Neuroanatomical Pathways Related to Vasopressin

Conference paper
Part of the Current Topics in Neuroendocrinology book series (CT NEUROENDOCRI, volume 4)


Vasopressin and oxytocin are hormones of the neurohypophysis (the posterior pituitary “gland”) best known for their peripheral endocrine effects: regulation of antidiuresis and blood pressure, contraction of smooth muscles of the uterus during labour and of the mammary gland during milk ejection respectively. Additional actions on various peripheral organs have been described, e. g., blood clotting (Mannucci et al. 1975), and liver metabolism (Keppens and De Wulf 1979; Martin and Baverel 1981).


Paraventricular Nucleus Median Eminence Area Postrema Supraoptic Nucleus Subcommissural Organ 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acher R (1980) Molecular evolution of biologically active polypeptides. Proc R Soc Lond [Biol] 210: 21–43Google Scholar
  2. Acher R, Manoussos G, Olivry G (1955) Sur les relations entre l’ocytocine et la Vasopressine d’une part et la proteine de van Dyke d’autre part. Biochem Biophys Acta 16:155— 156Google Scholar
  3. Alonso G, Szafarczyk A, Assenmacher J (1984) Radioautographic evidence for extrahy-pothalamic efferences from the supraoptic nuclei in the rat. Proceed Vllth Int Congr Endocrinol Quebec July 1–7, Elsevier, Amsterdam, p 331Google Scholar
  4. Alvarez-Buy IIa R, Livett BG, Uttenthal LO, Milton SH, Hope DB (1970) Immunohistochemical evidence for the transport of neurophysin in neurosecretory neurones of the dog. Acta Physiol Scand [Suppl] 357: 5Google Scholar
  5. Ananthanrazanan V (1955) Nature and distribution of neurosecretory cells of the reptilian brain. Z Zellforsch Mikroskop Anat 43: 8–16Google Scholar
  6. Antunes JL, Carmel PW, Zimmerman EA (1977) Projections from the paraventricular nucleus to the zona externa of the median eminence in the rhesus monkey: An immunohistochemical study. Brain Res 137: 1–10PubMedGoogle Scholar
  7. Armstrong DM, Pickel VM, Joh TH, Reis DJ, Miller RJ (1981) Immunocytochemical localization of catecholamine synthesizing enzymes and neuropeptides in area postrema and medial nucleus tractus solitarius of rat brain. J Comp Neurol 196: 505–517PubMedGoogle Scholar
  8. Armstrong DM, Pickel VM, Reis DJ (1982) Electron microscopic immunocytochemical localization of substance P in the area postrema of rat. Brain Res 243: 141–146PubMedGoogle Scholar
  9. Armstrong WE, Warach S, Hatton GI, McNeill TH (1980) Subnuclei in the rat hypothalamic paraventricular nucleus: A cytoarchitectural, horseradish peroxidase and immu-nocytochemical analysis. Neuroscience 5: 1931–1958PubMedGoogle Scholar
  10. Armstrong WE, Schöler J, McNeill TH (1982) Immunocytochemical, Golgi and electron microscopic characterization of putative dendrites in the ventral glial lamina of the rat supraoptic nucleus. Neuroscience 7: 679–694PubMedGoogle Scholar
  11. Bargmann W (1949) Über die neurosekretorische Verknüpfung von Hypothalamus and Neurohypophyse. Z Zellforsch Mikroskop Anat 34: 610–634Google Scholar
  12. Barnard RR jr, Morris M (1982) Cerebrospinal fluid vasopressin and oxytocin: evidence for an osmotic response. Neurosci Lett 29: 275–279PubMedGoogle Scholar
  13. Barnes KL, Ferrario CM, Conomy JP (1979) Comparison of the hemodynamic changes produced by electrical stimulation of the area postrema and nucleus tractus solitarii in the dog. Circ Res 45: 136–143PubMedGoogle Scholar
  14. Barry J (1956) Les voies extra-hypophysaires de la neurosécrétion diencephalique. Bull Assoc Anat (Nancy) 89: 264–276Google Scholar
  15. Barry J (1961) Recherches morphologiques et expérimentales sur la glande diencéphalique et l’appareil hypothalamo-hypophysaire. Ann Scientif Univers Besancon, Zool Physiol 2: 3–133.Google Scholar
  16. Beckwith BE, Petros T, Kanaan-Beckwith S, Couk DI, Haug RJ (1982) Vasopressin analog (DDAVP) facilitates concept learning in human males. Peptides 3: 627–630PubMedGoogle Scholar
  17. Beckwith BE, Couk DI, Till TS (1983) Vasopressin analog influences the performance of males on a reaction time task. Peptides 4: 707–709PubMedGoogle Scholar
  18. Beinfeld MC, Meyer DK, Brownstein M J (1980) Cholecystokinin octapeptide in rat hypothalamo-neurohypophyseal system. Nature 288: 376–378PubMedGoogle Scholar
  19. Berk ML, Reaves TA jr, Hayward JN, Finkelstein JA (1982) The localization of vasotocin and neurophysin neurones in the diencephalon of the pigeon Columba livia. J Comp Neurol 204: 392–406PubMedGoogle Scholar
  20. Berkowitz BA, Sherman S (1982) Characterization of vasopressin analgesia. J Pharmacol Exp Ther 220: 329–334PubMedGoogle Scholar
  21. Berntson GG, Berson BS (1980) Antinociceptive effects of intraventricular or systemic administration of vasopressin in the rat. Life Sei 26: 455–459Google Scholar
  22. Blessing WW, Chalmers JP (1979) Direct projection of catecholamine (presumably dopamine) containing neurons from hypothalamus to spinal cord. Neurosci Lett 11: 35–40PubMedGoogle Scholar
  23. Blessing WW, Sved AF, Reis DJ (1984) Arterial pressure and plasma vasopressin: Regulation by neurons in the caudal ventrolateral medulla of the rabbit. Clin Exp Hypertens [A]6:149–156Google Scholar
  24. Blume HW, Pittmann G J, Renaud LP (1978) Electrophysiological indications of a “vasopressinergic” innervation of the median eminence. Brain Res 155: 153–158PubMedGoogle Scholar
  25. Bodnar RJ, Zimmerman EA, Nilaver G, Mansour A, Thomas LW, Kelly DD, Glusman M (1980) Dissociation of cold-water swim and morphine analgesia in Brattleboro rats with diabetes insipidus. Life Sei 26: 1581–1590Google Scholar
  26. Boer GJ, van Rheenen-Verberg CMH, Uylings HBM (1982) Impaired brain development of the diabetes insipidus Brattleboro rat. Dev Brain Res 3: 557–575Google Scholar
  27. Bonner TI, Brownstein MJ (1984) Vasopressin, tissue-specific defects and the Brattleboro rat. Nature 310: 17PubMedGoogle Scholar
  28. Bons N (1980 a) Charactérisation immunocytochimique des systèmes neurosécréteurs à mesotocine et à vasotocine dans l’encéphale du Canard. C R Seances Acad Sc III 290:113–116Google Scholar
  29. Bons N (1980 b) The Topograhy of mesotocin and vasotocin systems in the brain of the domestic mallard and Japanese quail: Immunocytochemical identification. Cell Tissue Res 213:37–51PubMedGoogle Scholar
  30. Bons N (1983) Immunocytochemical identification of the mesotocin- and vasotocin-producing systems in the brain of temperate and desert lizard species and their modifications by cold exposure. Gen Comp Endocrinol 52: 56–66PubMedGoogle Scholar
  31. Bouchaud C (1979) Evidence for a multiple innervation of subcommissural ependymocytes in the rat. Neurosci Lett 12: 253–258PubMedGoogle Scholar
  32. Bronzino JD, Morgane PJ, Stern WC (1972) EEG synchronization following application of serotonin to area postrema. Am J Physiol 223: 376–383PubMedGoogle Scholar
  33. Brownfield MS, Kozlowski GP (1977) The hypothalamo-choroidal tract I. Immunohisto-chemical demonstration of neurophysin pathways to telencephalic choroid plexuses and cerebrospinal fluid. Cell Tissue Res 178: 111–127PubMedGoogle Scholar
  34. Bugnon C, Fellmann D, Gouget A (1983) Changes in corticoliberin and vasopressin-like immunoreactivities in the zona externa of the median eminence in adrenalectomized rats. Immunocytochemical study. Neurosci Lett 37: 43–49PubMedGoogle Scholar
  35. Buijs RM (1978) Intra- and extrahypothalamic vasopressin and oxytocin pathways in the rat. Pathways to the limbic system, medulla oblongata and spinal cord. Cell Tissue Res 192: 423–435PubMedGoogle Scholar
  36. Buijs RM (1983) Vasopressin and oxytocin - their role in neurotransmission. Pharmacol Ther 22: 127–141PubMedGoogle Scholar
  37. Buijs RM, Pévet P (1980) Vasopressin and oxytocin containing fibres in the pineal gland and subcommissural organ of the rat. Cell Tissue Res 205: 11–17PubMedGoogle Scholar
  38. Buijs RM, Swaab DF (1979) Immunoelectron microscopical demonstration of vasopressin and oxytocin synapses in the rat limbic system. Cell Tissue Res 204: 355–365PubMedGoogle Scholar
  39. Buijs RM, Swaab DF, Dogterom J, Van Leeuwen FW (1978) Intra- and extrahypothalamic vasopressin and oxytocin pathways in the rat. Cell Tissue Res 186: 423–433PubMedGoogle Scholar
  40. Buijs RM, van Heerikhuize JJ (1982) Vasopressin and oxytocin release in the brain: A synaptic event. Brain Res 252: 71–76PubMedGoogle Scholar
  41. Buijs RM, Velis DN, Swaab DF (1980a) Extrahypothalamic vasopressin and oxtocin innervation of fetal and adult rat brain. In: Adaptive capabilities of the nervous system Prog Brain Res 53:159–167Google Scholar
  42. Buijs RM, Velis DN, Swaab DF (1980b) Ontogeny of vasopressin and oxytocin in the fetal rat: Early vasopressinergic innervation of the fetal brain. Peptides 1:315–324Google Scholar
  43. Burbach JPH, De Kloet ER, De Wied D (1980) Oxytocin biotransformation in the rat limbic brain: characterization of peptidase activities and significance in the formation of oxytocin fragments. Brain Res 202: 401–14PubMedGoogle Scholar
  44. Burbach JPH, Koväcs GL, De Wied D, van Nispen JW, Greven HM (1983) A major metabolite of arginine vasopressin in the brain is a highly potent neuropeptide. Science 221: 1310–1312PubMedGoogle Scholar
  45. Burlet A, Chateau M, Czernichow P (1979) Immunocytochemical study of neurohypophysial peptides during corticotropic maturation of infant rats. Cell Tissue Res 201: 315–325PubMedGoogle Scholar
  46. Burlet A, Tonon MC, Tankosic P, Coy D, Vaudry H (1983) Comparative immunocytochemical localization of corticotropin releasing factor (CRF-41) and neurohypophyseal peptides in the brain of Brattleboro and Long-evans rats. Neuroendocrinology 37: 64–72PubMedGoogle Scholar
