Skip to main content

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 99))

Abstract

The alphaviruses are enveloped animal viruses that belong to the family of Toga viruses. The molecular biology of this virus group is almost entirely based on studies with two members of this virus group, the Semliki Forest Virus (SFV) and the Sindbis virus. Like all other viruses the alphaviruses are completely dependent on their host cell for their replication. The virus particles themselves can be regarded simply as a piece of nucleic acid, which represents their genome, wrapped in a protective coat. In the case of the alphaviruses this coat is represented by the nucleocapsid structure and the surrounding membrane or envelope. The virus coat must, in addition to its protective function, also provide the means whereby the virus particle can get into the host cell and release its genome into the cell cytoplasm to start virus infection. This function is carried out by the virus-coded glycoproteins that form the spike-like projections on the surface of the virions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acheson NH, Tamm I (1967) Replication of Semliki Forest virus: an electron microscopic study. Virology 32:128–143

    PubMed  CAS  Google Scholar 

  • Aliperti G, Schlesinger MJ (1978) Evidence for an autoprotease activity of Sindbis virus capsid protein. Virology 90:366–369

    PubMed  CAS  Google Scholar 

  • Austen BM (1979) Predicted secondary structures of aminoterminal extension sequences of secreted proteins. FEBS Lett 103:308–313

    PubMed  CAS  Google Scholar 

  • Bell JR, Hunkapiller MW, Hood LE, Strauss JH (1978) Amino-terminal sequence analysis of the structural proteins of Sindbis virus. Proc Natl Acad Sci USA 75:2722–2726

    PubMed  CAS  Google Scholar 

  • Bergmann JE, Tokuyasu KT, Singer SJ (1981) Passage of an integral membrane protein, the vesicular stomatitis virus glycoprotein, through the Golgi apparatus en route to the plasma membrane. Proc Natl Acad Sci USA 78:1746–1750

    PubMed  CAS  Google Scholar 

  • Blobel G, Dobberstein B (1975a) Transfer of Proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma. J Cell Biol 67:835–851

    CAS  Google Scholar 

  • Blobel G, Dobberstein B (1975b) Transfer of Proteins across membranes. II. Reconstitution of functional rough microsomes from heterologous components. J Cell Biol 67:852–862

    CAS  Google Scholar 

  • Boege U, Wengler G, Wengler G, Wittmann-Liebold B (1980) Partial amino acid sequences of Sindbis and Semliki Forest virus-specific core proteins. Virology 103:178–190

    PubMed  CAS  Google Scholar 

  • Bonatti S, Blobel G (1979) Absence of a cleavable signal sequence in Sindbis virus glycoprotein PE2. J Biol Chem 254:12261–12264

    PubMed  CAS  Google Scholar 

  • Bonatti S, Cancedda R, Blobel G (1979) Membrane biogenesis: in vitro cleavage, core glycosylation and integration into microsomal membranes of Sindbis virus glycoproteins. J Cell Biol 80:219–224

    PubMed  CAS  Google Scholar 

  • Bonsdorff v C-H (1973) Comment Biol Soc Sci Fenn 74:1

    Google Scholar 

  • Bonsdorff v C-H, Harrison SC (1975) Sindbis virus glycoproteins form a regular icosahedral surface lattice. J Virol 16:141–145

    Google Scholar 

  • Bracha M, Schlesinger MJ (1976) Defects in RNA+ temperature sensitive mutants of Sindbis virus and evidence for a complex of PE2-E1 viral glycoproteins. Virology 74:441–449

    PubMed  CAS  Google Scholar 

  • Bregegere P, Abastado JP, Kvist S, Rask L, Lalanne JL, Garoff H, Cami B, Wiman K, Larhammar D, Peterson PA, Gachelin G, Kourilsky P, Dobberstein B (1981) Structure of the C-terminal half of two H-2-antigens deduced from their cloned mRNA sequences. Nature 292:78–81

    PubMed  CAS  Google Scholar 

  • Bretscher MS (1971) Major human erythrocyte glycoprotein spans the cell membrane. Nature [New Biol] 231:229–232

    CAS  Google Scholar 

  • Bretscher MS (1975) C-terminal region of the major erythrocyte sialoglycoprotein is on the cytoplasmic side of the membrane. J Mol Biol 98:831–833

    PubMed  CAS  Google Scholar 

  • Brown DT, Waite MRF, Pfefferkorn ER (1972) Morphology and morphogenesis of Sindbis virus as seen with freeze-etching techniques. J Virol 10:524–536

    PubMed  CAS  Google Scholar 

  • Burke DJ, Keegstra K (1976) Purification and composition of the proteins from Sindbis virus grown in chick and BHK cells. J Virol 20:676–686

    PubMed  CAS  Google Scholar 

  • Burke D, Keegstra K (1979) Carbohydrate structure of Sindbis virus glycoprotein E2 from virus grown in hamster and chicken cells. J Virol 29:546–554

    PubMed  CAS  Google Scholar 

  • Cancedda R, Swanson R, Schlesinger MJ (1974) Viral proteins formed in a cell-free rabbit reticulocyte system programmed with RNA from a temperature-sensitive mutant of Sindbis virus. J Virol 14:664–671

    PubMed  CAS  Google Scholar 

  • Cancedda R, Villa-Kamaroff L, Lodish HF, Schlesinger MJ (1975) Initiation sites for translation of Sindbis virus 42S and 26S messenger RNAs. Cell 6:215–222

    PubMed  CAS  Google Scholar 

  • McCauley J, Bye J, Elder K, Gething MJ, Skehel JJ, Smith A, Waterfield MD (1979) Influenza virus haemagglutinin signal sequence. Febs Lett 108:422–426

