the rat. Brain Res 186:9–19

    PubMed  CAS  Google Scholar 

  • Pappenheimer JR, Miller TB, Goodrich CA (1967) Sleep-promoting effects of cerebrospinal fluid from sleep-deprived goats. Proc Natl Acad Sci USA 58:513–517

    PubMed  CAS  Google Scholar 

  • Pavel S, Psatta D, Goldstein R (1977) Slow-wave sleep induced in cats by extremely small amounts of synthetic and pineal vasotocin injected into the third ventricle of the brain. Brain Res Bull 2:251–254

    PubMed  CAS  Google Scholar 

  • Phillis JW, Kostopoulos GK (1977) Activation of a noradrenergic pathway from the brain stem to rat cerebral cortex. Gen Pharmacol 8:207 - 211

    PubMed  CAS  Google Scholar 

  • Plotnikoff NP, Prange AJ, Brecse GR, Wilson IC (1974) Thyrotropin releasing hormone:Enhancement of dopa-activity in thyroidectomized rats. Life Sci 14:1271–1278

    PubMed  CAS  Google Scholar 

  • Prange A, Breese GR, Cott JM, Martin BR, Cooper BR, Wilson IC, Plotnikoff NP (1974) Thyrotropin releasing hormone:Antagonism of pentobarbital in rodents. Life Sci 14:447–455

    PubMed  CAS  Google Scholar 

  • Quay WB (1965) Regional and circadian differences in cerebral cortical serotonin concentrations. Life Sci 4:379–384

    PubMed  CAS  Google Scholar 

  • Radulovački M, Buckingham RL, Chen EH, Kovačević R (1977) Similar effects of tryptophan and sleep on cisternal cerebrospinal fluid 5-hydroxyindoleacetic and homovanillic acids in cats. Brain Res 129:371–374

    PubMed  Google Scholar 

  • Reis DJ, Weinbren M, Corvelli A (1968) A circadian rhythm of norepinephrine regionally in cat brain: Its relationship to environmental lighting and to regional diurnal variations in brain serotonin. J Pharmacol Exp Ther 164:135–146

    PubMed  CAS  Google Scholar 

  • Renault J (1967) Monoamines et sommeils. Rôle du système de raphé et de la sérotonine cérébrale dans l’endormissement. Thèse de Médecine, Université de Lyon

    Google Scholar 

  • Ricci GF, Zamparo L (1965) Electrocortical correlates of avoidance conditioning in the monkey. Their modifications by atropine and amphetamine. IN: Michelson MY, Longo VG (eds) Pharmacology of conditioning, learning and retention. Czechoslovak Medical Press, Praha, pp 269–283

    Google Scholar 

  • Roberts DCS, Zis AP, Fibinger HC (1975) Ascending catecholamine pathways and amphetamine-induced locomotor activity:Importance of dopamine and apparent noninvolvement of norepinephrine. Brain Res 93:441–454

    PubMed  CAS  Google Scholar 

  • Ross CA, Trulson ME, Jacobs BL (1976) Depletion of brain serotonin following intraventricular 5,7-dihydroxytryptamine fails to disrupt sleep in the rat. Brain Res 114:517–523

    PubMed  CAS  Google Scholar 

  • Roth GI, Walton PL, Yamamoto WS (1970) Area postrema:Abrupt EEG synchronization following close intraarterial perfusion with serotonin. Brain Res 23:223–233

    PubMed  CAS  Google Scholar 

  • Rougeul A, Verdeaux J, Letalle A (1969) Effets électrographiques et comportementaux de divers hallucinogènes chez le chat libre. Rev. Neurol (Paris) 120:391–394

    CAS  Google Scholar 

  • Scheel-Krüger J, Arnt J, Braestrup C, Christensen AV, Cools AR, Magelund G (1978) GABA-dopamine interaction in substantia nigra and nucleus accumbens — relevance to behavioral stimulation and stereotyped behavior. Adv Biochem Psychopharmacol 19:343–346

    PubMed  Google Scholar 

  • Scheving LE, Harrison WH, Gordon P, Pauly JE (1968) Daily fluctuation (circadian and ultradian) in biogenic amines of the rat brain. Am J Physiol 214:166–173

    PubMed  CAS  Google Scholar 

  • Schmitt H, Schmitt H, Fenard S (1971) Evidence for an a-sympathomimetic component in the effects of catapressan on vasomotor centres:Antagonism by piperoxane. Eur J Pharmacol 14:98–100

    PubMed  CAS  Google Scholar 

  • Schoenenberger GA, Maier PF, Tobler HJ, Monnier M (1977) A naturally accuring delta-EEG enhancing nonapeptides in rabbits. X:Final isolation, characterization and activity test. Pfluegers Arch 369:99–109