  47. Caffé AR, Van Leeuwen FW (1983) Vasopressin-immunoreactive cells in the dorsomedial hypothalamic region, medial amygdaloid nucleus and locus coeruleus of the rat. Cell Tissue Res 233: 23–33PubMedGoogle Scholar
  48. Camacho A, Philipps IM (1981) Horseradish peroxidase study in rat of the neural connections of the Organum vasculosum of the lamina terminalis. Neurosci Lett 25: 201–204PubMedGoogle Scholar
  49. Card JP, Moore RY (1982) Ventral lateral geniculate nucleus efferents to the rat supra- chiasmatic nucleus exhibit avian pancreatic polypeptide-like immunoreactivity. J Comp Neurol 206: 390–396PubMedGoogle Scholar
  50. Card JP, Brecha N, Karten HJ, Moore RY (1981) Immunocytochemical localization of vasoactive instestinal polypeptide containing cells and processes in the suprachiasmatic nucleus of the rat. Light and electron microscopic analysis. J Neurosci 1: 1289–1303PubMedGoogle Scholar
  51. Choy VS, Watkins WB (1979) Maturation of the hypothalamo-neurohypophysial system. I. Localization of neurophysin, oxytocin and vasopressin in the hypothalamus and neural lobe of the developing rat brain. Cell Tissue Res 197: 325–336PubMedGoogle Scholar
  52. Church AC (1983) Vasopressin potentiates the stimulation of cyclic AMP accumulation by norepinephrine. Peptides 4: 261–263PubMedGoogle Scholar
  53. Coghlan JP, Penschow JD, Hudson PJ, Niall HD (1984) Hybridization histochemistry: use of recombinant DNA for tissue localizations of specific mRNA populations. Clin Exp Hypertens [A] 6: 63–78Google Scholar
  54. Conrad LCA, Pfaff DW (1976) Efferents from medial basal forebrain and hypothalamus of the rat. II. An autoradiographic study of the anterior hypothalamus. J Comp Neurol 169: 221–262PubMedGoogle Scholar
  55. Coons AH (1956) Histochemistry with labeled antibody. Int Rev Cytol 5: 1–23Google Scholar
  56. Coons AH (1958) Fluorescent methods. In: Danielli JF (ed) General cytochemical methods. Academic Press, New York, pp 399–422Google Scholar
  57. Coulter HD, Elde RP, Unverzagt SL (1981) Co-localization of neurophysin-like and enkephalin-like immunoreactivity in cat pituitary. Peptides 2 [Suppl] 1: 51–55Google Scholar
  58. Crabbe JC, Tigter H (1980) Learning and the development of alcoholtolerance and dependence. The role of vasopressin-like peptides. Trends Neurosci: 20–23Google Scholar
  59. Crabbe JC, Rigter H (1980) Learning and the development of alcohol tolerance and depen- ways in the North American Opossum (.Didelphys virginiana). Studies using the horseradish peroxidase method. J Comp Neurol 179: 169–194Google Scholar
  60. Crine AF, Bredart S, Legros JJ (1981) Effects of exogenous arginine vasopressin on rectal temperature in the albino rat. Hormones Behav 15: 226–231Google Scholar
  61. Cushing H (1932) Paper relating to the pituitary body. In: Hypothalamus and parasympathetic nervous system. Thomas, Springfield Danguir J (1983) Sleep deficits in rats with hereditary diabetes insipidus. Nature 304: 163–164Google Scholar
  62. De Vries GJ, Buijs RM (1983) The origin of the vasopressinergic and oxytocinergic innervation of the rat brain, with special reference to the lateral septum. Brain Res 273: 307–317PubMedGoogle Scholar
  63. De Vries GJ, Buijs RM, Swaab DF (1981) Ontogeny of the vasopressinergic neurons of the nucleus suprachiasmaticus and their extrahypothalamic projections in the rat brain. Presence of a sex difference in the lateral septum. Brain Res 218: 67–78PubMedGoogle Scholar
  64. De Wied D (1976) Behavioral effects of intraventricularly administered vasopressin and vasopressin fragments. Life Sci 19: 685–690PubMedGoogle Scholar
  65. De Wied D (1977) Peptides and behavior. Life Sci 20: 195–204PubMedGoogle Scholar
  66. De Wied D, Versteeg DHG (1979) Neurohypophyseal principles and memory. Fed Proc 38: 2348–2354PubMedGoogle Scholar
  67. De Wied D, Bohus B, van Wimersma Greidanus TJB (1975) Memory deficit in rats with hereditary diabetes insipidus. Brain Res 85: 152–156Google Scholar
  68. De Wied D, Gaffori O, van Ree JM, de Jong W (1984) Central target for the behavioural effects of vasopressin neuropeptides. Nature 308:276–278Google Scholar
  69. Dierickx K (1980) Immunocytochemical localization of the vertebrate cyclic nonapetide neurohypophyseal hormones and neurophysins. Int Rev Cytol 62: 119–185PubMedGoogle Scholar
  70. Dierickx K, Vandesande F (1977) Immunocytochemical demonstration in the external region of the amphibian median eminence of seperate vasotocinergic and mesotocinergic nerve fibers. Cell Tissue Res 177: 47–56PubMedGoogle Scholar
  71. Dierick K, Vandesande F (1979a) Immunocytochemical demonstration of separate vasopressin-neurophysin oxytocin-neurophysin neurons in the human hypothalamus. Cell Tissue Res 196:201–212Google Scholar
  72. Dierickx K, Vandesande F (1979 b) Immunocytochemical localization of somatostatin neurons in the rat hypothalamus. Cell Tissue Res 201:349–359PubMedGoogle Scholar
  73. Dierickx K, Vandesande F, De Mey J (1976) Identification in the external region of the rat median eminence of separate neurophysin-vasopressin and neurophysin-oxytocin containing nerve fibres. Cell Tissue Res 168: 141–151PubMedGoogle Scholar
  74. Dogterom J, van Wimersma Greidanus TB, Swaab DF (1977) Evidence for the release of vasopressin and oxytocin into cerebrospinal fluid: measurements in plasma and CSF of intact and hypophysectomized rats. Neuroendocrinology 24: 108–118PubMedGoogle Scholar
  75. Dogterom J, Snijdewint FGM, Buijs RM (1978 a) The distribution of vasopressin and oxytocin in the rat brain. Neurosci Lett 9:341–346PubMedGoogle Scholar
  76. Dogterom J, van Wimersma Greidaus TB, De Wied D (1978 b) Vasopressin in cerebrospinal fluid and plasma of man, dog and rat. Am J Physiol 234:E463–E467PubMedGoogle Scholar
  77. Dogterom J, Snijdewint FGM, Pevet P, Swaab DF (1980) Studies on the presence of vasopressin, oxytocin and vasotocin in the pineal gland, subcommissural organ and fetal pituitary gland: failure to demonstrate vasotocin in mammals. J Endocrinol 84: 115–123PubMedGoogle Scholar
  78. Dorsa DM, Bottemiller L (1982) Age related changes of vasopressin content of microdis- sected areas of the rat brain. Brain Res 242: 151–156PubMedGoogle Scholar
  79. Dorsa DM, Majumdar LA, Petracca FM, Baskin DG, Cornett LE (1983) Characterization and localization of 3H-arginine8-vasopressin binding to rat kidney and brain tissue. Peptides 4: 699–706PubMedGoogle Scholar
  80. DuVigneaudV (1954) Hormones of the posterior pituitary gland: oxytocin and vasopressin. Harvey Lect 50: 1–26Google Scholar
  81. Dyball RE J, Kemplay SK (1982) Dendritic trees of neurones in the rat supraoptic nucleus. Neuroscience 7: 223–230PubMedGoogle Scholar
  82. Edwards GL, Ritter RC (1981) Ablation of the area postrema causes exaggerated consumption of preferred foods in the rat. Brain Res 216: 265–276PubMedGoogle Scholar
  83. Ellis HK, Watkins WB (1975) Ontogeny of the pig hypothalamic neurosecretory system with particular reference to the distribution of neurophysin. Cell Tissue Res 164: 543–557PubMedGoogle Scholar
  84. Felix D, Akert K (1974) The effect of angiotensin II on neurones of the cat subfornical organ. Brain Res 169: 204–208Google Scholar
  85. Ferrario CM, Barnes KL, Szilagyi JE, Brosnihan KB (1979) Physiological and pharmacological characterization of the area postrema pressor pathways in the normal dog. Hypertension 1: 235–245PubMedGoogle Scholar
  86. Fewtrell WD, House AO, Jamie PF, Oates MR, Cooper JE (1982) Effects of vasopressin on memory and new learning in a brain-injured population. Psychosom Med 12: 423–425Google Scholar
  87. Fields PhA, Eldridge RK, Fuchs A-R, Roberts RF, Fields MJ (1983) Human placental and bovine corpora luteal oxytocin. Endocrinology 112: 1544–1546PubMedGoogle Scholar
  88. Finkelberg F, Kalant H, Le Blanc AE (1978) Effect of vasopressin-like peptides on consumption of ethanol by the rat. Pharmacol Biochem Behav 9: 453–458PubMedGoogle Scholar
  89. Fisher AWF, Price PG, Burford GD, Lederis K (1979) A 3-dimensional reconstruction of the hypothalamo-neurohypophysial system of the rat. The neurons projecting to the neuro/intermediate lobe and those containing vasopressin and somatostatin. Cell Tissue Res 204: 343–354PubMedGoogle Scholar
  90. Flexner JB, Flexner LB, Hoffman PL, Walter R (1977) Dose-response relationships in attenuation of puromycin-induced amnesia by neurohypophyseal peptides. Brain Res 134: 139–144PubMedGoogle Scholar
  91. Flint APF, Sheldrick EL (1983) Evidence for a systemic role for ovarian oxytocin in luteal regressive sheep. J Reprod Fertil 67: 215–225PubMedGoogle Scholar
  92. Fuxe K (1965) Evidence for the existence of monoamine neurons in the central nervous system. IV. Distribution of monoamine nerve terminals in the central nervous system. Acta Physiol Scand 64 [Suppl] 247: 37–85Google Scholar
  93. Fuxe K, Agnati LF, Ganten D, Lang RE, Calza L, Poulsen K, Infantinellina F (1982) Morphometry evaluation of the coexistence of renin-like and oxytocin-like immunoreactivity in nerve cells of the paraventricular hypothalamic nucleus of the rat. Neurosci Lett 33: 19–24PubMedGoogle Scholar
  94. Gainer H, Same Y, Brownstein M J (1977) Biosynthesis and axonal transport of rat neuro-hypophysial proteins and peptides. J Cell Biol 73: 366–381PubMedGoogle Scholar
  95. Ganten D, Fuxe K, Phillips IM, Mann JFE, Ganten U (1978) The brain isoreninangioten- sin system: biochemistry, localization, and possible role in drinking and blood pressure regulation. In: Ganong WF, Martini L (eds) Frontiers in Neuroendocrinology 5 Raven Press, New York, pp 61–99Google Scholar