    PubMed  CAS  Google Scholar 

  • Clegg JCS (1975) Sequential translation of capsid and membrane protein genes of alphaviruses. Nature 254:454–455

    PubMed  CAS  Google Scholar 

  • Clegg JCS, Kennedy SIT (1974) In vitro synthesis of structural proteins of Semliki Forest virus directed by isolated 26S RNA from infected cells. FEBS Lett 42:327–330

    PubMed  CAS  Google Scholar 

  • Clegg JCS, Kennedy SIT (1975a) Translation of Semliki Forest virus intracellular 26S RNA:characterisation of the products synthesized in vitro. Eur J Biochem 53:175–184

    CAS  Google Scholar 

  • Clegg JCS, Kennedy SIT (1975b) Initiation of synthesis of the structural proteins of Semliki Forest virus. J Mol Biol 97:401–411

    CAS  Google Scholar 

  • Clegg JCS, Brzeski H, Kennedy SIT (1976) RNA polymerase components in Semliki Forest virus-infected cells: synthesis from large precursors. J Gen Virol 32:413–430

    PubMed  CAS  Google Scholar 

  • Coligan JE, Kindt TJ, Uehara H, Martinko J, Nathenson SG (1981) Primary structure of a murine transplantation antigen. Nature 291:35–39

    PubMed  CAS  Google Scholar 

  • Dalrymple JM, Schlesinger S, Russell PK (1976) Antigenic characterization of two Sindbis envelope glycoproteins separated by isoelectric focusing. Virology 69:93–103

    PubMed  CAS  Google Scholar 

  • Dobberstein B, Garoff H, Warren G, Robinson PJ (1979) Cell-free synthesis and membrane insertion of mouse H-2Dd histocompatibility antigen and beta 2-microglobulin. Cell 17:759–769

    PubMed  CAS  Google Scholar 

  • Dubin DT, Stollar V, Hsuchen C-C, Timko K, Guild GM (1977) Sindbis virus messenger RNA: the 5′-termini and methylated residues of 26 and 42S RNA. Virology 77:457–470

    PubMed  CAS  Google Scholar 

  • Dubin DT, Timko K, Gillies S, Stollar V (1979) The extreme 5′-terminal sequences of Sindbis virus 26 and 42S RNA. Virology 98:131–141

    PubMed  CAS  Google Scholar 

  • Duve de C (1975) Exploring cells with a centrifuge. Science 189:186–194

    PubMed  CAS  Google Scholar 

  • Emr SD, Hedgpeth J, Clement J-M, Silhavy Th J, Hofnung M (1980) Sequence analysis of mutations that prevent export of lamda receptor, an Escherichia coli outer membrane protein. Nature 285:82–85

    PubMed  CAS  Google Scholar 

  • Erickson AH, Blobel G (1979) Early events in the biosynthesis of the lysosomal enzyme cathepsin D. J Biol Chem 254:11771–11774

    PubMed  CAS  Google Scholar 

  • Fries E, Rothman JE (1980) Transport of vesicular stomatitis virus glycoprotein in a cell-free extract Proc Natl Acad Sci USA 77:3870–3874

    PubMed  CAS  Google Scholar 

  • Garoff H (1979) Structure and assembly of the Semliki Forest virus membrane. Biochem Soc Transact 7:301–306

    CAS  Google Scholar 

  • Garoff H, Schwarz RT (1978) Glycosylation is not necessary for membrane insertion and cleavage of Semliki Forest virus membrane proteins. Nature 274:487–490

    PubMed  CAS  Google Scholar 

  • Garoff H, Simons K (1974) Location of the spike glycoproteins in the Semliki Forest virus membrane. Proc Natl Acad Sci USA 71:3988–3992

    PubMed  CAS  Google Scholar 

  • Garoff H, Söderlund H (1978) The amphiphilic membrane glycoproteins of Semliki Forest virus are attached to the lipid bilayer by their COOH-terminal ends. J Mol Biol 124:535–549

    PubMed  CAS  Google Scholar 

  • Garoff H, Simons K, Renkonen O (1974) Isolation and characterization of the membrane proteins of Semliki Forest virus. Virology 61:493–504

    PubMed  CAS  Google Scholar 

  • Garoff H, Simons K, Dobberstein B (1978) Assembly of the Semliki Forest virus membrane glycoproteins in the membrane of the endoplasmic reticulum in vitro. J Mol Biol 124:587–600

    PubMed  CAS  Google Scholar 

  • Garoff H, Frischauf A-M, Simons K, Lehrach H, Delius H (1980a) The capsid protein of Semliki Forest virus has clusters of basic amino acids and prolines in its aminoterminal region. Proc Natl Acad Sci USA 77:6376–6380

    CAS  Google Scholar 

  • Garoff H, Frischauf A-M, Simons K, Lehrach H, Delius H (1980b) Nucleotide sequence of cDNA coding for Semliki Forest virus membrane glycoproteins. Nature 288:236–241

    CAS  Google Scholar 

  • Garoff H, Riedel H, Lehrach H (1982) A procedure to verify an amino acid sequence which has been derived from a nucleotide sequence: application to the 26S RNA of Semliki Forest virus. Nucleic Acids Res 10:675–687

    PubMed  CAS  Google Scholar 

  • Gething J, White JM, Waterfield MD (1978) Purification of the fusion protein of Sendai virus: analysis of the NH2-terminal sequence generated during precusor activation. Proc Natl Acad Sci USA 75:2737–2740

    PubMed  CAS  Google Scholar 

  • Gibson R, Leavitt R, Kornfeld S, Schlesinger S (1978) Synthesis and infectivity of vesicular stomatitis virus containing nonglycosylated G protein. Cell 13:671–679

    PubMed  CAS  Google Scholar 

  • Glanville N, Ulmanen I (1976) Biological activity of in vitro synthesized protein: binding of Semliki Forest virus capsid protein to the large ribosomal subunit Biochem Biophys Commun 71:393–399

    CAS  Google Scholar 

  • Glanville N, Ranki M, Morser J, Kääriäinen L, Smith AE (1976a) Initiation of translation directed by 42S and 26S RNAs from Semliki Forest virus in vitro. Proc Natl Acad Sci USA 73:3059–3063

    CAS  Google Scholar 

  • Glanville N, Morser J, Uomala P, Kääriäinen L (1976b) Simultaneous translation of structural and nonstructural proteins from Semliki Forest virus RNA in two eukaryotic Systems in vitro. Eur J Biochem 64:167–175

    CAS  Google Scholar 

  • Gomatos P, Kääriäinen L, Keränen S, Ranki M, Sawicki DL (1980) Semliki Forest virus replication complex capable of synthesizing 42S and 26S nascent RNA chains. J Gen Virol 49:61–69

    PubMed  CAS  Google Scholar 

  • Gottlieb C, Kornfeld S, Schlesinger S (1979) Restricted replication of two alphaviruses in Ricinresistant mouse L cells with altered glycosyltransferase activities. J Virol 29:344–351

    PubMed  CAS  Google Scholar 

  • Green J, Griffiths G, Louvard D, Quinn P, Warren G (1981) On the passage of viral membrane proteins through the Golgi complex. J Mol Biol 152:663–698

    PubMed  CAS  Google Scholar 

  • Green RF, Meiss HK, Rodriguez-Boulan E (1981) Glycosylation does not determine segragation of viral envelope proteins in the plasma membrane of epithelial cells. J Cell Biol 89:230–239

    PubMed  CAS  Google Scholar 

  • Gregory RA, Tracy HJ (1972) Isolation of two “big gastrins” from Zollinger — ellison tumor tissue Lancet II:797

    Google Scholar 

  • Grinna LS, Robbins Ph W (1979) Processing of glycoproteins: glucosidases which process oligosaccharides. Fed Proc 38:291

    Google Scholar 

  • Grunstein M, Hogness DS (1975) Colony hybridization: a method for the isolation of cloned DNAs that contain a specific gene. Proc Natl Acad Sci USA 72:3961–3965

    PubMed  CAS  Google Scholar 

  • Habener JF, Chang HT, Potts JT Jr (1977) Enzymic processing of proparathyrtoid hormone by cell-free extracts of parathyroid glands. Biochemistry 16:3910–3917

    PubMed  CAS  Google Scholar 

  • Harrison SC, David A, Jumblatt J, Darnell JE (1971) Lipid and protein organization in Sindbis virus. J Mol Biol 60:523–528

    CAS  Google Scholar 

  • Hashimoto K, Erdel S, Keränen S, Saraste J, Kääriäinen L (1981) Evidence for a separate signal sequence for the carboxy-terminal envelope glycoprotein E1 of Semliki Forest virus. J Virol 38:34–40

    PubMed  CAS  Google Scholar 

  • Hefti E, Bishop DHL, Dubin DT, Stollar V (1976) 5′ nucleotide sequence of Sindbis viral RNA. J Virol 17:149–159

    CAS  Google Scholar 

  • Helenius A, Kartenbeck J (1980) The effects of octylglucoside on the Semliki Forest virus membrane. Evidence for a spike-protein — nucleocapsid interaction. Eur J Biochem 106:613–618

    PubMed  CAS  Google Scholar 

  • Helenius A, Simons K (1975) Solubilization of membranes by detergents. Biochim Biophys Acta 415:29–79

    PubMed  CAS  Google Scholar 

  • Helenius A, Fries E, Garoff H, Simons K (1976) Solubilization of the Semliki Forest virus membrane with sodium deoxycholate. Biochim Biophys Acta 436:319–334

    PubMed  CAS  Google Scholar 

  • Helenius A, Fries E, Kartenbeck J (1977) Reconstitution of Semliki Forest virus membrane. J Cell Biol 75:866–880

    PubMed  CAS  Google Scholar 

  • Helenius A, Kartenbeck J, Simons K, Fries E (1980a) On the entry of Semliki Forest virus into BHK-21 cells. J Cell Biol 84:404–420

    CAS  Google Scholar 

  • Helenius A, Marsh M, White J (1980b) The entry of viruses into animal cells. Trends Biochem Sci 5:104–106

    Google Scholar 

  • Helenius A, Sarvas M, Simons K (1981) Asymmetric and symmetric membrane reconstitution by detergent elimination. Studies with Semliki Forest virus spike glycoprotein and penicillinase from the membrane of bacillus licheniformis. Eur J Biochem 116:27–35

    PubMed  CAS  Google Scholar 

  • Henning R, Milner RJ, Reske K, Cunnigham BA, Edelman GM (1976) Subunit structure, cell surface orientation and partial amino-acid sequences of murine histocompatibility antigens. Proc Natl Acad Sci USA 73:118–122

    PubMed  CAS  Google Scholar 

  • Hickman S, Neufeld EF (1972) A hypothesis for I-cell disease: defective hydrolases that do not enter lysosomes. Biochem Biophys Res Comm 49:992–999

    PubMed  CAS  Google Scholar 

  • Horzinek M, Mussgay M (1969) Studies on the nucleocapsid structure of a group A Arbovirus. J Virol 4:514–520

    PubMed  CAS  Google Scholar 

  • Horzinek MC (1973) The structure of togaviruses. Prog Med Virol 16:109–156

    PubMed  CAS  Google Scholar 

  • Johnson DC, Schlesinger MJ (1980) Vesicular stomatitis virus and Sindbis virus glycoprotein transport to the cell surface is inhibited by ionophores. Virology 103:407–424