    CAS  Google Scholar 

  • Schoenfeld RI, Seiden LS (1969) Effect of alpha-methyltyrosine on operant behavior and brain catecholamine levels. J Pharmacol Exp Ther 167:319–327

    PubMed  CAS  Google Scholar 

  • Segal M (1975) Physiological and pharmacological evidence for a serotonergic projection to the hippocampus. Brain Res 94:115–131

    PubMed  CAS  Google Scholar 

  • Segal DS, Mandell AJ (1970) Behavioral activation of rats during intraventricular infusion of norepinephrine. Proc Natl Acad Sci 66:289–293

    PubMed  CAS  Google Scholar 

  • Shute CCD, Lewis PR (1967) The ascending cholinergic reticular system:Neocortical, olfactory and subcortical projections. Brain 90:497–520

    PubMed  CAS  Google Scholar 

  • Stein L (1978) Reward transmitters:Catecholamines and opioidpeptides. IN: Lipton MA, diMascio A, Killam KF (eds) Psychopharmacology:A generation of progress. Raven, New York, pp 569–581

    Google Scholar 

  • Svensson TH (1970) The effect of inhibition of catecholamine synthesis on dexamphetamine in-duced central stimulation. Eur J Pharmacol 12:161–166

    PubMed  CAS  Google Scholar 

  • Tabushi K, Himwich HE (1970) 5-hydroxytryptophan and the sleep-wakefulness cycle in rabbits. Biol Psychiatry 2:183–188

    Google Scholar 

  • Tabushi K, Himwich HE (1971) Electroencephalographic study of the effects of methysergide on sleep in the rabbit. Electroencephalogr Clin Neurophysiol 31:491–497

    PubMed  CAS  Google Scholar 

  • Tanaka C, Inagaki C, Fujiwara H (1976) Labeled noradrenaline release from rat cerebral cortex following electrical stimulation of locus coeruleus. Brain Res 106:384–389

    PubMed  CAS  Google Scholar 

  • Thiébot MH, Jobert A, Soubrie P (1979) Effets comparés du muscimol et du diazépam sur les inhibitions du comportement induites chez le rat par la nouveauté, la punition et le non-renforcement. Psychopharmacology (Berlin) 61:85–89

    Google Scholar 

  • Thornburg JE, Moore KE (1974) A comparison of effects of apomorphine and ET 495 on locomotor activity and circling behavior in mice. Neuropharmacology 13:189–197

    PubMed  CAS  Google Scholar 

  • Torda C (1967) Effect of brain serotonin depletion on sleep in rats. Brain Res 6:375–377

    PubMed  CAS  Google Scholar 

  • Weissman A, Koe BK (1965) Behavioral effects of L-alpha-methyl-tyrosine hydroxylase inhibitors. Life Sci 4:1037–1049

    PubMed  CAS  Google Scholar 

  • Weissman A, Koe BK, Thenen SJ (1966) Antiamphetamine effects following inhibition of tyrosine hydroxylase. J Pharmacol Exp Ther 151:339–352

    PubMed  CAS  Google Scholar 

  • Weitzman E, Rapport MM, McGregor P, Jacoby J (1968) Sleep patterns of the monkey and brain serotonin concentration:Effect of p-chlorophenylalanine. Science 160:1361–1363

    PubMed  CAS  Google Scholar 

  • Wikler A (1952) Pharmacologic dissociation of behavior and EEG „sleep patterns“in dogs; morphine, N-allylmorphine and atropine. Proc Soc Exp Biol Med 79:261–265

    PubMed  CAS  Google Scholar 

  • Yaksh TL, Wilson PR (1979) Spinal serotonin terminal system mediates antinociception. J Pharmol Exp Ther 208:446–453

    CAS  Google Scholar 

  • Yamaguchi N, Ling GM, Marczyinski TJ (1964) The effects of chemical stimulation of the preoptic region, nucleus centralis medialis, or brain stem reticular formation with regard to sleep and wakefulness. Recent Adv Biol Psychiatry 6:9–20

    Google Scholar 

  • Yamamoto K, Domino EF (1967) Cholinergic agonist-antagonist interactions on neocortical and limbic EEG activation. Int J Neuropharmacol 6:357–375

    PubMed  CAS  Google Scholar 

  • Zebrowska-Lupina I, Kleinrok Z (1973) Beharioral effects of yohimbine administered intraventriculary in rat. Psychopharmacologia (Berlin) 33:267–275

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag Berlin-Heidelberg

About this chapter

Cite this chapter

Koella, W.P. (1982). Vigilanz — ihre Regulation und die Rolle der Neurotransmittersysteme. In: Bente, D., Coper, H., Kanowski, S. (eds) Hirnorganische Psychosyndrome im Alter. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68557-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68557-6_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-11456-7

  • Online ISBN: 978-3-642-68557-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics