Transport Coefficients and Collision Frequencies for Aeronomic Plasmas

  • K. Suchy
Part of the Handbuch der Physik / Encyclopedia of Physics book series (HDBPHYS, volume 10 / 49 / 7)


For an understanding of many aeronomic processes, diffusion coefficients D. heat conductivities κ. and viscosities η are needed. To study the propagation of electromagnetic waves through a planetary atmosphere, the electrical conductivity σ of the atmosphere must be known. Since the motion of charged particles is strongly influenced by a magnetic field B pervading the plasma, e.g., the Earth’s magnetic field B the atmospheric plasma is an anisotropic medium with B := B/B as distinguished direction. Therefore the transport coefficients D. K. and σ for charged particles are tensors of second rank, the viscosity is a fourth-rank tensor.


Collision Frequency Transport Coefficient Morse Potential Momentum Transfer Cross Section Matrix Tensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

General references

Books and Review Articles

  1. [1]
    Lorentz, H.A. (1915): The theory of electrons. Leipzig: TeubnerGoogle Scholar
  2. [2]
    Herzberg, G. (1950): Spectra of diatomic molecules. Princeton: van NostrandGoogle Scholar
  3. [3]
    Present, R.D. (1958): Kinetic theory of gases. New York: McGraw-HillGoogle Scholar
  4. [4]
    deGroot, S.R., Mazur, P. (1962): Non-equilibrium thermodynamics. Amsterdam: North-HollandGoogle Scholar
  5. [5]
    Hirschfelder, J.O., Curtiss, C.F., Bird, R.B. (1964): Molecular theory of gases and liquids, 2nd ed. New York: Wiley & SonsGoogle Scholar
  6. [6]
    McDaniel, E.W. (1964): Collision phenomena in ionized gases. New York: Wiley & SonsGoogle Scholar
  7. [7]
    Montgomery, D.C., Tidman, D.A. (1964): Plasma kinetic theory. New York: McGraw-HillGoogle Scholar
  8. [8]
    Suchy, K. (1964): Ergeb. Exakten Naturwiss. 35, 103–294CrossRefGoogle Scholar
  9. [9]
    Shkarofsky, L.P., Johnston, T.W., Bachynski, M.P. (1966): The particle kinetics of plasmas. Reading, Mass.: Addison-WesleyGoogle Scholar
  10. [10]
    Bernstein, R.B., Muckermann, J.T. (1967): Adv. Chem. Phys. 12, 389–486CrossRefGoogle Scholar
  11. [11]
    Burgers, J.M. (1969): Flow equations for composite gases. New York: AcademicGoogle Scholar
  12. [12]
    Chapman, S., Cowling, T.G. (1970): The mathematical theory of non-uniform gases, 3rd edn. Cambridge: Cambridge University PressGoogle Scholar
  13. [13]
    Takayanagi, K., Itikawa, Y. (1970): Adv. At. Mol. Phys. 6, 105–151CrossRefGoogle Scholar
  14. [14]
    Mason, E.A., Marrero, T.R. (1970): Adv. At. Mol. Phys. 6, 155–232CrossRefGoogle Scholar
  15. [15]
    Bederson, B., Kieffer, L.J. (1971): Rev. Mod. Phys. 43, 601–640CrossRefGoogle Scholar
  16. [16]
    Massey, H., Burhop, E.H., Gilbody H.B. (1971): Electronic impact phenomena, vol. III: Slow collisions of heavy particles. London: Oxford University PressGoogle Scholar
  17. [17]
    Wilhelm, J., Wallis, G. (1971): Ergeb. Plasmaphys. Gaselektronik 2, 155–252Google Scholar
  18. [18]
    Ferziger, J.H., Kaper, H.G. (1972): Mathematical theory of transport processes. Amsterdam: North-HollandGoogle Scholar
  19. [19]
    Gilardini, A.L. (1972): Low energy electron collisions in gases. New York: Wiley & SonsGoogle Scholar
  20. [20]
    Banks, P.M., Kockarts, G. (1973): Aeronomy. New York: Academic PressGoogle Scholar
  21. [21]
    Bauer, S.J. (1973): Physics of planetary ionospheres. Berlin, Heidelberg, New York: SpringerCrossRefGoogle Scholar
  22. [22]
    Krall, N.A., Trivelpiece, A.W. (1973): Principles of plasma physics. New York: McGraw-HillGoogle Scholar
  23. [23]
    McDaniel, E.W., Mason, E.A. (1973): The mobility and diffusion of ions in gases. New York: Wiley & SonsGoogle Scholar
  24. [24]
    Mitchner, M., Kruger, C.H. (1973): Partially ionized gases. New York: Wiley & SonsGoogle Scholar
  25. [25]
    Rawer, K. (ed.) (1974): Methods of measurements and results of lower ionosphere structure. Berlin: Akademie-VerlagGoogle Scholar
  26. [26]
    Kleinpoppen, H., McDowell, M.R.C. (eds.) (1976): Electron and photon interactions with atoms. New York: PlenumGoogle Scholar
  27. [27]
    Thomas, L., Rishbeth, H. (eds.) (1977): Photochemical and transport processes in the upper atmosphere. London: PergamonGoogle Scholar
  28. [28]
    Joachain, C.J. (1978): Quantum collision theory. Amsterdam: North-HollandGoogle Scholar
  29. [29]
    Bernstein, R.B. (ed.) (1979): Atom-molecule collision theory. New York: PlenumGoogle Scholar
  30. [30]
    Brown, S.C. (ed.) (1979): Electron-molecule scattering. New York: Wiley & SonsGoogle Scholar
  31. [31]
    Duderstadt, J.J., Martin, W.R. (1979): Transport theory. New York: Wiley & SonsGoogle Scholar
  32. [32]
    Hasted, J.B. (1979): Adv. At. Mol. Phys. 15, 205–232CrossRefGoogle Scholar
  33. [33]
    Rescigno, T., McKoy, V., Schneider, B. (eds.) (1979): Electron-molecule and photon-molecule collisions. New York: PlenumGoogle Scholar
  34. [34]
    Nesbet, R.K. (1980): Variational methods in electron-atom scattering theory. New York: PlenumGoogle Scholar
  35. [35]
    Maitland, G.C., Rigby, M., Smith, E.B., Wakeham, W.A. (1981): Intermolecular forces. Oxford: ClarendonGoogle Scholar
  36. [36]
    Hinze, J. (ed.) (1983): Electron-atom and electron-molecule collisions. New York: PlenumGoogle Scholar
  37. [37]
    Bransden, B.H. (1983): Atomic Collision Theory, 2nd edn. Reading, Mass.: Benjamin/CummingsGoogle Scholar
  38. [38]
    Morrison, M.A. (1983): Aust. J. Phys. 36, 239–286Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • K. Suchy

There are no affiliations available

Personalised recommendations