  96. Gash DM, Thomas GJ (1983) What is the importance of vasopressin in memory processes? Trends Neurosci 6: 197–198Google Scholar
  97. Gash D, Sladek C, Scott D (1980) Cytodifferentiation of the supraoptic nucleus correlated with vasopressin synthesis in the rat. Brain Res 181: 345–355PubMedGoogle Scholar
  98. Gaupp R (1944) Ein weiterer Beitrag zur pathologischen Anatomie des Diabetes insipidus. Z Ges Neurol Psychiatr 177: 50–73Google Scholar
  99. Gauquelin G, Geelen G, Louis F, Allevard AM, Meunier C, Cuisinaud G, Benjanet S, Seidah NG, Chrétien M, Legros J J, Gharib C (1983) Presence of vasopressin, oxytocin and neurophysin in the retina of mammals, effect of light and darkness, comparison with the neuropeptide content of the neurohypophysis and the pineal gland. Peptides 4: 509–515PubMedGoogle Scholar
  100. George IM, Jacobowitz DM (1975) Localization of vasopressin in discrete areas of rat hypothalamus. Brain Res 93: 363–366PubMedGoogle Scholar
  101. Gilberg MP, Cooke JH, Fleetwood-Walker S, Peterson DF (1982) The influence of the paraventriculo-spinal pathway and oxytocin and vasopressin on sympathetic preganglionic neurons. Brain Res 251: 283–290Google Scholar
  102. Girardie J, Remy C (1980) “Particularités histo-cytologiques des prolongements distaux de 2 cellules à „vasopressine-neurophysinelike” du Criquet migrateur. J Physiol (Paris) 76: 265–271Google Scholar
  103. Glick SM, Brownstein M (1980) Vasopressin content of rat brain. Life Sci 27: 1103–1110PubMedGoogle Scholar
  104. Gold PW, Weingartner H, Ballenger JC, Goodwin FK, Post RM (1979) Effects of 1-des- amino-8-D-arginine vasopressin on behavior and cognition in primary affective disorder. Lancet 2: 992–994PubMedGoogle Scholar
  105. Gomori G (1941) Observations with differential stains on human islets of Langerhans. Am J Pathol 17: 395–406PubMedGoogle Scholar
  106. Goossens N, Dierickx K, Vandesande F (1977 a) Immunicytochemical demonstration of the hypothalamo-hypophysial vasotocinergic system of Lampetra fluviatilis. Cell Tissue res 177:317–323PubMedGoogle Scholar
  107. Goosens N, Dierickx K, Vandesande F (1977 b) Immunocytochemical localization of vasotocin and isotocin in the preoptico-neurohypophysial system of teleost. Gen Comp Endocrimol 32:371–375Google Scholar
  108. Goossens N, Dierickx K, Vandesande F (1978) Immunocytochemical study of the neurohypophysial hormone producing system of the lungfish, Protopterus aethiopicus. Cell Tissue Res 190: 69–77PubMedGoogle Scholar
  109. Goosens N, Dierickx K, Vandesande F (1979) Immunocytochemical localization of vasotocin and mesotocin in the hypothalamus of lacertilian reptiles. Cell Tissue Res 200: 223–227Google Scholar
  110. Grimmelikhuijzen CJP, Dierickx K, Boer GJ (1982) Oxytocin/vasopressinlike immunoreactivity is present in the nervous system of hydra. Neurosci 7: 3191–3199Google Scholar
  111. Guldenaar SEF, Wathes DC, Pickering BT (1984) Immunocytochemical evidence for the presence of oxytocin and neurophysin in the large cells of the bovine corpus luteum. Cell Tissue Res 237: 349–352PubMedGoogle Scholar
  112. Hancock MR (1976) Cells of origin of hypothalamo-spinal projections in the rat. Neurosci Lett 3: 179–184PubMedGoogle Scholar
  113. Hanley MR, Benton HP, Lightman SL, Todd K, Bone EA, Fretten P, Palmer S, Kirk CJ, Michell RH (1984) A vasopressin-like peptide in the mammalian sympathetic nervous system. Nature 309: 258–261PubMedGoogle Scholar
  114. Hawthorn J, Ang VTY, Jenkins JS (1980) Localisation of vasopressin in the rat brain. Brain Res 197: 75–81PubMedGoogle Scholar
  115. Hawthorn J, Graham JM, Jenkins JS (1984) Localization of vasopressin in synaptic vesicles of extrahypothalamic rat brain. Life Sci 35: 277–284PubMedGoogle Scholar
  116. Haywood JR, Fink GD, Buggy J, Phillips MI, Brody M J (1980) The area postrema plays no role in the pressor action of angiotensin in the rat. Am J Physiol 239 (Heart Circ Physiol 8): H108–H113PubMedGoogle Scholar
  117. Heller H, Hasan SH, Saifi AQ (1968) Antidiurectic activity in the cerebrospinal fluid. J Endocrinology 41: 273–280Google Scholar
  118. Hoffman PL, Ritzmann RF, Tabakoff B (1980) Neurohypophyseal peptide influences on ethanol tolerance and acute effects of ethanol. Pharmacol Biochem Behav 13 [Suppl 1]: 279–284PubMedGoogle Scholar
  119. Hoorneman EMD, Buijs RM (1982) Vasopressin fiber pathways in the rat brain following suprachiasmatic nucleus lesioning. Brain Res 243: 235–241PubMedGoogle Scholar
  120. Hosoya Y, Matsushita M (1979) Identification and distribution of the spinal and hypophyseal projection neurons in the paraventricular nucleus of the rat. A light and electron microscopic study with the horseradish peroxidase method. Exp Brain Res 35: 315–331PubMedGoogle Scholar
  121. Hosoya Y, Matsushita M (1981) A direct projection from the hypothalamus to the area postrema in the rat, as demonstrated by the HRP and autoradiographic methods. Brain Res 214: 144–149PubMedGoogle Scholar
  122. Hyde TM, Miselis RR (1983) Effects of area postrema/caudal medial nucleus of solitary tract lesions on food intake and body weight. Am J Physiol 244 (Reg Integr Comp Physiol 13): R577–R587PubMedGoogle Scholar
  123. Jenkins JS, Mather HM, Ang VTY (1980) Vasopressin in human cerebrospinal fluid. J Clin Endocr Metab 50: 364–367PubMedGoogle Scholar
  124. Jenkins JS, Ang VTY, Hawthorn J, Rossor MN, Iversen LL (1984) Vasopressin, oxytocin and neurophysins in the human brain and spinal cord. Brain Res 291: 111–117PubMedGoogle Scholar
  125. Jolles J (1983) Vasopressin-like peptides and the treatment of memory disorders in man. In: The neurohypophysis: Structure, function and control. Prog Brain Res 60: 169–182Google Scholar
  126. Kahn P, Abrams GM, Zimmerman E, Carraway R, Leeman S (1980) Neurotensin neurons in the rat hypothalamus. An immunocytochemical study. Endocrinology 107: 47–51PubMedGoogle Scholar
  127. Kalia M, Fuxe K, Hökfelt T, Johansson T, Lang R, Ganten D, Cuello C, Terenius L (1984) Distribution of neuropeptide immunoreactive nerve terminals within the subnuclei of the tractus solitarius of the rat. J Comp Neurol 222: 409–44PubMedGoogle Scholar
  128. Kasson G, Meidan R, Hsueh AJW (1984) Identification of vasopressinlike substances in the rat testis. Proc Vllth Int Congr Endocrinol, Quebec Juli 1-7, Elsevier, Amsterdam, p 938Google Scholar
  129. Kasting NW, Veale WL, Cooper KE (1980) Vasopressin: a homeostatic effector in the febrile process. Neurosci Biol Rev 6: 215–222Google Scholar
  130. Kawata M, Hashimoto K, Takahara J, Sano Y (1983 a) Differences in the distributional pattern of CRF-, oxytocin-, and vasopressin-immunoreactive nerve fibers in the median eminence of the rat. Cell Tissue Res 230:247–258PubMedGoogle Scholar
  131. Kawata M, Ueda S, Sano Y (1983 b) Two types of oxytocin and vasopressin nerve fibers in the intra- and extrahypothalamic neuronal systems as revealed by immunohistorychemistry. Acta Anat (Basel) 116:193–200PubMedGoogle Scholar
  132. Kelly J, Swanson LW (1980) Additional forebrain regions projecting to the posterior pituitary: preoptic region, bed nucleus of the stria terminalis and zona incerta. Brain Res 197: 1–9PubMedGoogle Scholar
  133. Keppens S, De Wulf H (1979) The nature of the hepatic receptors involved in vasopressin-induced glycogenolysis. Biochem Biophys Acta 538: 63–69Google Scholar
  134. Khan-Dawood FS, Dawood MY (1984) Oxytocin content of human fetal pituitary glands. Am J Obstet Gynecol 4: 420–23Google Scholar
  135. Khan-Dawood FS, Marut EL, Dawood MY (1984) Oxytocin in the corpus luteum of the cynomolgus monkey (Macaca fascicularis). Endocrinology 115: 570–574PubMedGoogle Scholar
  136. Kilcoyne M, Hoffman DL, Zimmerman EA (1980) Immunocytochemical localization of angiotensin II and vasopressin in rat hypothalamus: evidence for production in the same neuron. Clin Sei 59: 57s–60sGoogle Scholar
  137. Kiss JZ, Williams TH, Palkovits M (1984) Distributions and projections of cholecystokinin immunoreactive neurons in the hypothalamic paraventricular nucleus of the rat. J Comp Neurol 227: 173–181PubMedGoogle Scholar
  138. Kneisley LW, Biber MP, La Vail JH (1978) A study of the origin of brainstem projections to monkey spinal cord using the retrograde transport method. Exp Neurol 60: 116–139PubMedGoogle Scholar
  139. Kok TP, van der Sluis PJ, Boer GJ (1983) Chemical identification of the vasopressin immunoreactive material present in the rat suprachiasmatic nucleus. Neuropeptides 3: 255–262PubMedGoogle Scholar
  140. Kordower JH, Sikorszky V, Bodnar RJ (1982) Central antinociceptive effects of lysine-vasopressin and an analogue. Peptides 3: 613–617PubMedGoogle Scholar
  141. Korf HW, Moller M (1984) The innervation of the mammalian pineal gland with special reference to central pinealopetal projections. Pineal Res Rev 2: 41–86Google Scholar
  142. Kovacs GL, Bohus B, Versteeg DHG (1979 a) Faciliation of memoty consolidation by vasopressin: mediation by terminals of the of the dorsal noradrenergic bundle? Brain Res 172:73–85PubMedGoogle Scholar
  143. Kovács GL, Bohus B, Versteeg DHG (1979 b) The effects of vasopressin on memory processes: the role of noradrenergic neurotransmission. Neuroscience 4:1529–1537PubMedGoogle Scholar
  144. Kovács GL, Buijs RM, Bohus B, van Wimersma Greidanus TB (1982) Microinjection of arginine 8-vasopressin antiserum into the dorsal hippocampus attenuates passive avoidance behavior in rats. Physiol Behav 28: 45–48PubMedGoogle Scholar
  145. Kozlowski GP, Nilaver G, Zimmerman EA (1983) Distribution of neurohypophysial hormones in the brain. Pharmacol Ther 21: 325–349PubMedGoogle Scholar
  146. Krisch B (1980) Electron microscopic immunocytochemical investigation on the postnatal development of the vasopressin system. Cell Tissue Res 205: 453–471PubMedGoogle Scholar