    PubMed  CAS  Google Scholar 

  • Jokinen M, Gahmberg CG, Andersson LC (1979) Biosynthesis of the major human red cell sialoglycoprotein, glyphorin A, in a continuous cell line. Nature 279:604–607

    PubMed  CAS  Google Scholar 

  • Jones KJ, Scupham RK, Pfeil JA, Wan K, Sagik BP, Bose HR (1977) Interaction of Sindbis virus glycoproteins during morphogenesis. J Virol 21:788–787

    Google Scholar 

  • Kääriäinen L, Renkonen O (1977) Envelopes of lipidcontaining viruses as models for membrane assembly. In: Poste G, Nicholson GL (eds) The synthesis, assembly and turnover of cell surface components. Amsterdam, North Holland, pp 741–801

    Google Scholar 

  • Kääriäinen L, Söderlund H (1978) Structure and replication of alpha-viruses. Curr Top Microbiol Immunol 82:15–69

    PubMed  Google Scholar 

  • Kääriäinen L, Hashimoto K, Saraste J, Virtanen I, Penttinen K (1980) Monensin and FCCP inhibit the intracellular transport of alphavirus membrane glycoproteins. J Cell Biol 87:783–791

    PubMed  Google Scholar 

  • Kalkkinen N (1980) Carboxyl-terminal sequence analysis of the four structural proteins of Semliki Forest virus. FEBS Lett 115:163–166

    PubMed  CAS  Google Scholar 

  • Kalkkinen N, Jörnvall H, Söderlund H, Kääriäinen L (1980) Analysis of Semliki Forest virus structural proteins to illustrate polyprotein processing of alpha viruses. Eur J Biochem 108:31–37

    PubMed  CAS  Google Scholar 

  • Kalkkinen N, Jörnvall H, Kääriäinen L (1981) Polyprotein processing of alphaviruses: N-terminal structural analysis of Semliki Forest virus proteins p62, E3 and ns70. FEBS Lett 126:33–37

    PubMed  CAS  Google Scholar 

  • Kaplan A, Achord DT, Sly WS (1977) Phosphohexosyl components of a lysosomal enzyme are recognized by pinocytosis receptors on human fibroblasts. Proc Natl Acad Sci USA 74:2026–2030

    PubMed  CAS  Google Scholar 

  • Keegstra K, Sefton B, Burke D (1975) Sindbis virus glycoproteins: effect of the host cell on the oligosaccharides. J Virol 16:613–620

    PubMed  CAS  Google Scholar 

  • Kemmler W, Steiner DF, Borg J (1973) Studies on the conversion of proinsulin to insulin. III. Studies in vitro with a crude secretion granule fraction isolated from rat islets of Langerhans. J Biol Chem 248:4544–4551

    PubMed  CAS  Google Scholar 

  • Kennedy SIT (1976) Sequence relationships between the genome and the intracellular RNA species of standard and defective-interfering Semliki Forest virus. J Mol Biol 108:491–511

    PubMed  CAS  Google Scholar 

  • Kennedy SIT (1980) Synthesis of alphavirus RNA. In: Schlesinger RW (ed) The Togaviruses, Academic Press, New York, pp 351–369

    Google Scholar 

  • Kornfeld S, Li E, Tabas I (1978) The synthesis of complex-type oligosaccharides. II. Characterization of the processing intermediates in the synthesis of the complex oligosaccharide units of the vesicular stomatitis virus G protein. J Biol Chem 253:7771–7778

    PubMed  CAS  Google Scholar 

  • Kozak M (1981) Mechanism of mRNA recognition by eukaryotic ribosomes during initiation of protein synthesis. Curr Top Microbiol Immunol 93:81–123

    PubMed  CAS  Google Scholar 

  • Krag SS, Robbins PW (1977) Sindbis envelope proteins as endogenous acceptors in reactions of guanosine diphosphate-[14C] mannose with preparations of infected chicken embryo fibroblasts. J Biol Chem 252:2621–2629

    PubMed  CAS  Google Scholar 

  • Kvist S, Bregegere F, Rask L, Cami B, Garoff H, Daniel F, Wiman K, Larhammar D, Abastado JP, Gachelin G, Peterson PA, Dobberstein B, Kourilsky P (1981) A cDNA clone coding for part of a mouse H-2d major histocompatiobility antigen. Proc Natl Acad Sci USA 78:2772–2776

    PubMed  CAS  Google Scholar 

  • Lachmi B, Glanville N, Keränen S, Kääriäinen L (1975) Tryptic peptide analysis of nonstructural and structural precursor proteins from Semliki Forest virus mutant-infected cells. J Virol 16:1615–1629

    PubMed  CAS  Google Scholar 

  • Lachmi B, Kääriäinen L (1976) Sequential translation of nonstructural proteins in cells infected with a Semliki Forest virus mutant Proc Natl Acad Sci USA 73:1936–1940

    PubMed  CAS  Google Scholar 

  • Laine R, Söderlund H, Renkonen O (1973) The chemical composition of Semliki Forest virus. Intervirology 1:110–118

    PubMed  CAS  Google Scholar 

  • Leavitt R, Schlesinger S, Kornfeld S (1977a) Impaired intracellular migration and altered solubility of nonglycosylated glycoproteins of vesicular stomatitis virus and Sindbis virus. J Biol Chem 252:9018–9023

    CAS  Google Scholar 

  • Leavitt R, Schlesinger S, Kornfeld S (1977b) Tunicamycin inhibits glycosylation and multiplication of Sindbis and vesicular stomatitis virus. J Virol 21:375–385

