Transport Coefficients and Collision Frequencies for Aeronomic Plasmas

  • K. Suchy
Part of the Handbuch der Physik / Encyclopedia of Physics book series (HDBPHYS, volume 10 / 49 / 7)


For an understanding of many aeronomic processes, diffusion coefficients D. heat conductivities κ. and viscosities η are needed. To study the propagation of electromagnetic waves through a planetary atmosphere, the electrical conductivity σ of the atmosphere must be known. Since the motion of charged particles is strongly influenced by a magnetic field B pervading the plasma, e.g., the Earth’s magnetic field B the atmospheric plasma is an anisotropic medium with B := B/B as distinguished direction. Therefore the transport coefficients D. K. and σ for charged particles are tensors of second rank, the viscosity is a fourth-rank tensor.


Dioxide Anisotropy Total Heat Recombination Helium 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

General references

Books and Review Articles

  1. [1]
    Lorentz, H.A. (1915): The theory of electrons. Leipzig: TeubnerGoogle Scholar
  2. [2]
    Herzberg, G. (1950): Spectra of diatomic molecules. Princeton: van NostrandGoogle Scholar
  3. [3]
    Present, R.D. (1958): Kinetic theory of gases. New York: McGraw-HillGoogle Scholar
  4. [4]
    deGroot, S.R., Mazur, P. (1962): Non-equilibrium thermodynamics. Amsterdam: North-HollandGoogle Scholar
  5. [5]
    Hirschfelder, J.O., Curtiss, C.F., Bird, R.B. (1964): Molecular theory of gases and liquids, 2nd ed. New York: Wiley & SonsGoogle Scholar
  6. [6]
    McDaniel, E.W. (1964): Collision phenomena in ionized gases. New York: Wiley & SonsGoogle Scholar
  7. [7]
    Montgomery, D.C., Tidman, D.A. (1964): Plasma kinetic theory. New York: McGraw-HillGoogle Scholar
  8. [8]
    Suchy, K. (1964): Ergeb. Exakten Naturwiss. 35, 103–294CrossRefGoogle Scholar
  9. [9]
    Shkarofsky, L.P., Johnston, T.W., Bachynski, M.P. (1966): The particle kinetics of plasmas. Reading, Mass.: Addison-WesleyGoogle Scholar
  10. [10]
    Bernstein, R.B., Muckermann, J.T. (1967): Adv. Chem. Phys. 12, 389–486CrossRefGoogle Scholar
  11. [11]
    Burgers, J.M. (1969): Flow equations for composite gases. New York: AcademicGoogle Scholar
  12. [12]
    Chapman, S., Cowling, T.G. (1970): The mathematical theory of non-uniform gases, 3rd edn. Cambridge: Cambridge University PressGoogle Scholar
  13. [13]
    Takayanagi, K., Itikawa, Y. (1970): Adv. At. Mol. Phys. 6, 105–151CrossRefGoogle Scholar
  14. [14]
    Mason, E.A., Marrero, T.R. (1970): Adv. At. Mol. Phys. 6, 155–232CrossRefGoogle Scholar
  15. [15]
    Bederson, B., Kieffer, L.J. (1971): Rev. Mod. Phys. 43, 601–640CrossRefGoogle Scholar
  16. [16]
    Massey, H., Burhop, E.H., Gilbody H.B. (1971): Electronic impact phenomena, vol. III: Slow collisions of heavy particles. London: Oxford University PressGoogle Scholar
  17. [17]
    Wilhelm, J., Wallis, G. (1971): Ergeb. Plasmaphys. Gaselektronik 2, 155–252Google Scholar
  18. [18]
    Ferziger, J.H., Kaper, H.G. (1972): Mathematical theory of transport processes. Amsterdam: North-HollandGoogle Scholar
  19. [19]
    Gilardini, A.L. (1972): Low energy electron collisions in gases. New York: Wiley & SonsGoogle Scholar
  20. [20]
    Banks, P.M., Kockarts, G. (1973): Aeronomy. New York: Academic PressGoogle Scholar
  21. [21]
    Bauer, S.J. (1973): Physics of planetary ionospheres. Berlin, Heidelberg, New York: SpringerCrossRefGoogle Scholar
  22. [22]
    Krall, N.A., Trivelpiece, A.W. (1973): Principles of plasma physics. New York: McGraw-HillGoogle Scholar
  23. [23]
    McDaniel, E.W., Mason, E.A. (1973): The mobility and diffusion of ions in gases. New York: Wiley & SonsGoogle Scholar
  24. [24]
    Mitchner, M., Kruger, C.H. (1973): Partially ionized gases. New York: Wiley & SonsGoogle Scholar
  25. [25]
    Rawer, K. (ed.) (1974): Methods of measurements and results of lower ionosphere structure. Berlin: Akademie-VerlagGoogle Scholar
  26. [26]
    Kleinpoppen, H., McDowell, M.R.C. (eds.) (1976): Electron and photon interactions with atoms. New York: PlenumGoogle Scholar
  27. [27]
    Thomas, L., Rishbeth, H. (eds.) (1977): Photochemical and transport processes in the upper atmosphere. London: PergamonGoogle Scholar
  28. [28]
    Joachain, C.J. (1978): Quantum collision theory. Amsterdam: North-HollandGoogle Scholar
  29. [29]
    Bernstein, R.B. (ed.) (1979): Atom-molecule collision theory. New York: PlenumGoogle Scholar
  30. [30]
    Brown, S.C. (ed.) (1979): Electron-molecule scattering. New York: Wiley & SonsGoogle Scholar
  31. [31]
    Duderstadt, J.J., Martin, W.R. (1979): Transport theory. New York: Wiley & SonsGoogle Scholar
  32. [32]
    Hasted, J.B. (1979): Adv. At. Mol. Phys. 15, 205–232CrossRefGoogle Scholar
  33. [33]
    Rescigno, T., McKoy, V., Schneider, B. (eds.) (1979): Electron-molecule and photon-molecule collisions. New York: PlenumGoogle Scholar
  34. [34]
    Nesbet, R.K. (1980): Variational methods in electron-atom scattering theory. New York: PlenumGoogle Scholar
  35. [35]
    Maitland, G.C., Rigby, M., Smith, E.B., Wakeham, W.A. (1981): Intermolecular forces. Oxford: ClarendonGoogle Scholar
  36. [36]
    Hinze, J. (ed.) (1983): Electron-atom and electron-molecule collisions. New York: PlenumGoogle Scholar
  37. [37]
    Bransden, B.H. (1983): Atomic Collision Theory, 2nd edn. Reading, Mass.: Benjamin/CummingsGoogle Scholar
  38. [38]
    Morrison, M.A. (1983): Aust. J. Phys. 36, 239–286Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • K. Suchy

There are no affiliations available

Personalised recommendations