  147. Kuypers HGJM, Maisky VA (1975) Retrograde axonal transport of horseradish peroxidase from spinal cord to brainstem cell groups in the cat. Neurosci Lett 1: 9–14PubMedGoogle Scholar
  148. Laczi F, Van Ree JM, Balogh L, Szâsz A, Jârdânhâzy T, Wagner A, Gâspâr L, Valkusz Z, Dobranovics I, Szilârd J, Lâzlô FA, De Wied D (1983) Lack of effect of desglycin- amide-arginine-vasopressin (DGAVP) on memory in patients with Korsakoff s syndrome. Acta Endocrinol (Copenh) 104: 177–182Google Scholar
  149. Land H, Schütz G, Schmale H, Richter D (1982) Nucleotide sequence of cloned cDNA encording bovine arginine vasopressin-neurophysin II precursor. Nature 295: 299–303PubMedGoogle Scholar
  150. Land H, Grez M, Ruppert S, Schmale H, Rehbein M, Richter D, Schütz G (1983) Deduced amino acid sequence from the bovine oxytocin-neurophysin I cDNA. Nature 302: 342–344PubMedGoogle Scholar
  151. Le Boeuf A, Lodge J, Eames PG (1978) Vasopressin and memory in Korsakoff syndrome. Lancet:1370Google Scholar
  152. Lechan RM, Nestler JL, Jacobson S, Reichlin S (1980) The hypothalamo-tuberoinfundibu- lar system of the rat as demonstrated by horseradish peroxidase (HRP) microionto-phoresis. Brain Res 195: 13–27PubMedGoogle Scholar
  153. Legait H (1957) Anatomie microscopique des noyaux hypothalamiques neurosécrétoires et de leurs voies efferentes chez la Poule Rhode Island. Acta Neuroveg 15: 252–262Google Scholar
  154. Legait H, Legait E (1957) Les voies extrahypophysaires des noyaux neurosécrétoires hypothalamiques chez les batraciens et les reptiles. Acta Anat (Basel) 30: 429–443Google Scholar
  155. Legros JJ, Gilot P, Seron X, Claessens J, Adam A, Moeglen JM, Audibert A, Berchier P (1978) Influence of vasopressin on learning and memory. Lancet:41–42Google Scholar
  156. Le Moal M, Koob GF, Koda LJ, Bloom FE, Manning M, Sawyer WH, Rivier J (1981) Vasopressor receptor antagonist prevents behavioral effects of vasopressin. Nature 291: 491–493PubMedGoogle Scholar
  157. Leshner AI, Hofstein R, Samuel D, van Wimersma Greidanus TB (1978) Intraventricular injection of antivasopressin serum blocks learned helplessness in rats. Pharmacol Biochem Behav 9: 889–892 (1978)Google Scholar
  158. Lim ATW, Lolait SJ, Barlow JW, Autelitano DJ, Toh BH, Boublik J, Abraham J, Johnston CI, Funder JW (1984) Immunoreactive arginine-vasopressin in Brattleboro rat ovary. Nature 310: 61–64PubMedGoogle Scholar
  159. Lind RW, Ohman LE, Lansing MB, Johnson AK (1983) Transection of subfornical organ neural connections diminishes the pressor response to intravenously infused angiotensin II. Brain Res 275: 361–364PubMedGoogle Scholar
  160. Lindvall O, Björklund A (1974) The organization of the ascending catecholamine neurons system in the rat brain, as revealed by the glyoxylic acid fluorescence method. Acta Physiol Scand [Suppl] 412: 1–48Google Scholar
  161. Lorén I, Alumets J, Hâkanson R, Sundler F (1979) Distribution of gastrin and CCK-like peptides in rat brain. Histochemistry 59: 249–258PubMedGoogle Scholar
  162. Lu CL, Cantin M, Seidah NG, Chrétien M (1982) Distribution pattern in the human pituitary and hypothalamus of a new neuropeptide: the C-terminal glycoprotein-fragment of human propressophysin (CPP). Histochemistry 75: 319–326PubMedGoogle Scholar
  163. Luerssen TG, Robertson GL (1980) Cerebrospinal fluid vasopressin and vasotocin in health and disease. In: Wood JH (ed) Neurobiology of cerebrospinal fluid vol 1. Plenum, New York, pp 613–623Google Scholar
  164. Lutz-Bucher B, Koch B (1983) Characterization of specific receptors for vasopressin in the pituitary gland. Biochem Biophys Res Commun 115: 492–498PubMedGoogle Scholar
  165. Makara GB, Stark E, Karteszi M, Palkovits M, Rappay GY (1981) Effects of paraventricular lesions on stimulated ACTH release and CRF in stalk-median eminence of the rat. J Physiol 240: E441–446Google Scholar
  166. Makino T, Nakazawa K, Ishii K, Haginiwa I, Nakayama A, Iizuka R (1983) Detection of immunoreactive human placental oxytocin and its contractile effect on the uterine muscle. Endocrinol Jpn 30: 389–395PubMedGoogle Scholar
  167. Mannucci PM, Aberg DM, Nilsson BJM, Robertson B (1975) Mechanism of plasminogen activation and factor VIII increase after vasoactive drugs. Br J Haematol 30: 81PubMedGoogle Scholar
  168. Martin G, Baverel G (1981) Vasopressin promotes the metabolism of near-physiological concentration of glutamine in isolated rat liver cells. Biosci Rep 4: 171Google Scholar
  169. Martin R, Voigt KH (1981) Enkephalins co-exist with oxytocin and vasopressin in nerve terminals of rat neurohypophysis. Nature 289: 502–504PubMedGoogle Scholar
  170. Martin R, Geis R, Holl R, Schafer M, Voigt KH (1983a) Co-existence of unrelated peptides in oxytocin and vasopressin terminals of rat neurohypophysis: immunoreactive methionine5-enkephalin, leucine5-enkepghalin- and cholecystokinin-like substances. Neuroscience 8:213–227Google Scholar
  171. Martin R, Moll U, Voigt KH (1983 b) An attempt to characterize by immunocytochemical methods the enkephalin-like material in oxytocin endings of the rat neurohypophysis. Life Sci 33:69–72PubMedGoogle Scholar
  172. Mason WT, Ho YW, Eckenstein F, Hatton GI (1983) Mapping of cholinergic neurones associated with rat supraoptic nucleus: combined immunocytochemical and histochemical identification. Brain Res Bull 11: 617–626PubMedGoogle Scholar
  173. Mason WT, Ho YW, Hatton GI (1984) Axon collaterals of supraoptic neurons: Anatomical and electrophysiological evidence for their existence in the lateral hypothalamus. Neuroscience 11: 169–182PubMedGoogle Scholar
  174. Matsuguchi H, Sharabi FM, Gordon FJ, Johnson AK, Schmid PG (1982) Blood pressure and heart rate responses to microinjection of vasopressin into the nucleus tractus soli- tarius region of the rat. Neuropharmacology 21: 687–693PubMedGoogle Scholar
  175. Matsuura T, Kawata M, Yamada H, Kojima M, Sano Y (1983) Immunohistochemical studies on the peptidergic nerve fibres in the pineal organ of the dog. Arch Histol Jp 46: 373–379Google Scholar
  176. McGlone S, Ritter JJ, Kelley KW (1980) The antiaggressive effect of lithium is abolished by area postrema lesions. Physiol Behav 24: 1095–1100PubMedGoogle Scholar
  177. McKellar S, Loewy AD (1981) Organization of some brain stem afferents to the paraventricular nucleus of the hypothalamus of the rat. Brain Res 217: 351–357PubMedGoogle Scholar
  178. McNeill JR (1983) Role of vasopressin in the control of arterial pressure. Can J Physiol Pharmacol 61: 1226–1235PubMedGoogle Scholar
  179. McNeill TH, Kozlowski GP, Abel JH jr, Zimmerman EA (1976) Neurosecretory pathways in the mallard duck (Anas platyrhynchos) brain: localization by aldehyde fuchsin and immunoperoxidase techniques for neurophysin (NP) and gonadotrophin releasing hormone. Endocrinology 99: 1323–1332PubMedGoogle Scholar
  180. Mens WBJ (1983) Neurohypophyseal hormones in blood, cerebrospinal fluid and brain of the rat. Pharm Weekbl [Sci] 5: 79–80Google Scholar
  181. Mens WBJ, Andringa-Bakker EAD, van Wimersma Greidanus TB (1982) Changes in cerebrospinal fluid levels of vasopressin and oxytocin of the rat during various light-dark regimes. Neurosci Lett 34: 51–56PubMedGoogle Scholar
  182. Meyer DK, Oertel WH, Brownstein MJ (1980) Deafferentation studies on the glutamic acid decarboxylase content of the supraoptic nucleus of the rat. Brain Res 200: 165–168PubMedGoogle Scholar
  183. Micevych P, Elde R (1980) Relationship between enkephalinergic neurons and the vasopressin-oxytocin neuroendocrine system of the cat: an immunohistochemical study. J Comp Neurol 190: 135–146PubMedGoogle Scholar
  184. Michelini LC, Barnes KL, Ferrario CM (1983) Arginine vasopressin modulates the central action of angiotensin II in the dog. Hypertension [Suppl 5] 5: V94–V100Google Scholar
  185. Miselis R (1981) The efferent projections of the subfornical organ of the rat; a circumven- tricular organ within a neural network subserving water balance. Brain Res 230: 1–23PubMedGoogle Scholar
  186. Miselis R (1982) The subfornical organ’s neural connections and their role in water balance. Peptides 3: 501–502PubMedGoogle Scholar
  187. Mollgard K, Wiklund L (1979) Serotonergic synapses on ependymal and hypendymal cells of the rat subcommissural organ. J Neurocytol 8: 445–467PubMedGoogle Scholar
  188. Montastruc JL, Dang Tran L, Montastruc P (1983) Peptides neuro-hypophysaires et con- trole central cardiovasculaire. Arch Mai Coeur 76: 9–12 (1983)Google Scholar
  189. Moore JE (1983) Arginine vasopressin enhances retention of morphine tolerance. Pharmacol Biochem Behav 19: 561–565PubMedGoogle Scholar
  190. Moore RY (1973) Retinohypothalamic projection in mammals. A comparative study. Brain Res 49: 403–109PubMedGoogle Scholar
  191. Moore RY, Halaris AE, Jones BE (1978) Serotonin neurons of the midbrain raphe: Ascending projections. J Comp Neurol 180: 417–438PubMedGoogle Scholar
  192. Moore RY, Gustafson EL, Card PJ (1984) Identical immunoreactivity of afferents to the rat suprachiasmatic nucleus with antisera against avian pancreatic polypeptide, molluscan cardioexcitatory peptide and neuropeptide Y. Cell Tissue Res 236: 41–46PubMedGoogle Scholar
  193. Morris R, Salt THE, Sofroniew MY, Hill RG (1980) Actions of microintophoretically applied oxytocin and immunohistochemical localization of oxytocin, vasopressin and neurophysin in the rat caudal medulla. Neurosci Lett 18: 163–168PubMedGoogle Scholar
  194. Mühlethaler M, Dreifuss JJ, Gähwiler BH (1982) Vasopressin excites hippocampal neurones. Nature 296: 749–751PubMedGoogle Scholar
  195. Mühlethaler M, Raggenbass M, Dreifuss J (1984) Peptides related to vasopressin in invertebrates. Experientia 40: 777–782Google Scholar
  196. Myers RD, Critcher EC, Cornwell NN (1983) Effect of chronic vasopressin treatment on alcohol drinking of Brattleboro HZ and DI rats. Peptides 4: 359–366PubMedGoogle Scholar
  197. Namboodiri MA A, Favilla JT, Klein DC (1981) Pineal N-acetyltransferase is inactivated by disulfide containing peptides: Insulin is the most potent. Science 213: 571–573PubMedGoogle Scholar
  198. Negro-Vilar A, Sanchez-Franco F, Kwiatkowski M, Samson WK (1979) Failure to detect radioimmunoassay able arginine vasotocin in mammalian pineals. Brain Res Bull 4: 789–792PubMedGoogle Scholar
  199. Nicholson HD, Swann RW, Burford GD, Wathes DC, Porter DG, Pickering BT (1984) Identification of oxytocin and vasopressin in the testis and in adrenal tissue. Regul Pept 8: 1141–1146Google Scholar
  200. Nilaver G, Zimmerman EA, Wilkins J, Michaels J, Hoffmann D, Silverman AJ (1980) Magnocellular hypothalamic projections to the lower brain stem and spinal cord of the rat. Neuroendocrinology 30: 150–158PubMedGoogle Scholar
  201. Nilaver G, Mulhern J, Zimmerman EA (1982) Extrahypothalamic neurophysin projections in the brainstem and spinal cord of normal and homozygous Brattleboro rats. In: Brattleboro rat Ann NY Acad Sei 394: 759–763Google Scholar
  202. Nürnberger F, Korf HW (1981) Oxytocin- and vasopressin-immunoreactive nerve fibers in the pineal gland of the hedgehog (Erinaceus europaeus L). Cell Tissue Res 220: 87–97PubMedGoogle Scholar
  203. Nussey SS, Ang VTY, Jenkins JS, Chowdrey HS, Bisset GW (1984) Brattleboro rat adrenal contains vasopressin. Nature 310: 64–66PubMedGoogle Scholar
  204. Oertel W, Tappaz ML, Weindl A (1983) Glutamic acid decarboxylase immunoreactive terminals in the circumventricular organs of the rat. Neurosci Lett [Suppl] 14: S266Google Scholar
  205. Okamura H, Fukui K, Koyama E, Tsutou HLO, Tsutou T, Terubayashi H, Fujisawa H, Ibata Y (1983) Time of vasopressin neuron origin in the mouse hypothalamus: examination by combined technique of immunocytochemistry and 3[H]-thymidine autoradiography. Dev Brain Res 9: 223–226Google Scholar
  206. Olpe HR, Baltzer V (1981) Vasopressin activates noradrenergic neurons in the rat locus coeruleus: A microiontophoretic investigation. Eur J Pharmacol 73: 377–378Google Scholar
  207. Ono TH, Nishimo H, Sasaka K, Muramoto K, Yano I, Simpson A (1978) Paraventricular nucleus connections to spinal cord and pituitary. Neurosci Lett 10: 141–146PubMedGoogle Scholar
  208. Palkovits M (1978) Topography of chemically identified neurons in the central nervous system: A review. Acta Morphol Acad Sei Hung 26: 211–290Google Scholar
  209. Palkovits M (1979) Microchemistry of microdissected hypothalamic nuclear areas. Int Rev Cytol 56: 315–339PubMedGoogle Scholar
  210. Palkovits M (1982) Recent data on neuropeptide mapping in the central nervous system. In: McKerns KG, Pantic V (eds) Hormonally active peptides. Plenum, New York pp 279–306Google Scholar
  211. Paulin C, Dubois PM, Czernichow P, Dubois MP (1978) Immunocytochemical evidence for oxytocin neurons in the human fetal hypothalamus. Cell Tissue Res 188: 259–264PubMedGoogle Scholar
  212. Pavel S, Dimitru I, Klepsh I, Dorescu M (1973) A gonadotropin inhibiting principle in the pineal of human fetuses. Evidence for its identity with vasotocin. Neuroendocrinology 13: 41–46PubMedGoogle Scholar
  213. Pearlmutter AF, Costantini MG, Loeser B (1983) Characterization of 3H-AVP binding sites in particulate preparations of rat brain. Peptides 4: 335–341PubMedGoogle Scholar
  214. Perlow MJ, Reppert SM, Artman HA, Fisher DA, Seif SM, Robinson AG (1982) Oxytocin, vasopressin and estrogen-stimulated neurophysin: Daily patterns of concentration in cerebrospinal fluid. Science 216: 1416–1418PubMedGoogle Scholar
  215. Peterson RP (1966) Magnocellular neurosecretory centers in the rat hypothalamus. J Comp Neurol 128: 181–190PubMedGoogle Scholar
  216. Pevet P, Reinharz AC, Dogterom J (1980) Neurophysins, vasopressin and oxytocin in the bovine pineal gland. Neurosci Lett 16: 301–306PubMedGoogle Scholar
  217. Pfeifer WD, Bookin HB (1978) Vasopressin antagonizes retrograde amnesia in rats following electroconvulsive shock. Pharmacol Biochem Behav 9: 261–263PubMedGoogle Scholar
  218. Phillips ML, Weyhenmeyer J, Felix J, Ganten D, Hoffman WE (1979) Evidence for an endogenous brain renin-angiotensin system. Fed Proc 38: 2260–2266PubMedGoogle Scholar
  219. Pickard GE (1982) The afferent connections of the suprachiasmatic nucleus of the golden hamster with emphasis on the retinohypothalamic projection. J Comp Neurol 211: 65–83PubMedGoogle Scholar
  220. Pickering BT (1976) The molecules of neurosecretion: Their formation, transport and release. Progr Brain Res 45: 161–179Google Scholar
  221. Pickering BT (1984) Precursors and products in the formation of neurohypophyseal hormones. Proceed Vllth Int Congr Endocrinol Quebec July 1-7, Elsevier, Amsterdam, p 144Google Scholar
  222. Piekut DT (1983) Ultrastructural characteristics of vasopressin-containing neurons in the paraventricular nucleus of the hypothalamus. Cell Tissue Res 234: 125–134PubMedGoogle Scholar
  223. Pittman QJ, Blume HW, Renaud LP (1978) Electrophysiological indications that individual hypothalamic neurons innervate both median eminence and neurohypophysis. Brain Res 157: 364–368PubMedGoogle Scholar
  224. Pittman QJ, Blume HW, Renaud LP (1981) Connections of the hypothalamic paraventricular nucleus with the neurohypophysis, median eminence, amygdala, lateral septum and midbrain periaqueductal gray: An electrophysiological study in the rat. Brain Res 215: 15–28PubMedGoogle Scholar
  225. Pittman QJ, Lawrence D, McLean L (1982) Central effects of arginine vasopressin on blood pressure in rats. Endocrinol 110: 1058–1060Google Scholar
  226. Ramaekers F, Rigter H, Leonard BE (1977) Parallel changes in behaviour and hippocampal serotonin metabolism in rats following treatment with desglycinamide lysine vasopressin. Brain Res 120: 485–492PubMedGoogle Scholar
  227. Reaves TA jr, Hayward JN (1979) Immunocytochemical identification of vasopressinergic and oxytocinergic neurons in the hypothalamus of the cat. Cell Tissue Res 196: 117–122PubMedGoogle Scholar
  228. Reinharz AC, Vallotton MB (1977) Presence of two neurophysins in the human pineal gland. Endocrinology 100: 994–1001PubMedGoogle Scholar
  229. Reinharz AC, Czernichow P, Vallotton MB (1974) Neurophysin-like protein in bovine pineal gland. J Endocrinology 62: 35–44Google Scholar
  230. Remy C, Girardie J (1980) Anatomical organisation of two vasopressin-neurophysin-like neurosecretory cells throughout the central nervous system of the migratory locust. Gen Comp Endocrinol 40: 27–35PubMedGoogle Scholar
  231. Renaud LP, Rogers J, Sgro S (1983) Terminal degeneration in supraoptic nucleus following subfornical organ lesions: ultrastructural observations in the rat. Brain Res 275: 365–368PubMedGoogle Scholar
  232. Reppert SM, Artman HG, Swaminathan S, Fisher DA (1981) Vasopressin exhibits a rhythmic daily pattern in cerebrospinal fluid but not in blood. Science 213: 1256–1257PubMedGoogle Scholar
  233. Rexed B (1952) The cytoarchitectonic organization of the spinal cord in the cat. J Comp Neurol 96: 415–95Google Scholar
  234. Rhodes CH, Morrell JI, Pfaff DW (1981) Distribution of estrogen-concentrating, neurophysin-containing magnocellular neurons in the rat hypothalamus as demonstrated by a technique combining steroid autoradiography and immunohistology in the same tissue. Neuroendocrinology 33: 18–23PubMedGoogle Scholar
  235. Ricardo J A, Koh ET (1978) Anatomical evidence of direct projections from the nucleus of the solitary tract to the hypothalamus, amygdala, and other forebrain structures in the rat. Brain Res 153: 1–26PubMedGoogle Scholar
  236. Rigter H, Rijk H, Crabbe JC (1980) Tolerance to ethanol and severity of withdrawal in mice are enhanced by a vasopressin fragment. Eur J Pharmacol 64: 53–68PubMedGoogle Scholar
  237. Ritter S, McGlone JY, Kelley KW (1980) Absence of lithium-induced taste aversion after area postrema lesion. Brain Res 201: 501–506PubMedGoogle Scholar
  238. Robinson ICAF, Jones PM (1982) Neurohypophyseal peptides in cerebrospinal fluid: recent studies. In: Baertschi AJ, Dreifuss JJ (eds) Vasopressin, corticoliberin and opiome- lanocortins. Academic Press, New York, pp 21–32Google Scholar
  239. Rossier J, Battenberg E, Pittman Q, Bayon A, Koda L, Miller R, Guillemin R, Bloom F (1979) Hypothalamic enkephalin neurones may regulate the neurohypophysis. Nature 277: 653–655PubMedGoogle Scholar
  240. Rossor MN, Iversen LL, Hawthorn J, Ang VTY, Jenkins JS (1981) Extrahypothalamic vasopressin in human brain. Brain Res 214: 349–355PubMedGoogle Scholar
  241. Rossor MN, Hunt SP, Iversen LL, Bannister R, Hawthorn J, Ang VTY, Jenkins JS (1982) Extrahypothalamic vasopressin is unchanged in Parkinson’s disease and Huntington’s disease. Brain Res 253: 341–343PubMedGoogle Scholar
  242. Roth KA, Weber E, Barchas ID (1982) Immunoreactive corticotropin releasing factor (CRF) and vasopressin are localized in a subpopulation of the immunoreactive vasopressin cells in the paraventricular nucleus of the hypothalamus. Life Sci 31: 1857–1860PubMedGoogle Scholar
  243. Rubin BS, Menniti VPS, Bridges RS (1983) Intracerebroventricular administration of oxytocin and maternal behavior in rats after prolonged and acute steroid pretreatment. Horm Behav 17: 45–53PubMedGoogle Scholar
  244. Saghal A (1984) A critique of the vasopressin-memory hypothesis. Psychopharmacology 83: 215–218Google Scholar
  245. Saper CB, Loewy AD, Swanson LW, Cowan WM (1976) Direct hypothalamoautonomic connections. Brain Res 117: 305–312PubMedGoogle Scholar