    CAS  Google Scholar 

  • Leblond CP, Bennett G (1977) International cell biology. In: Brinkley BR, Porter KR (eds) New York, Rockefeller University Press, pp 326–340

    Google Scholar 

  • Lehle L, Tanner W (1976) The specific site of tunicamycin inhibition in the formation of dolichol-bound N-acetylglucosamine derivatives. FEBS Lett 71:167–170

    CAS  Google Scholar 

  • Levin JG, Friedman RM (1971) Analysis of arbovirus ribonucleic acid forms by polyacrylamide gel electrophoresis. J Virol 7:504–514

    PubMed  CAS  Google Scholar 

  • Li E, Tabas I, Kornfeld S (1978) The Synthesis of complex-type oligosaccharides. I. Structure of the lipid-linked oligosaccharide precursor of the complex-type oligosaccharides of the vesicular stomatitis virus G protein. J Biol Chem 253:7762–7770

    PubMed  CAS  Google Scholar 

  • Lingappa VR, Katz FN, Lodish HF, Blobel G (1978) A signal sequence for the insertion of a transmembrane glycoprotein. J Biol Chem 253:8667–8670

    PubMed  CAS  Google Scholar 

  • Louvard D (1980) Apical membrane aminopeptidase appears at site of cell-cell contact in cultured kidney epithelial cells. Proc Natl Acad Sci USA 77:4132–4136

    PubMed  CAS  Google Scholar 

  • Louvard D, Reggio H, Warren G (1982) Antibodies to the Golgi complex and the rough endoplasmic reticulum. J Cell Biol 92:92–107

    PubMed  CAS  Google Scholar 

  • Luukkonen A, Kääriäinen L, Renkonen O (1976) Phospholipids of Semliki Forest viras grown in cultured mosquito cells. Biochem Biophys Acta 450:109–120

    PubMed  CAS  Google Scholar 

  • Martire G, Bonatti S, Aliperti G, Giuli de C, Cancedda R (1977) Free and membrane-bound polyribosomes in BHK cells infected with Sindbis viras. J Virol 21:610–618

    PubMed  CAS  Google Scholar 

  • Mattila K (1974) Separation of the integral membrane glycoproteins El and E2 of Semliki Forest viras by affinity chromatography on concanavalin A-sepharose. Biochim Biophys Acta 579:62–72

    Google Scholar 

  • Mattila K, Luukkonen A, Renkonen O (1976) Proteinbound oligosaccharides of Semliki Forest viras. Biochim Biophys Acta 419:435–444

    PubMed  CAS  Google Scholar 

  • Min Jou W, Verhoeyen M, Devos R, Saman E, Fang R, Huylebroeck D, Fiers W, Threlfall G, Barber C, Carey M, Emtage S (1980) Complete structure of the hemagglutinin gene from the human influenza A/Victoria/3/75 (H3N2) strain as determined from cloned DNA. Cell 19:683–696

    Google Scholar 

  • Morein B, Helenius A, Simons K, Petterson R, Kääriäinen L, Schirrmacher V (1978) Effective subunit vaccines against an enveloped animal viras. Nature 276:715–718

    PubMed  CAS  Google Scholar 

  • Mowshowitz D (1973) Identification of polysomal RNA in BHK cells infected by Sindbis virus. J Virol 11:535–543

    PubMed  CAS  Google Scholar 

  • Mulligan RC, Berg P (1981) Selection for animal cells that express the Escherichia coli gene coding for xanthineguanine phosphoribosyltransferase. Proc Natl Acad Sci USA 78:2072–2076

    PubMed  CAS  Google Scholar 

  • Nakanishi S, Inoue A, Kita T, Nakamura M, Chang ACY, Cohen SN, Numa S (1979) Nucleotide sequence of cloned cDNA for bovine corticotropin-beta-lipotropin precursor. Nature 278:423–427

    PubMed  CAS  Google Scholar 

  • Neuberger A, Gottschalk A, Marshall RD, Spiro RG (1972) The glycoproteins: their composition, structure and function. In: Gottschalk A (ed) Elsevier publishing, Amsterdam, pp 450–490

    Google Scholar 

  • Osterrieth PM (1968) Extrait Mem Soc R Sci Liege, 16:1

    Google Scholar 

  • Ou J-H, Strauss EG, Strauss JH (1981) Comparative studies of the 3′-terminal sequence of several alphavirus RNAs, J Virol 109:281–289

    CAS  Google Scholar 

  • Palade G (1975) Intracellular aspects of the process of protein syntheses. Science 189:347–358

    PubMed  CAS  Google Scholar 

  • Pesonen M, Renkonen O (1976) Serum glycoprotein-type sequence of monosaccharides in membrane glycoproteins of Semliki Forest viras. Biochim Biophys Acta 455:510–525

    PubMed  CAS  Google Scholar 

  • Pesonen M, Saraste J, Hashimoto K, Kääriäinen L (1981) Reversible defect in the glycosylation of the membrane proteins of Semliki Forest viras ts-1 mutant Virology 109:165–173

    PubMed  CAS  Google Scholar 

  • Petterson RF, Söderlund H, Kääriäinen L (1980) The nucleotide sequences of the 5′-terminal T 1 oligonucleotides of Semliki Forest viras 42S and 26S RNAs are different. Eur J Biochem 105:435–443

    Google Scholar 

  • Ploegh HL, Orr HT, Robb RJ, Strominger JL (1978) In: Ruddon H (ed) Biological markers of neoplasia: basic and applied aspects. pp 201–211

    Google Scholar 

  • Ploegh HL, Cannon LE, Strominger JL (1979) Cellfree translation of the mRNAs for the heavy and light chains of HLA-A and HLA-B antigens. Proc Natl Acad Sci USA 76:2273–2277

