Structural Changes of the Vascular Wall in Regional Hemodynamic Disturbances

  • O. Ya. Kaufman


This paper presents some results of a 15-year study of cytophysiological regularities of post-natal compensatory growth of mammalian vascular wall smooth muscle tissue in conditions of regional hemodynamic disruption; the increase or decrease of blood pressure at a limited length of the vessel bed [1]. The ideas on which these studies are based proceed from the concepts of Thoma [2, 3], an outstanding pathoanatomist and biophysicist who at one time worked in Tartu, Russia [4], and then in Heidelberg. He was the first to indicate that the vessel structure reflects the tangential tension intensity of its wall.


Smooth Muscle Cell Matrix Vesicle Smooth Muscle Tissue Muscular Tunic Smooth Muscle Cell Hypertrophy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Esipova IK (1963) Regional hypertonia and hypertonus of vessels according to pathological anatomy data. In: IK Esipova (ed) Regional hypertension and their possible significance in the pathogenesis of some diseases, pp 5–11Google Scholar
  2. 2.
    Thoma R (1911) Über die Histomechanik des Gefäß-Systems und die Pathogenese der Angiosklerose. Virchows Arch [Pathol Anat] 204:1–74CrossRefGoogle Scholar
  3. 3.
    Thoma R (1920) Über die Strömung des Blutes in Gefäßbahn und die Spannung der Gefäßwand. Beitr. Pathol Anat 66:92–158, 259–329, 377–432Google Scholar
  4. 4.
    Veresaev V (1961) Memoirs. In: Veresaev V, Collected works, vol. 5. Pravda pp 309–310Google Scholar
  5. 5.
    Kaufman OY (1977) Hypertrophy andregeneration of smooth muscle cells. Nauka, MoscowGoogle Scholar
  6. 6.
    Kaufman OY, Shenderov SM, Zaharov AG, Ragoza AN (1972) Atrophy of smooth muscle cells of the caudal region of peritoneum aorta and its branches in rats at experimental regional hypotomy. Bull Exp Biol Med 12:35–38Google Scholar
  7. 7.
    Shenderov SM, Zaharov AG, Ragoza AN, Kaufman OY (1972) Hemodynamics and state of resistive small caliber vessels at prolonged regional hypotonia in rats. In: Cheznuh AM (ed) Microcirculation. Ed. prof. A. M. Cheznuh p 143–145Google Scholar
  8. 8.
    Piatnitsky NN, Blinkov YA (1969) On the modelling of general venous immobility in small laboratory animals. Cardiology 1:143–145Google Scholar
  9. 9.
    Kaufman OY (1968) Morphology of vessel intima smooth muscle cells at some regional hemodynamic changes. Arch Pathol 11:22–26Google Scholar
  10. 10.
    Meerson FZ, Kaufman OY, Radzievsky SA (1971) Dynamics of protein synthesis and nuclear dimensions in intramural coronary artery smooth muscle cells at compensatory hypertrophy of the myocard. Cardiology 8:39–44Google Scholar
  11. 11.
    Kaufman OY, Pomoynitsky VD, Rukosuev VS, Morozov YE (1974) Reaction of vascular wall smooth muscle cells to increase of functional loading. Bull Exp Biol Med 7:113–116Google Scholar
  12. 12.
    Kaufman OY (1976) Mitoses in the hypertrophied smooth muscle tissue of vena cava posterior of rats. Bull Exp Biol Med 4:485–487Google Scholar
  13. 13.
    Philipova NA, Kaufman OY, Perov YL, Boykov AK, Rayhlin NT (1976) Electron microscopy autoradiography of DNA-synthesizing growing smooth muscle tissue. Bull Exp Biol Med 7:881–883Google Scholar
  14. 14.
    Pozdnyakov OM, Kaufman OY (1980) Ultrastructural changes of vena cava posterior of rats at disturbance of blood outflow. Bull Exp Biol Med 7:111–114Google Scholar
  15. 15.
    Campbell G, Uehara Y, Malmfors T, Burnstock G (1971) Degeneration and regeneration of smooth muscle transplants in the anterior eye chambers. Z Zellforsch, 117/2:155–175PubMedCrossRefGoogle Scholar
  16. 16.
    Smith P, Heath D (1978) Evagination of vascular smooth muscle cells during the early stages of crotalaria pulmonary hypertension. J Pathol 124:177–183PubMedCrossRefGoogle Scholar
  17. 17.
    Stetz EM, Majno G, Joris I (1979) Cellular pathology of rat aorta. Virchows Arch [Pathol Anat] 383:135–148CrossRefGoogle Scholar
  18. 18.
    Ross R, Glomsett JA (1973) Atherosclerosis and arterial smooth muscle cell. Science 180:1332–1339PubMedCrossRefGoogle Scholar
  19. 19.
    Cavallero Z (1972) The arterial smooth muscle endothelial unity in atherogenesis. In: Microcirculation and blood circulation at normal, pathology and clinic, p 25–26Google Scholar
  20. 20.
    Scott RI, Thomas WA, Reiner JM (1979) Extent of endothelial cell loss over intimal smooth muscle cell masses (cushions) in aortas of swine fed normolipidemic diets for 60 days. Circulation 60/4/2:656Google Scholar
  21. 21.
    Thomas VA, Florentin RA, Reiner JM, Lee WM, Lee KT (1976) Alteration in population dynamics of arterial SMC during atherogenesis. IV. Evidence for a polyclonal origin of hypercholesterolemic diet-induced atherosclerotic lesions in young swine. Exp Mol Pathol 24/2:244–260PubMedCrossRefGoogle Scholar
  22. 22.
    Massman J, Jellinek H (1980) Hematogenetic cell infiltration of the aortic intima in normal and hypercholesterolemic swine. Exp Pathol 18/1:11–24Google Scholar
  23. 23.
    Kaufman OY, Perov YL, Boikov AK (1977) Significance of injury for appearance of “activated” smooth muscle cells. Bull Exp Biol Med 7:112–115Google Scholar
  24. 24.
    Riede UN, Staubesand J (1977) A unifying concept for the role of matrix vesicles and lysosomes in the formal pathogenesis of diseases of connective tissue and blood vessels. Beitr Pathol 160/1:3–37PubMedGoogle Scholar
  25. 25.
    Staubesand J (1977) Intracellular collagen in smooth muscle: the fine structure of arteficcially occluded rat artery and ureter and human varicose and arteriosclerotic vessels. Beitr Pathol 161/2:187–193PubMedGoogle Scholar
  26. 26.
    Jores I, Majno G (1974) Cellular breakdown within the arterial wall. Virchows Arch 364/ 1:111–127Google Scholar
  27. 27.
    Staubesand J, Rott G, Gerlach U (1978) Arteries of rats suffering from genetic and renal hypertension. Pathol Res Pract 163:109–114PubMedGoogle Scholar
  28. 28.
    Staubesand J (1978) Matrix Vesikel und Mediadysplasie: ein neues Konzept zur normalen Pathogenese der Variköse. Phlebol Proktol 7/2:109–140Google Scholar
  29. 29.
    Burnstock G, Costa M (1979) Adrenergic neurons (Russian translation). Nauka and Tekhnika, MinskGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1982

Authors and Affiliations

  • O. Ya. Kaufman
    • 1
  1. 1.Institute of General Pathology and Pathological PhysiologyUSSR Academy of Medical SciencesMoscowUSSR

Personalised recommendations