  246. Sar M, Stumpf WE, Miller RJ, Chang KJ, Cuatrecasas P (1978) Immunohistochemical localization of enkephalin in rat brain and spinal cord. J Comp Neurol 182: 17–38PubMedGoogle Scholar
  247. Sawchenko PE (1982) Anatomic relationships between the paraventricular nucleus of the hypothalamus and visceral regulatory mechanisms. Implications for the control of feeding behavior. In: Hoebel BG, Nobin D (eds) Neural basis of feeding and reward. Hear Inst, Brunswick, pp 259:274Google Scholar
  248. Sawchenko PE, Swanson LW (1981) A method for tracing biochemically defined pathways in the central nervous system using combined fluorescence retrograde transport and immunohistochemical techniques. Brain Res 210: 31–51PubMedGoogle Scholar
  249. Sawchenko PE, Swanson LW (1982 a) Immunohistochemical identification of neurons in the paraventricular nucleus of the hypothalamus that project to the medulla or to the spinal cord in the rat. J Comp Neurol 205:260–272PubMedGoogle Scholar
  250. Sawchenko PE, Swanson LW (1982b) The organization of noradrenergic pathways from the brainstem to the paraventricular and supraoptic nuclei in the rat. Brain Res Rev 4:275–325Google Scholar
  251. Sawchenko PE, Swanson LW (1983) The organization and biochemical specificity of afferent projections to the paraventricular and supraoptic nuclei. Prog Brain Res 60: 19–29PubMedGoogle Scholar
  252. Sawchenko PE, Swanson LW (1984) Relationship of oxytocin pathways to the control of neuroendocrine and autonomic function. J Steroid Biochem 20: 1500Google Scholar
  253. Sawchenko PE, Swanson LW, Joseph SA (1982) The distribution and cells of origin of ACTH (l-39)-stained varicosities in the paraventricular and supraoptic nuclei. Brain Res 232: 365–374PubMedGoogle Scholar
  254. Sawchenko PE, Swanson LW, Vale WW (1984) Corticotropin-releasing factor: Co-expression within distinct subsets of oxtocin-, vasopressin and neurotensin-immunoreac- tive neurons in the hypothalamus of the male rat. J Neurosci 4: 1118–1129PubMedGoogle Scholar
  255. Scharrer B (1967) The neurosecretory neuron in neuroendocrine regulatory mechanisms. Am Zool 7: 161–169PubMedGoogle Scholar
  256. Scharrer E (1934 a) Stammt alles Kolloid im Zwischenhirn aus der Hypophyse? Frankf Z Pathol 47:134–142Google Scholar
  257. Scharrer E (1934 b) Über die Beteiligung des Zellkerns an sekretorischen Vorgängen in Nervenzellen: Frankf Z Pathol 47:143–151Google Scholar
  258. Scharrer E, Scharrer B (1939) Secretory cells within the hypothalamus. In: The hypothalamus. Res Publ Assoc Nerv Ment Dis 20: 170–194Google Scholar
  259. Schimchowitsch S, Stoeckel ME, Klein MJ. Garaud JC, Suhmitt G, Porte A (1983a) Oxytocin-immunoreactive nerve fibers in the pars intermedia of the pituitary in the rabbit and here. Cell Tissue 228:255–263Google Scholar
  260. Schimchowitsch S, Stoeckel ME, Vigny A, Porte A (1983b) Oxytocinegic neurons with tyrosine hydroxylase-like immuoreactivity in the paraventricular nucleus of the rabbit hypothalamus. Neurosci Lett 43:55–59Google Scholar
  261. Schneider DR, Felt BT, Goldman H (1982) Desglylcyl-8-arginine vasopressin affects regional mouse brain cyclic AMP content. Pharmacol Biochem Behav 16: 139–143PubMedGoogle Scholar
  262. Schreibmann MP, Halpern LR (1980) The demonstration of neurophysin and arginine vasotocin by immunocytochemical methods in the brain and pituitary gland of the platyflsh, Xiphophorus maculatus. Gen Comp Endocrinol 40: 1–7Google Scholar
  263. Schrell U, Sofroniew MY, Weindl A, Wetzstein R (1983) Analysis of vasopressin projections from the suprachiasmatic nucleus using combined tracer and peptide immunohistochemistry. Neurosci Lett [Suppl] 14: 334Google Scholar
  264. Schubert F, George JM, Rao MB (1981) Vasopressin and oxytocin content of human fetal brain at different stages of gestation. Brain Res 213: 111–117PubMedGoogle Scholar
  265. Schultz WJ, Brownfield MS, Kozlowski GP (1977) The hypothalamochoroidal tract. II. Ultrastructural response of the choroid plexus to vasopressin. Cell Tissue Res 178: 129–141PubMedGoogle Scholar
  266. Seif SM, Robinson AGH, Zimmerman EA, Wilkins J (1978) Plasma neurophysin and vasopressin in the rat: Response to adrenalectomy and steroid replacement. Endocrinology 103: 1009–1015PubMedGoogle Scholar
  267. Sequeira RP, Chaiken IM (1984) Occurence of oxytocin, vasopressin and neurophysins in peripheral nerves. Proceed Vllth Int Congr Endocrinol Quebec, July 1-7, Elsevier, Amsterdam, p 1320Google Scholar
  268. Seybold V, Eide R, Hökfelt T (1981) Terminals of reserpine-sensitive vasopressin-neurophysin neurons in the external layer of the rat median eminence. Endocrinology 108: 1803–1809PubMedGoogle Scholar
  269. Seybold V, Eide R, Hökfelt T (1981) Terminals of reserpine-sensitive vasopressin-neurophysin neurons in the external layer of the rat median eminence. Endocrinology 108: 1803–1809PubMedGoogle Scholar
  270. Sherlock DA, Field PM, Raisman G (1975) Retrograde transport of horseradish peroxidase in the magnocellular neurosecretory system of the rat. Brain Res 88: 403–414PubMedGoogle Scholar
  271. Silverman AJ, Zimmerman EA (1975) Ultrastructural immunocytochemical localization of neurophysin and vasopressin in the median eminence and posterior pituitary of the guinea pig. Cell Tissue Res 159: 291–301PubMedGoogle Scholar
  272. Silverman AJ, Zimmerman EA (1982) Adrenalectomy increases sprouting in a peptidergic neurosecretory system. Neuroscience 7: 2705–2714PubMedGoogle Scholar
  273. Silverman AJ, Zimmerman EA (1983) Magnocellular neurosecretory system. Annu Rev Neurosci 6: 357–380PubMedGoogle Scholar
  274. Silverman AJ, Gadde CA, Zimmerman EA (1980 a) Effects of adrenalectomy on the incorporation of 3H-cytidine in neurophysin and vasopressin-containig neurons of the rat hypothalamus. Neuroendocrinology 30:285–290PubMedGoogle Scholar
  275. Silverman AJ, Goldstein R, Gadde CA (1980 b) The ontogenesis of neurophysin-containing neurons in the muse hypothalamus. Peptides 1:27–44Google Scholar
  276. Silverman AJ, Hoffman D, Gadde CA, Krey LC, Zimmerman EA (1981 a) Adrenal steroid inhibition of the vasopressin-neurophysin neurosecretory system of the median eminence of the rat. Diiferential effects of corticosterone and desoxycorticosterone administration after adrenalectomy. Neuroendocrinology 32:129–133PubMedGoogle Scholar
  277. Silverman AJ, Hoffman DL, Zimmerman EA (1981 b) The descending afferent connections of the paraventricular nucleus of the hypothalamus. Brain Res Bull 6:47–61PubMedGoogle Scholar
  278. Sims K, Hoffman DL, Said SI, Zimmerman EA (1980) Vasoactive intestinal polypeptide (VIP) in mouse and rat brain: an immunocytochemical study. Brain Res 186: 165–183PubMedGoogle Scholar
  279. Sladek CD, Gash DM, Khachaturian H, Scott DE, Sladek JR jr (1980) Maturation of the supraoptic nucleus: A multidisciplinary analysis. Peptides 1 [Suppl l]: 51–67Google Scholar
  280. Sladek CD, Gash DM, Khachaturian H, Scott DE, Sladek JR jr (1980) Maturation of the supraoptic nucleus: A multidisciplinary analysis. Peptides 1 [Suppl 1]: 51–67Google Scholar
  281. Sladek JR Jr, Sladek CD (1983) Anatomical reciprocity between magnocellular peptides and noradrenaline in putative cardiovascular pathways. In: The neurohypophysis: Structure, function and control. Prog Brain Res 60: 437–443Google Scholar
  282. Södersten P, Henning M, Melin P, Ludin S (1983) Vasopressin alters female sexual behaviour by acting on the brain independently of alterations in blood pressure. Nature 301: 608–610PubMedGoogle Scholar
  283. Sofroniew MV (1980) Projections from vasopressin, oxytocin and neurophysin neurons to neural targets in the rat and human. J Histochem Cytochem 28: 475–478PubMedGoogle Scholar
  284. Sofroniew (1982) Vascular and neural projections of hypothalamic neurons producing neurohypophyseal or ACTH-related peptides. In: Baertschi AJ, Dreifuss JJ (eds) Neuroendocrinology of vasopressin, corticoliberin and opiomelanocortins. Academic Press, New York, pp 73–83Google Scholar
  285. Sofroniew MV (1983 a) Morphology of vasopressin oxytocin neurons and their central and vascular projections. In: The neurohypophysis: Structure, function and control. Prog Brain Res 60:101–114PubMedGoogle Scholar
  286. Sofroniew MV (1983 b) Vasopressin and oxytocin in the mammalian brain and spinal cord Trends Neurosci 6:467–72Google Scholar
  287. Sofroniew MV, Glasmann W (1981) Golgi-like immunoperoxidase staining of hypothalamic magnocellular vasopressin, oxytocin and neurophysin neurons in the rat. Neuroscience 6: 619–643PubMedGoogle Scholar
  288. Sofroniew MV, Schrell U (1981) Evidence for a direct projection from oxytocin and vasopressin neurons in the hypothalamic paraventricular nucleus to the medulla oblongata: immunohistochemical visualization of both the horseradish peroxidase transported and the peptide produced by the same neurons. Neurosci Lett 22: 211Google Scholar
  289. Sofroniew MV, Weindl A (1978) Projections from the parvocellular vasopressin and neuro- physin-containing neurons of the suprachiasmatic nucleus. Amer J Anat 153: 391–30PubMedGoogle Scholar
  290. Sofroniew MV, Weindl A (1980) Identification of parvocellular vasopressin and neurophysin neurons in the suprachiasmatic nucleus of a variety of mammals including primates. J Comp Neurol 193: 659–675PubMedGoogle Scholar
  291. Sofroniew MV, Weindl A (1981) Central nervous system distribution of vasopressin, oxytocin and neurophysin. In: Martinez JL, Jensen RA, Messing RB, Rigter H, McGaugh JL, eds. Endogenous peptides and learning and memory processes. Acad Press New York pp 327–369Google Scholar