    PubMed  CAS  Google Scholar 

  • Ploegh HL, Orr HT, Strominger JL (1980) Molecular cloning of a human histocompatibility antigen cDNA fragment. Proc Natl Acad Sci USA 77:6081–6085

    PubMed  CAS  Google Scholar 

  • Porter AG, Barber C, Carey NH, Hallewell RA, Threlfall G, Emtage JS (1979) Complete nucleotide sequence of an influenza virus haemagglutinin gene from cloned DNA. Nature 282:471–477

    PubMed  CAS  Google Scholar 

  • Ranki M, Kääriäinen L (1979) Solubilized RNA replication complex from Semliki Forest virus-infected cells. Virology 98:298–307

    PubMed  CAS  Google Scholar 

  • Rasilo M-L, Renkonen O (1979) The molecular size of glycans liberated by hydrazinolysis from Semliki Forest viras proteins. Biochim Biophys Acta 582:307–321

    PubMed  CAS  Google Scholar 

  • Rasilo M-L, Renkonen O (1980) Changes in protein-bound oligomannosyl type glycans during Semliki Forest viras maturation. J Gen Virol 47:525–528

    PubMed  CAS  Google Scholar 

  • Renkonen O, Kääriäinen L, Simons K, Gahmberg C (1971) The lipid class composition of Semliki Forest viras and of plasma membrane of host cells. Virology 46:318–326

    PubMed  CAS  Google Scholar 

  • Rice CM, Strauss JH (1981) Nucleotide sequence of the 26S mRNA of Sindbis viras and deduced sequence of the encoded viras structural proteins. Proc Natl Acad Sci USA 78:2062–2066

    PubMed  CAS  Google Scholar 

  • Riedel H, Lehrach J, Garoff H (1982) The nucleotide sequence at the junction between the non-stractural and structural genes of the Semliki Forest viras genome. J Virol (in press)

    Google Scholar 

  • Robb RJ, Terhorst C, Strominger JL (1978) Sequence of the COOH-terminal hydrophilic region of histocompatibility antigens HLA-A2 and HLA-B7. J Biol Chem 253:5319–5324

    PubMed  CAS  Google Scholar 

  • Robbins Ph.W, Hubbard SC, Turco SJ, Wirth DF (1977) Proposal for a common oligasaccharide intermediate in the synthesis of membrane glycoproteins. Cell 12:893–900

    PubMed  CAS  Google Scholar 

  • Rodriguez-Boulan ER, Sabatini DD (1978) Asymmetric budding of viruses in epithelial monolayers: a model system for study of epithelial polarity. Proc Natl Acad Sci USA 75:5071–5075

    PubMed  CAS  Google Scholar 

  • Rodriguez-Boulan EJ, Pendergast M (1980) Polarized distribution of viral envelope proteins in the plasma membrane of infected epithelial cells. Cell 20:45–54

    PubMed  CAS  Google Scholar 

  • Rogers J, Early P, Carter C, Calame K, Bond M, Hood L, Wall R (1980) Two mRNAs with different 3′ ends encode membrane-bound and secreted forms immunoglobulin μ-chain. Cell 20:303–312

    PubMed  CAS  Google Scholar 

  • Rose JK, Welch WJ, Sefton BM, Esch FS, Ling NC (1980) Vesicular stomatitis virus glycoprotein is anchored in the viral membrane by a hydrophobic domain near the COOH-terminus. Proc Natl Acad Sci USA 77:3884–3888

    PubMed  CAS  Google Scholar 

  • Roth MG, Fitzpatrick JP, Compans RW (1979) Polarity of influenza and vesicular stomatitis maturation in MDCK cells: lack of requirement for glycosylation of viral glycoproteins. Proc Natl Acad Sci USA 76:6430–6434

    PubMed  CAS  Google Scholar 

  • Rothman JE, Lodish HF (1977) Synchronised transmembrane insertion and glycosylation of a nascent membrane protein. Nature 269:775–780

    PubMed  CAS  Google Scholar 

  • Rothman JE, Fine RE (1980) Coated vesicles transport newly synthesized membrane glycoproteins from endoplasmic reticulum to plasma membrane in two successive stages. Proc Natl Acad Sci USA 77:780–784

    PubMed  CAS  Google Scholar 

  • Röwekamp W, Firtel R (1980) Isolation of Developmentally regulated genes from dictyostelium. Develop Biol 79:409–418

    PubMed  Google Scholar 

  • Russel JH, Geller DM (1975) The structure of rat proalbumin. J Biol Chem 250:3409–3413

    Google Scholar 

  • Saraste J, Hedman K (to be published) Intracellular transport of Semliki Forest virus membrane glycoproteins studied by electron microscopic immunocytochemistry. J Cell Biol

    Google Scholar 

  • Saraste J, v Bonsdorff C-H, Hashimoto K, Kääriäinen L, Keränen S (1980a) Semliki Forest virus mutants with temperature-sensitive transport defect of envelope proteins. Virology 100:229–245

    CAS  Google Scholar 

  • Saraste J, v Bonsdorff C-H, Hashimoto K, Keränen S, Kääriäinen L (1980b) Reversible transport defects of virus membrane glycoproteins in Sindbis virus mutant infected cells. Cell Biol Int Rep 4:279–286

    CAS  Google Scholar 

  • Sawicki D, Sawicki S (1980) Short-lived minus-strand polymerase for Semliki Forest virus. J Virol 34:108–118

    PubMed  CAS  Google Scholar 

  • Schlesinger MJ, Schlesinger S, Burge BW (1972) Identification of a second glycoprotein in Sindbis virus. Virology, 47:539–541