  292. Sofreniew MV, Weindl A (1982) Neuroanatomical organization and connections of the suprachiasmatic nucleus. In: Aschoff J. Daan S, Groos G (eds) Springer Berlin, Heidelberg, New York, pp 75–86Google Scholar
  293. Sofroniew MV, Weindl A, Wetzstein R (1977) Immunoperoxidase staining of vasopressin in the rat median eminence following adrenalectomy and steroid substitution. Acta Endocrinol [Suppl] 212: 72Google Scholar
  294. Sofroniew MV, Weindl A, Schinko I, Wetzstein R (1979) The distribution of vasopressin-, oxytocin- and neurophysin producing neurons in the guinea pig brain. I. The classical hypothalamo-neurohypophyseal system. Cell Tissue Res 196: 367–384PubMedGoogle Scholar
  295. Sofroniew MV, Weindl A, Schrell U, Wetzstein R (1981) Immunohistochemistry of vasopressin, oxytocin and neurophysin in the hypothalamus and extrahypothalamic regions of the human and primate brains. Acta Histochemica [Suppl] 24: 79–95Google Scholar
  296. Sofroniew MV, Eckenstein F, Schrell U, Cuello AC (1983) Evidence for colocalization of neuroactive substances in hypothalamic neurons. In: Chan-Palay V, Palay SL (eds) Coexistence of neuroactive substances in neurons. Wiley, New York, pp 73–90Google Scholar
  297. Speidel CC (1917) Gland-cells of internal secretion in the spinal cord of the skates. Thesis, Princeton University, USAGoogle Scholar
  298. Sterba G (1974) Ascending neurosecretory pathways of the peptidergic type. In: Knowles F, Vollrath L (eds) Neurosecretion - the final neuroendocrine pathway. Springer, Berlin Heidelberg New York, pp 38–47Google Scholar
  299. Sternberger LA, Hardy PH jr, Cuculis J J, Meyer HG (1970) The unlabeled antibody enzyme method of immunohistochemistry. Preparation and properties of soluble antigen — antibody complex (horseradish peroxidase-antihorseradish peroxidase) and its use in identification of spirochetes. J Histochem Cytochem 18: 315–333PubMedGoogle Scholar
  300. Stillman MA, Recht LD, Rosario SL, Seif SM, Robinson AG, Zimmerman EA (1977) The effects of adrenalectomy and glucocorticoid replacement on vasopressin-neurophysin in the zona externa of the median eminence of the rat. Endocrinol 101: 42–49Google Scholar
  301. Summy-Long JY, Keil LC, Severs WB (1978) Identification of vasopressin in the subfornical organ region: Effects of dehydration. Brain Res 140: 241–250PubMedGoogle Scholar
  302. Sundquist J, Forsling ML, Olsson JE, Äkerlund M (1983) Cerebrospinal fluid arginine vasopressin in degenerative disorders and other neurological diseases. J Neurol Psychiatry 46: 14–17Google Scholar
  303. Swanson LW (1977) Immunohistochemical evidence for a neurophysin-containing autonomic pathway arising in the paraventricular nucleus of the hypothalamus. Brain Res 128: 346–353PubMedGoogle Scholar
  304. Swanson LW, Hartman BK (1980) Biochemical specificity in central pathways related to peripheral and intracerebral homeostatic function. Neurosci Lett 16: 55–60PubMedGoogle Scholar
  305. Swanson LW, Kuypers HGJM (1980) The paraventricular nucleus of the hypothalamus: Cytoarchitectonic subdivisions and organization of projections to the pituitary, dorsal vagal complex, and spinal cord as demonstrated by retrograde fluorescence double-la- beling methods. J Comp Neurol 194: 555–570PubMedGoogle Scholar
  306. Swanson LW, McKellar S (1979) The distribution of oxytocin- and neurophy sin-stained fibers in the spinal cord of the monkey. J Comp Neurol 188: 87–106PubMedGoogle Scholar
  307. Swanson LW, Mogenson GJ (1981) Neural mechanism for the functional coupling of autonomic, endocrine and somatomotor responses in adaptive behavior. Brain Res Rev 3: 1–34Google Scholar
  308. Swanson LW, Sawchenko PE (1980) Paraventricular nucleus: A site for the integration of neuroendocrine and autonomic mechanisms. Neuroendocrinology 31: 410–17PubMedGoogle Scholar
  309. Swanson LW, Sawchenko PE (1983) Hypothalamic integration: organization of the paraventricular and supraoptic nuclei. Annu Rev Neurosci 6: 269–324PubMedGoogle Scholar
  310. Swanson LW, Sawchenko PE, Wiegand SJ, Price JL (1980) Separate neurons in the paraventricular nucleus project to the median eminence and to the medulla or spinal cord. Brain Res 198: 190–195PubMedGoogle Scholar
  311. Swanson LW, Sawchenko PE, Berod A, Hartmann BK, Helle KB, Vanorden DE (1981) An immunohistochemical study of the organization of catecholaminergic cells and terminal fields in the paraventricular and supraoptic nuclei of the hypothalamus. J Comp Neurol 196: 271–285PubMedGoogle Scholar
  312. Tager H, Hohenböken M, Markese G, Dinerstein RJ (1980) Identification and localization of glucagon-related peptides in rat brain. Proc Natl Acad Sei USA 77: 6229–6233Google Scholar
  313. Tanaka M, Versteeg DHG, De Wied D (1977) Regional effects of vasopressin on rat brain catecholamine metabolism. Neurosci Lett 4: 321–325PubMedGoogle Scholar
  314. Tigges J, Shantha TR (1969) A stereotaxic brain atlas of the tree shrew (Tupaia glis).Google Scholar
  315. Williams and Wilkins, Baltimore Tribollet E, Dreifuss J J (1981) Localization of neurones projecting to the hypothalamic paraventricular nucleus area of the rat: a horseradish peroxidase study. Neurosci 6: 1315–1328Google Scholar
  316. Ueda S, Kawata M, Sano Y (1983) Identification of serotonin- and vasopressin immunoreactivities in the suprachiasmatic nucleus of four mammalian species. Cell Tissue Res 234: 237–248PubMedGoogle Scholar
  317. Van den Dungen HM, Buijs RM, Pool CW, Terlou M (1982) The distribution of vasotocin and isotocin in the brain of the rainbow trout. J Comp Neurol 212: 146–157PubMedGoogle Scholar
  318. Van den Pol A (1982) The magnocellular and parvocellular paraventricular nucleus of the rat: intrinsic organization. J Comp Neurol 206: 317–345PubMedGoogle Scholar
  319. Vanderhaeghen JJ, Lotstra F, De Mey J, Gilles C (1980) Immunohistochemical localization of cholecystokinin- and gastrin-like peptide in the brain and hypophysis of the rat. Proc Natl Acad Sei USA 77: 1190–1194Google Scholar
  320. Vanderhaeghen J J, Lotstra F, Vandesande F, Dierickx K (1981) Coexistence of cholecystokinin and oxytocin-neurophysin in some magnocellular hypothalamo-hypophyseal neurons. Cell Tissue Res 221: 227–231PubMedGoogle Scholar
  321. Vanderhaeghen JJ, Lotstra F, Liston DR, Rossier J (1983) Proenkephalin, [metjenkephalin, and oxytocin immunoreactivities are colocalized in bovine hypothalamic magnocellular neurons. Proc Natl Acad Sei USA 80: 5139–5143Google Scholar
  322. Van der Kooy D (1984) Area postrema: site where cholecystokinin acts to decrease food intake. Brain Res 295: 345–347PubMedGoogle Scholar
  323. Van der Kooy D, Koda LY (1983) Organization of the projections of a circumventricular organ. The area postrema in the rat. J Comp Neurol 219: 328–338PubMedGoogle Scholar
  324. Vandesande F, Dierickx K (1975) Identification of the vasopressin producing and of the oxytocin producing neurons in the hypothalamic magnocellular neurosecretory system of the rat. Cell Tissue Res 164: 153–162PubMedGoogle Scholar
  325. Vandesande F, De Mey J, Dierickx K (1974) Identification of neurophysin producing cells. I. The origin of the neurophysin-like substance-containing nerve fibres of the external region of the median eminence of the rat. Cell Tissue Res 151: 157–200Google Scholar
  326. Vandesande F, Dierickx K, De Mey J (1975) Identification of the vasopressin-neurophysin producing neurons of the rat suprachiasmatic nuclei. Cell Tissue Res 156: 377–380PubMedGoogle Scholar
  327. Vandesande F, Dierickx K, De Mey J (1977) The origin of the vasopressinergic and oxy- tocinergic fibres of the external region of the median eminence of the rat hypophysis. Cell Tiss Res 180: 443–52Google Scholar
  328. Van Leeuwen FW, Caffé R (1983) Vasopressin immunoreactive cell bodies in the bed nucleus of the stria terminalis of the rat. Cell Tissue Res 228: 525–534PubMedGoogle Scholar
  329. Van Leeuwen FW, De Vries GJ (1983) Enkephalin-glial interaction and its consequence for vasopressin and oxytocin release from the rat neural lobe. In: The neurohypophysis: Structure, function, control, Prog Brain Res 60: 343–351Google Scholar
  330. Van Leeuwen FW, Wolters P (1983) Light microscopic autoradiographic localization of 3H-arginine-vasopressin binding sites in the rat brain. Neuroscience 41: 61–66Google Scholar
  331. Van Leeuwen FW, Swaab DF, De Raay C (1978) Immunoelectron microscopic localization of vasopressin in the rat suprachiasmatic nucleus. Cell Tissue Res 193: 1–14PubMedGoogle Scholar
  332. Van Leeuwen FW, Pool CW, Sluiter AA (1983) Enkephalin immunoreactivity in synaptoid elements on glial cells in the rat neural lobe. Neuroscience 8: 229–241PubMedGoogle Scholar
  333. Van Ree JM, De Wied D (1977 a) Heroin self-administration is under control of vasopressin. Life Sci 21:315–320PubMedGoogle Scholar
  334. Van Ree JM, De Weid D (1977 b) Modulation of heroin delf-administration by neurohypophyseal principles. Eur J Pharmacol 43:199–202PubMedGoogle Scholar
  335. Van Vossel-Daeninck J, Dierickx K, Van Vossel A, Vandesande F (1979) Electron microscopic immunocytochemical demonstration of separate vasotocinergic and mesotoci- nergic nerve fibers in the median eminence of the frog hypophysis. Cell Tissue Res 204: 29–36PubMedGoogle Scholar
  336. Van Wimersma Greidanus TB (1984) Behavioral effects of neurohypophyseal hormones. Proceed Vllth Int Congr Endocrinol, Quebec July 1-7, Elsevier, Amsterdam, p 30Google Scholar
  337. Van Wimersma Greidanus TB, Dogterom J, De Wied D (1975) Intraventricular administration of anti-vasopressin serum inhibits memory consolidation in rats. Life Sci 16: 637–644Google Scholar
  338. Van Wimersma Greidanus TB, De Wied D (1976) Dorsal hippocampus: a site of action of neuropeptides on avoidance behavior? The Neuropeptides. Pharmacol Biochem Behav 5:Suppl 1, 29–33Google Scholar
  339. Van Wimersma Greidanus TB, Bohus B, Kovàcs GL, Versteeg DHG, Burbach JPH, De Wied D (1983) Sites of behavioral and neurochemical action of ACTH-like peptides and neurohypophyseal hormones. Neurosci Biobehav Rev 7: 453–463PubMedGoogle Scholar
  340. Veenstra JA, Romberg-Privee HM, Schooneveld H (1984) Immunocytochemical localization of peptidergic cells in the neuroendocrine system of the Colorado potato beetle, Leptinotarsa decemlineata, with antisera against vasopressin, vasotocin and oxytocin. Histochemistry 81: 29–34PubMedGoogle Scholar
  341. Versteeg DHG, Tanaka M, De Kloet ER (1978) Catecholamine concentration and turnover in discrete regions of the brain of the homozygous Brattleboro rat deficient in vasopressin. Endocrinology 103: 1654–1661 (1978)Google Scholar
  342. Versteeg DHG, De Kloet ER, Van Wimersma Greidanus TB, De Wied D (1979) Vasopressin modulates the activity of catecholamine containing neurons in specific brain regions. Neurosci Lett 11: 69–73PubMedGoogle Scholar
  343. Vigier J, Portalier P (1979) Efferent projections of the area postrema demonstrated by autoradiography. Arch Ital Biol 117: 308–324PubMedGoogle Scholar
  344. Vigier J, Rouvière A (1979) Afferent and efferent connections of the area postrema demonstrated by the horseradish peroxidase method. Arch Ital Biol 117: 325–339PubMedGoogle Scholar
  345. Voorn P, Buijs RM (1983) An immuno-electronmicroscopical study comparing vasopressin, oxytocin, substance P and enkephalin containing nerve terminals in the nucleus of the solitary tract of the rat. Brain Res 270: 169–173PubMedGoogle Scholar
  346. Yorherr H, Bradbury, Leschelle MWB, Hoghoughi M, Kleeman CR (1968) Antidiuretic hormone in cerebrospinal fluid during endogenous and exogenous changes in its blood level. Endocrinology 83: 246–250Google Scholar
  347. Wali FA (1984) Effects of oxytocin and vasopressin on ganglionic transmission at the rabbit superior cervical ganglion. Pharmacol Res Commun 16: 55–62PubMedGoogle Scholar
  348. Wathes DC, Swann RW (1982) Is oxytocin an ovarian hormone? Nature 297: 225–227PubMedGoogle Scholar
  349. Wathes DC, Swann RW, Pickering BT, Porter DG, Hull MGR, Drife O (1982) Neurohypophysial hormones in the human ovary. Lancet 11: 410–412Google Scholar
  350. Wathes DC, Swann RW, Birkett SD, Porter DG, Pickering BT (1983) Characterization of oxytocin, vasopressin and neurophysin from the bovine corpus luteum. Endocrinology 113: 693–698PubMedGoogle Scholar
  351. Wathes DC, Swann RW, Pickering BT (1984) Variations in oxytocin, vasopressin and neurophysin concentration in the bovine ovary during the oestrus cycle and pregnancy. J Reprod Fertil 71: 551–557PubMedGoogle Scholar
  352. Watkins WB (1975) Immunohistochemical demonstration of neurophysin in the hypotha lamoneurohypophyseal system. Int Rev Cytol 41: 241–284PubMedGoogle Scholar
  353. Watkins WB (1983) Immunohistochemical localization of neurophysin and oxytocin in the sheep corpora lutea. Neuropeptides 7: 51–54Google Scholar
  354. Watkins WB, Choy VJ (1979) Maturation of the hypothalamo-neurohypophyseal system. II. Neurophysin, vasopressin, and oxytocin in the median eminence of the developing rat brain. Cell Tissue Res 197: 337–346PubMedGoogle Scholar
  355. Watkins WB, Choy VJ (1980) The impact of aging on neuronal morphology in the rat hypothalamo-neurohypophysial system: an immunohistochemical study. Peptides 1 [Suppl 1]: 239–245Google Scholar
  356. Watson SJ, Akil H, Fischli W, Goldstein A, Zimmerman E, Nilaver G, van Wimersma Greidanus TB (1982 a) Dynorphin and vasopressin: Common localization in magnocellular neurons. Science 216:85–87PubMedGoogle Scholar
  357. Watson SJ, Seidah NG, Chretien M (1982 b) The carboxy terminus of the precursor to vasopressin and neurphysin and neurophysin: Immunocytochemistry in rat brain. Science 217:833–855Google Scholar
  358. Weber E, Evans CJ, Barchas JD (1982 a) Predominance of the aminoterminal octapeptide fragment of dynorphin in the rat brain regions. Nature 299:77–79PubMedGoogle Scholar
  359. Weber E, Roth KA, Barchas JD (1982 b) Immunohistochemical distribution of alphaneoendorphin/dynorphin neuronal system in rat brain: evidence for colocalization Proc Natl Acad Sci USA 79:3062—3066PubMedGoogle Scholar
  360. Weber E, Geis R, Voigt KH, Barchas JD (1983) Levels of pro-neoendorphin/dynorphin- derived peptides in the hypothalamo-posterior pituitary system of male and female Brattleboro rats. Brain Res 260: 166–171PubMedGoogle Scholar
  361. Weindl A (1973) Neuroendocrine aspects of circumventricular organs. In: Ganong WF, Martini L (eds) Frontiers in Neuroendocrinology. Oxford Univ Press New York, pp 3–32Google Scholar
  362. Weindl A (1983) The blood-brain barrier and its role in the control of circulating hormone effects on the brain. In: Ganten D, Pfaff D (eds) Central cardiovascular control. Springer, Berlin Heidelberg New York Tokyo, pp 151–186 (Current topics in neuroendocrinology 3 )Google Scholar
  363. Weindl A, Sofroniew MV (1978) Neurohormones and circumventricular organs. In: Scott DE, Kozlowski GP, Weindl A (eds) Brain-endocrine interaction III. Neural hormones and reproduction. Karger, Basel, pp 117–137Google Scholar
  364. Weindl A, Sofroniew MV (1980) Immunohistochemical localization of hypothalamic peptide hormones in neural target areas. In: Wuttke W, Weindl A, Voigt KH, Driess RR (eds) Brain and pituitary peptides. Karger, Basel pp 97–109Google Scholar
  365. Weindl A, Sofroniew MV (1981) Relation of neuropeptides to mammalian circumventricular organs. In: Martin JB, Reichlin S, Bick KL (eds) Neurosecretion and brain peptides. Raven, New York, pp 303–320Google Scholar
  366. Weindl A, Sofroniew MV (1982) Peptide neurohormones and circumventricular organs in the pigeon. Front Horm Res 9: 88–104Google Scholar
  367. Weindl A, Sofroniew MV, Mestres P, Wetzstein R (1980) Immunohistochemische Lokali- sation von neurohypophysären Peptiden im Gehirn der Taube (Columba liviä). Anat Anz 74: 769–774Google Scholar
  368. Weindl A, Sofroniew MV, Fuchs E, Wetzstein R (1981) The distribution of neurohypophyseal peptides in the brain of the tree shrew (Tupaia belangen). Folia Morphol (Warsz) 29: 41–45Google Scholar
  369. Weindl A, Bruhn T, Parvizi N, Ellendorff F (1984) Ontogeny of neurohypophyseal peptides containing neurons in the pig brain. In: Ellendorff F, Gluckman P, Parvizi U (eds) Fetal neuroendocrinology. Perinatology Press New York, pp 35–38Google Scholar
  370. Weingartner H, Gold P, Ballenger JC, Smallberg SA, Summers R, Rubinow DR, Post RM, Goodwin FK (1981) Effects of vasopressin on human memory functions. Science 211: 601–603PubMedGoogle Scholar
  371. Whitnall MH, Gainer H, Cox BM, Molineaux CJ (1983) Dynorphin (1–8) is contained within vasopressin neurosecretory vesicles in rat pituitary. Science: 1137–1139Google Scholar
  372. Wiegand SJ, Price JL (1980) The cells of origin of the afferent fibers to the median eminence in the rat. J Comp Neurol 192: 12–19Google Scholar
  373. Wittkowki W, Bock R (1972) Electron microscopical studies of the median eminence following interference with the feedback system anterior and pituitary-adrenal cortex. In: Brain-endocrine interaction. Median eminence, structure and function. Karger, Baserl, pp 171–180Google Scholar
  374. Wolf G, Trautmann B (1977) Ontogeny of the hypothalamo-neurohypophyseal system in rats - an immunohistochemical study. Endokrinologie 19: 222–226Google Scholar
  375. Yamamura HI, Gee KW, Brinton RE, Davis TP, Hadley M, Wamsley JK (1983) Light mi-croscopic autoradiographic visualization of (3H)-arginine vasopressin binding sites in the rat brain. Life Sci 32: 1919–1924PubMedGoogle Scholar
  376. Yamashita H, Inenaga K, Koizumi K (1984) Possible projections from regions of paraventricular and supraoptic nuclei to the spinal cord: electrophysiological studies. Brain Res 296: 373–378PubMedGoogle Scholar
  377. Yulis CR, Rodriguez EM (1982) Neurophysin pathways in the normal and hypophysectomized rat. Cell Tissue Res 227: 93–112PubMedGoogle Scholar
  378. Zandberg P, Palkovits M, De Jong W (1977) The area postrema and control of arterial blood pressure; absence of hypertension after excision of the area postrema in rats. Pflügers Archiv 372: 169–173PubMedGoogle Scholar
  379. Zerbe RL, Kirtland S, Faden AI, Feuerstein G (1983) Central cardiovascular effects of mammalian neurohypophyseal peptides in conscious rats. Peptides 4: 627–630PubMedGoogle Scholar
  380. Zerihun L, Harris M (1981) Electrophysiological identification of neurons of paraventricular nucleus sending axons to both the neurohypophysis and the medulla in the rat. Neuroscience 23: 157–160Google Scholar
  381. Zimmerman EA, Carmel PW, Husain MK, Ferin M, Tannenbaum M, Frantz AG, Robinson AG (1973 a) Vasopressin and neurophysin: high concentration in monkey hypophyseal portal blood. Science 182:925–927PubMedGoogle Scholar
  382. Zimmerman EA, Hsu KC, Robinson AG, Carmel PW, Frantz AG, Tannenbaum M (1973 b) Studies of neurophysin secreting neurons with immunoperoxidase technique employing antibody to bovine neurophysin. I. Light microscopic findings in monkey and bovine tissues. Endocrinology 92:931–940PubMedGoogle Scholar
  383. Zimmerman EA, Krupp L, Hoffman DL, Matthew E and Nilaver G (1980) Exploration of peptidergic pathways in brain by immunocytochemistry: A ten years perspective. Peptides 1 [Suppl 1]: 3–10Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  1. 1.Neurologische Klinik und Poliklinik der Technischen UniversitätMünchen 80Germany

Personalised recommendations