    PubMed  CAS  Google Scholar 

  • Schlesinger S, Schlesinger MJ (1972) Formation of Sindbis virus proteins: identification of a precursor for one of the envelope proteins. J Virol 10:925–932

    PubMed  CAS  Google Scholar 

  • Schmidt MFG, Schlesinger MJ (1980) Relation of fatty acid attachment to the translation and maturation of vesicular stomatitis and Sindbis virus membrane glycoproteins. J Biol Chem 255:3334–3339

    PubMed  CAS  Google Scholar 

  • Schmidt MFG, Bracha M, Schlesinger MJ (1979) Evidence for covalent attachment of fatty acids to Sindbis virus glycoproteins. Proc Natl Acad Sci USA 76:1687–1691

    PubMed  CAS  Google Scholar 

  • Sefton BM (1977) Immediate glycosylation of Sindbis virus membrane proteins. Cell 10:659–668

    PubMed  CAS  Google Scholar 

  • Sefton BM, Keegstra K (1974) Glycoproteins of Sindbis virus: preliminary characterization of the oligosaccharides. J Virol 14:522–530

    PubMed  CAS  Google Scholar 

  • Segrest JP, Feldmann RJ (1974) Membrane Proteins: amino acid sequence and membrane penetration. J Mol Biol 87:853–858

    PubMed  CAS  Google Scholar 

  • Simmons DT, Strauß JH (1972) Replication of Sindbis virus. I. Relative size and genetic content of 26S and 49S RNA. J Mol Biol 71:599–613

    PubMed  CAS  Google Scholar 

  • Simmons DT, Strauß JH (1974a) Translation of Sindbis virus 26S RNA and 49S RNA in lysates of rabbit reticulocytes. J Mol Biol 86:397–409

    CAS  Google Scholar 

  • Simmons DT, Strauss JH (1974) Replication of Sindbis virus. V. Polyribosomes and mRNA in infected cells. J Virol 14:552–559

    PubMed  CAS  Google Scholar 

  • Simons K, Garoff H (1980) The budding mechanism of enveloped animal viruses. J Gen Virol 50:1–21

    PubMed  CAS  Google Scholar 

  • Simons K, Kääriäinen L (1970) Characterization of the Semliki Forest virus core and envelope protein. Biochem Biophys Res Commun 38:981–988

    PubMed  CAS  Google Scholar 

  • Simons K, Helenius A, Garoff H (1973a) Solubilization of the membrane proteins from Semliki Forest virus with Triton X 100. J Mol Biol 80:119–133

    CAS  Google Scholar 

  • Simons K, Keränen S, Kääriäinen L (1973b) Identification of a precursor for one of the Semliki Forest virus membrane proteins. FEBS Lett 29:87–91

    CAS  Google Scholar 

  • Simon K, Garoff H, Helenius A (1977) The glycoproteins of the Semliki Forest virus membrane. In: Capaldi R (ed) Membrane proteins and their interaction with Lipids, vol. 1. Dekker, New York, pp 207–234

    Google Scholar 

  • Simons K, Helenius A, Leonard K, Sarvas M, Gething MJ (1978) Formation of protein micelles from amphiphilic membrane proteins. Proc Natl Acad Sci USA 75:5306–5310

    PubMed  CAS  Google Scholar 

  • Simons K, Garoff H, Helenius A (1980) Alphavirus proteins. In: Schlesinger R (ed) The Togaviruses. Academic Press, New York, pp 317–341

    Google Scholar 

  • Simons K, Garoff H, Helenius A (1982) How the virus comes in and out from the host cell. Scientific American 246:57–66

    Google Scholar 

  • Smith AE, Wheeler T, Glanville N, Kääriäinen L (1974) Translation of Semliki Forest virus 42S RNA in a mouse cell-free system to give virus-coat proteins. Eur J Biochem 49:101–110

    PubMed  CAS  Google Scholar 

  • Söderlund H, Ulmanen I (1977) Transient Association of Semliki Forest virus capsid protein with ribosomes. J Virol 24:907–909

    PubMed  Google Scholar 

  • Söderlund H, v. Bonsdorff C-H, Ulmanen I (1979) Comparison of the structural properties of Sindbis and Semliki Forest virus nucleocapsids. J Gen Virol 45:15–26

    PubMed  Google Scholar 

  • Strauss EG (1978) Mutants of Sindbis virus. III. Host polypeptides present in purified HR and ts 103 virus peptides. J Virol 28:466–474

    PubMed  CAS  Google Scholar 

  • Strauss EG, Strauss JH (1980) Mutants of alphaviruses: genetics and physiology. In: Schlesinger RW (ed) The togaviruses, Academic Press, New York, pp 393–426

    Google Scholar 

  • Strauss JH, Burge BW, Pfefferkorn ER, Darnell JE (1968) Identification of the membrane protein and ”core“ protein of Sindbis virus. Proc Natl Acad Sci USA 59:533–537

    PubMed  CAS  Google Scholar 

  • Strauss JH, Strauss EG (1977) Togaviruses. In: Debi Prosad Nayak (ed) The molucular biology of animal viruses. Dekker, New York, pp 111–166

    Google Scholar 

  • Tabas I, Schlesinger S, Kornfeld St (1978) Processing of high mannose oligosaccharides to form complex type oligosaccharides on the newly synthesized polypeptides of the vesicular stomatitis virus G protein and the IgG heavy chain. J Biol Chem 253:716–722

    PubMed  CAS  Google Scholar 

  • Tabas I, Kornfeld S (1978) The synthesis of complex-type oligosaccharides. J Biol Chem 253:779–786

    Google Scholar 

  • Tabas I, Kornfeld S (1979) Purification and characterization of a rat liver Golgi alpha-mannosidase capable of processing asparagine-linked oligosaccharides. J Biol Chem 254:11655–11663

    PubMed  CAS  Google Scholar 

  • Tager HS, Steiner DF (1973) Isolation of a glucagoncontaining peptide: primary structure of a possible fragment of proglucagon. Proc Natl Acad Sci USA 70:2321–2325

    PubMed  CAS  Google Scholar 

  • Takatsuki A, Kohno K, Tamura G (1975) Agric Biol Chem 39:2089–2091

    CAS  Google Scholar 

  • Tarentino AL, Maley F (1974) Purification and properties of an endo-beto-N-acetylglucosaminidase from Streptomyces griseus. J Biol Chem 249:811–817

    PubMed  CAS  Google Scholar 

  • Tarentino AL, Trimble RB, Maley F (1978) Methods in enzymology 50. Academic Press, New York pp 574–580

    Google Scholar 

  • Tartakoff AM, Vassalli P, Detraz M (1977) Plasma cell immunoglobulin secretion: arrest is accompanied by alterations of the Golgi complex. J Exp Med 146:1332–1345

    PubMed  CAS  Google Scholar 

  • Tartakoff AM, Vassalli P, Detraz M (1979) Plasma cell immunoglobulin M molecules: their biosynthesis assembly and intracellular transport. J Cell Biol 83:284–299

    PubMed  CAS  Google Scholar 

  • Tkacz JS, Lampen JO (1975) Tunieamycin inhibition of polyisprenyl N-acetylglucosaminyl pyrophosphate formation in calf-liver microsomes. Biochem Biophys Res Comm 65:248–257

    PubMed  CAS  Google Scholar 

  • Tokuyasu KT (1973) A technique for ultracryotomy of cell suspensions and tissues. J Cell Biol 57:551–565

    PubMed  CAS  Google Scholar 

  • Tokuyasu KT (1978) A study of positive staining of Ultrathin frozen Sections. J Ultrastruct Res 63:287–307

    PubMed  CAS  Google Scholar 

  • Tomita M, Marchesi VT (1975) Amino-acid sequence and oligosaccharide attachment sites of human erythrocyte glycophorin. Proc Natl Acad Sci USA 72:2964–2968

    PubMed  CAS  Google Scholar 

  • Ulmanen I (1978) Assembly of Semliki Forest virus nucleocapsid: detection of a precursor in infected cells. J Gen Virol 41:353–365

    PubMed  CAS  Google Scholar 

  • Utermann G, Simons K (1974) Studies on the amphipathic nature of the membrane proteins in Semli M Forest virus. J Mol Biol 85:569–587

    PubMed  CAS  Google Scholar 

  • Verhoeyen M, Fang R, Min Jou W, Devos R, Huylebroeck D, Saman E, Fiers W (1980) Antigenic drift between the haemagglutinin of the Hong Kong influenza strains A/Aichi/2/68 and A/Victoria/3/75. Nature 286:771–776

    PubMed  CAS  Google Scholar 

  • Virtanen I, Ekblom P, Laurila P (1980) Subcellular compartmentalization of saccharide moieties in cultures of normal and malignant cells. J Cell Biol 85:429–434

    PubMed  CAS  Google Scholar 

  • Welch WJ, Sefton BM (1979) Two small virus-specific polypeptides are produced during infection with Sindbis virus. J Virol 29:1186–1195

    PubMed  CAS  Google Scholar 

  • Welch WJ, Sefton BM (1980) Characterization of a small, nonstructural viral polypeptide present late during infection of BHK cells by Semliki Forest virus. J Virol 33:230–237

    PubMed  CAS  Google Scholar 

  • Welch WJ, Sefton BM, Esch FS (1981) Aminoterminal sequence analysis of alphavirus polypeptides. J Virol 38:968–972

    PubMed  CAS  Google Scholar 

  • Wengler G, Wengler G (1974) Studies on the polyribosome-associated RNA in BHK21 cells infected with Semliki Forest virus. Virology 59:21–35

    PubMed  CAS  Google Scholar 

  • Wengler G, Wengler A (1976) Localization of the 26S RNA sequence in the viral genome type 42S RNA isolated from SFV-infected cell. Virology 73:190–199

    PubMed  CAS  Google Scholar 

  • Wengler G, Beato M, Hackemack BA (1974) Translation of 26S virus-specific RNA from Semliki Forest virus-infected cells in vitro. Virology 61:120–128

    PubMed  CAS  Google Scholar 

  • Wengler G, Wengler G, Gross H (1979) Replicative form of Semliki Forest virus RNA contains an unpaired quanosine. Nature 282:754–756

    PubMed  CAS  Google Scholar 

  • White J, Helenius A (1980) pH-depentent fusion between the Semliki Forest virus membrane and liposomes. Proc Natl Acad Sci USA 3273–3277

    Google Scholar 

  • Wirth DF, Katz F, Small B, Lodish HF (1977) How a single Sindbis virus mRNA directs the synthesis of one soluble protein and two integral membrane glycoproteins. Cell 10:253–263

    PubMed  CAS  Google Scholar 

  • Ziemiecki A, Garoff H (1978) Subunit composition of the membrane glycoprotein complex of Semliki Forest virus. J Mol Biol 122:259–269

    PubMed  CAS  Google Scholar 

  • Ziemiecki A, Garoff H, Simons K (1980) Formation of the Semliki Forest membrane glycoprotein complexes in the infected cell. J Gen Virol 50:111–123

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Garoff, H., Kondor-Koch, C., Riedel, H. (1982). Structure and Assembly of Alphaviruses. In: Cooper, M., et al. Current Topics in Microbiology and Immunology. Current Topics in Microbiology and Immunology, vol 99. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68528-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68528-6_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68530-9

  • Online ISBN: 978-3-642-68528-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics