Skip to main content

Neuroanatomical Pathways Related to Vasopressin

  • Conference paper
Neurobiology of Vasopressin

Part of the book series: Current Topics in Neuroendocrinology ((CT NEUROENDOCRI,volume 4))

Abstract

Vasopressin and oxytocin are hormones of the neurohypophysis (the posterior pituitary “gland”) best known for their peripheral endocrine effects: regulation of antidiuresis and blood pressure, contraction of smooth muscles of the uterus during labour and of the mammary gland during milk ejection respectively. Additional actions on various peripheral organs have been described, e. g., blood clotting (Mannucci et al. 1975), and liver metabolism (Keppens and De Wulf 1979; Martin and Baverel 1981).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acher R (1980) Molecular evolution of biologically active polypeptides. Proc R Soc Lond [Biol] 210: 21–43

    CAS  Google Scholar 

  • Acher R, Manoussos G, Olivry G (1955) Sur les relations entre l’ocytocine et la Vasopressine d’une part et la proteine de van Dyke d’autre part. Biochem Biophys Acta 16:155— 156

    Google Scholar 

  • Alonso G, Szafarczyk A, Assenmacher J (1984) Radioautographic evidence for extrahy-pothalamic efferences from the supraoptic nuclei in the rat. Proceed Vllth Int Congr Endocrinol Quebec July 1–7, Elsevier, Amsterdam, p 331

    Google Scholar 

  • Alvarez-Buy IIa R, Livett BG, Uttenthal LO, Milton SH, Hope DB (1970) Immunohistochemical evidence for the transport of neurophysin in neurosecretory neurones of the dog. Acta Physiol Scand [Suppl] 357: 5

    Google Scholar 

  • Ananthanrazanan V (1955) Nature and distribution of neurosecretory cells of the reptilian brain. Z Zellforsch Mikroskop Anat 43: 8–16

    Google Scholar 

  • Antunes JL, Carmel PW, Zimmerman EA (1977) Projections from the paraventricular nucleus to the zona externa of the median eminence in the rhesus monkey: An immunohistochemical study. Brain Res 137: 1–10

    PubMed  CAS  Google Scholar 

  • Armstrong DM, Pickel VM, Joh TH, Reis DJ, Miller RJ (1981) Immunocytochemical localization of catecholamine synthesizing enzymes and neuropeptides in area postrema and medial nucleus tractus solitarius of rat brain. J Comp Neurol 196: 505–517

    PubMed  CAS  Google Scholar 

  • Armstrong DM, Pickel VM, Reis DJ (1982) Electron microscopic immunocytochemical localization of substance P in the area postrema of rat. Brain Res 243: 141–146

    PubMed  CAS  Google Scholar 

  • Armstrong WE, Warach S, Hatton GI, McNeill TH (1980) Subnuclei in the rat hypothalamic paraventricular nucleus: A cytoarchitectural, horseradish peroxidase and immu-nocytochemical analysis. Neuroscience 5: 1931–1958

    PubMed  CAS  Google Scholar 

  • Armstrong WE, Schöler J, McNeill TH (1982) Immunocytochemical, Golgi and electron microscopic characterization of putative dendrites in the ventral glial lamina of the rat supraoptic nucleus. Neuroscience 7: 679–694

    PubMed  CAS  Google Scholar 

  • Bargmann W (1949) Über die neurosekretorische Verknüpfung von Hypothalamus and Neurohypophyse. Z Zellforsch Mikroskop Anat 34: 610–634

    CAS  Google Scholar 

  • Barnard RR jr, Morris M (1982) Cerebrospinal fluid vasopressin and oxytocin: evidence for an osmotic response. Neurosci Lett 29: 275–279

    PubMed  CAS  Google Scholar 

  • Barnes KL, Ferrario CM, Conomy JP (1979) Comparison of the hemodynamic changes produced by electrical stimulation of the area postrema and nucleus tractus solitarii in the dog. Circ Res 45: 136–143

    PubMed  CAS  Google Scholar 

  • Barry J (1956) Les voies extra-hypophysaires de la neurosécrétion diencephalique. Bull Assoc Anat (Nancy) 89: 264–276

    Google Scholar 

  • Barry J (1961) Recherches morphologiques et expérimentales sur la glande diencéphalique et l’appareil hypothalamo-hypophysaire. Ann Scientif Univers Besancon, Zool Physiol 2: 3–133.

    Google Scholar 

  • Beckwith BE, Petros T, Kanaan-Beckwith S, Couk DI, Haug RJ (1982) Vasopressin analog (DDAVP) facilitates concept learning in human males. Peptides 3: 627–630

    PubMed  CAS  Google Scholar 

  • Beckwith BE, Couk DI, Till TS (1983) Vasopressin analog influences the performance of males on a reaction time task. Peptides 4: 707–709

    PubMed  CAS  Google Scholar 

  • Beinfeld MC, Meyer DK, Brownstein M J (1980) Cholecystokinin octapeptide in rat hypothalamo-neurohypophyseal system. Nature 288: 376–378

    PubMed  CAS  Google Scholar 

  • Berk ML, Reaves TA jr, Hayward JN, Finkelstein JA (1982) The localization of vasotocin and neurophysin neurones in the diencephalon of the pigeon Columba livia. J Comp Neurol 204: 392–406

    PubMed  CAS  Google Scholar 

  • Berkowitz BA, Sherman S (1982) Characterization of vasopressin analgesia. J Pharmacol Exp Ther 220: 329–334

    PubMed  CAS  Google Scholar 

  • Berntson GG, Berson BS (1980) Antinociceptive effects of intraventricular or systemic administration of vasopressin in the rat. Life Sei 26: 455–459

    CAS  Google Scholar 

  • Blessing WW, Chalmers JP (1979) Direct projection of catecholamine (presumably dopamine) containing neurons from hypothalamus to spinal cord. Neurosci Lett 11: 35–40

    PubMed  CAS  Google Scholar 

  • Blessing WW, Sved AF, Reis DJ (1984) Arterial pressure and plasma vasopressin: Regulation by neurons in the caudal ventrolateral medulla of the rabbit. Clin Exp Hypertens [A]6:149–156

    Google Scholar 

  • Blume HW, Pittmann G J, Renaud LP (1978) Electrophysiological indications of a “vasopressinergic” innervation of the median eminence. Brain Res 155: 153–158

    PubMed  CAS  Google Scholar 

  • Bodnar RJ, Zimmerman EA, Nilaver G, Mansour A, Thomas LW, Kelly DD, Glusman M (1980) Dissociation of cold-water swim and morphine analgesia in Brattleboro rats with diabetes insipidus. Life Sei 26: 1581–1590

    CAS  Google Scholar 

  • Boer GJ, van Rheenen-Verberg CMH, Uylings HBM (1982) Impaired brain development of the diabetes insipidus Brattleboro rat. Dev Brain Res 3: 557–575

    Google Scholar 

  • Bonner TI, Brownstein MJ (1984) Vasopressin, tissue-specific defects and the Brattleboro rat. Nature 310: 17

    PubMed  CAS  Google Scholar 

  • Bons N (1980 a) Charactérisation immunocytochimique des systèmes neurosécréteurs à mesotocine et à vasotocine dans l’encéphale du Canard. C R Seances Acad Sc III 290:113–116

    Google Scholar 

  • Bons N (1980 b) The Topograhy of mesotocin and vasotocin systems in the brain of the domestic mallard and Japanese quail: Immunocytochemical identification. Cell Tissue Res 213:37–51

    PubMed  CAS  Google Scholar 

  • Bons N (1983) Immunocytochemical identification of the mesotocin- and vasotocin-producing systems in the brain of temperate and desert lizard species and their modifications by cold exposure. Gen Comp Endocrinol 52: 56–66

    PubMed  CAS  Google Scholar 

  • Bouchaud C (1979) Evidence for a multiple innervation of subcommissural ependymocytes in the rat. Neurosci Lett 12: 253–258

    PubMed  CAS  Google Scholar 

  • Bronzino JD, Morgane PJ, Stern WC (1972) EEG synchronization following application of serotonin to area postrema. Am J Physiol 223: 376–383

    PubMed  CAS  Google Scholar 

  • Brownfield MS, Kozlowski GP (1977) The hypothalamo-choroidal tract I. Immunohisto-chemical demonstration of neurophysin pathways to telencephalic choroid plexuses and cerebrospinal fluid. Cell Tissue Res 178: 111–127

    PubMed  CAS  Google Scholar 

  • Bugnon C, Fellmann D, Gouget A (1983) Changes in corticoliberin and vasopressin-like immunoreactivities in the zona externa of the median eminence in adrenalectomized rats. Immunocytochemical study. Neurosci Lett 37: 43–49

    PubMed  CAS  Google Scholar 

  • Buijs RM (1978) Intra- and extrahypothalamic vasopressin and oxytocin pathways in the rat. Pathways to the limbic system, medulla oblongata and spinal cord. Cell Tissue Res 192: 423–435

    PubMed  CAS  Google Scholar 

  • Buijs RM (1983) Vasopressin and oxytocin - their role in neurotransmission. Pharmacol Ther 22: 127–141

    PubMed  CAS  Google Scholar 

  • Buijs RM, Pévet P (1980) Vasopressin and oxytocin containing fibres in the pineal gland and subcommissural organ of the rat. Cell Tissue Res 205: 11–17

    PubMed  CAS  Google Scholar 

  • Buijs RM, Swaab DF (1979) Immunoelectron microscopical demonstration of vasopressin and oxytocin synapses in the rat limbic system. Cell Tissue Res 204: 355–365

    PubMed  CAS  Google Scholar 

  • Buijs RM, Swaab DF, Dogterom J, Van Leeuwen FW (1978) Intra- and extrahypothalamic vasopressin and oxytocin pathways in the rat. Cell Tissue Res 186: 423–433

    PubMed  CAS  Google Scholar 

  • Buijs RM, van Heerikhuize JJ (1982) Vasopressin and oxytocin release in the brain: A synaptic event. Brain Res 252: 71–76

    PubMed  CAS  Google Scholar 

  • Buijs RM, Velis DN, Swaab DF (1980a) Extrahypothalamic vasopressin and oxtocin innervation of fetal and adult rat brain. In: Adaptive capabilities of the nervous system Prog Brain Res 53:159–167

    CAS  Google Scholar 

  • Buijs RM, Velis DN, Swaab DF (1980b) Ontogeny of vasopressin and oxytocin in the fetal rat: Early vasopressinergic innervation of the fetal brain. Peptides 1:315–324

    CAS  Google Scholar 

  • Burbach JPH, De Kloet ER, De Wied D (1980) Oxytocin biotransformation in the rat limbic brain: characterization of peptidase activities and significance in the formation of oxytocin fragments. Brain Res 202: 401–14

    PubMed  CAS  Google Scholar 

  • Burbach JPH, Koväcs GL, De Wied D, van Nispen JW, Greven HM (1983) A major metabolite of arginine vasopressin in the brain is a highly potent neuropeptide. Science 221: 1310–1312

    PubMed  CAS  Google Scholar 

  • Burlet A, Chateau M, Czernichow P (1979) Immunocytochemical study of neurohypophysial peptides during corticotropic maturation of infant rats. Cell Tissue Res 201: 315–325

    PubMed  CAS  Google Scholar 

  • Burlet A, Tonon MC, Tankosic P, Coy D, Vaudry H (1983) Comparative immunocytochemical localization of corticotropin releasing factor (CRF-41) and neurohypophyseal peptides in the brain of Brattleboro and Long-evans rats. Neuroendocrinology 37: 64–72

    PubMed  CAS  Google Scholar 

  • Caffé AR, Van Leeuwen FW (1983) Vasopressin-immunoreactive cells in the dorsomedial hypothalamic region, medial amygdaloid nucleus and locus coeruleus of the rat. Cell Tissue Res 233: 23–33

    PubMed  Google Scholar 

  • Camacho A, Philipps IM (1981) Horseradish peroxidase study in rat of the neural connections of the Organum vasculosum of the lamina terminalis. Neurosci Lett 25: 201–204

    PubMed  CAS  Google Scholar 

  • Card JP, Moore RY (1982) Ventral lateral geniculate nucleus efferents to the rat supra- chiasmatic nucleus exhibit avian pancreatic polypeptide-like immunoreactivity. J Comp Neurol 206: 390–396

    PubMed  CAS  Google Scholar 

  • Card JP, Brecha N, Karten HJ, Moore RY (1981) Immunocytochemical localization of vasoactive instestinal polypeptide containing cells and processes in the suprachiasmatic nucleus of the rat. Light and electron microscopic analysis. J Neurosci 1: 1289–1303

    PubMed  CAS  Google Scholar 

  • Choy VS, Watkins WB (1979) Maturation of the hypothalamo-neurohypophysial system. I. Localization of neurophysin, oxytocin and vasopressin in the hypothalamus and neural lobe of the developing rat brain. Cell Tissue Res 197: 325–336

    PubMed  CAS  Google Scholar 

  • Church AC (1983) Vasopressin potentiates the stimulation of cyclic AMP accumulation by norepinephrine. Peptides 4: 261–263

    PubMed  CAS  Google Scholar 

  • Coghlan JP, Penschow JD, Hudson PJ, Niall HD (1984) Hybridization histochemistry: use of recombinant DNA for tissue localizations of specific mRNA populations. Clin Exp Hypertens [A] 6: 63–78

    CAS  Google Scholar 

  • Conrad LCA, Pfaff DW (1976) Efferents from medial basal forebrain and hypothalamus of the rat. II. An autoradiographic study of the anterior hypothalamus. J Comp Neurol 169: 221–262

    PubMed  CAS  Google Scholar 

  • Coons AH (1956) Histochemistry with labeled antibody. Int Rev Cytol 5: 1–23

    CAS  Google Scholar 

  • Coons AH (1958) Fluorescent methods. In: Danielli JF (ed) General cytochemical methods. Academic Press, New York, pp 399–422

    Google Scholar 

  • Coulter HD, Elde RP, Unverzagt SL (1981) Co-localization of neurophysin-like and enkephalin-like immunoreactivity in cat pituitary. Peptides 2 [Suppl] 1: 51–55

    Google Scholar 

  • Crabbe JC, Tigter H (1980) Learning and the development of alcoholtolerance and dependence. The role of vasopressin-like peptides. Trends Neurosci: 20–23

    Google Scholar 

  • Crabbe JC, Rigter H (1980) Learning and the development of alcohol tolerance and depen- ways in the North American Opossum (.Didelphys virginiana). Studies using the horseradish peroxidase method. J Comp Neurol 179: 169–194

    Google Scholar 

  • Crine AF, Bredart S, Legros JJ (1981) Effects of exogenous arginine vasopressin on rectal temperature in the albino rat. Hormones Behav 15: 226–231

    CAS  Google Scholar 

  • Cushing H (1932) Paper relating to the pituitary body. In: Hypothalamus and parasympathetic nervous system. Thomas, Springfield Danguir J (1983) Sleep deficits in rats with hereditary diabetes insipidus. Nature 304: 163–164

    Google Scholar 

  • De Vries GJ, Buijs RM (1983) The origin of the vasopressinergic and oxytocinergic innervation of the rat brain, with special reference to the lateral septum. Brain Res 273: 307–317

    PubMed  Google Scholar 

  • De Vries GJ, Buijs RM, Swaab DF (1981) Ontogeny of the vasopressinergic neurons of the nucleus suprachiasmaticus and their extrahypothalamic projections in the rat brain. Presence of a sex difference in the lateral septum. Brain Res 218: 67–78

    PubMed  Google Scholar 

  • De Wied D (1976) Behavioral effects of intraventricularly administered vasopressin and vasopressin fragments. Life Sci 19: 685–690

    PubMed  Google Scholar 

  • De Wied D (1977) Peptides and behavior. Life Sci 20: 195–204

    PubMed  Google Scholar 

  • De Wied D, Versteeg DHG (1979) Neurohypophyseal principles and memory. Fed Proc 38: 2348–2354

    PubMed  Google Scholar 

  • De Wied D, Bohus B, van Wimersma Greidanus TJB (1975) Memory deficit in rats with hereditary diabetes insipidus. Brain Res 85: 152–156

    Google Scholar 

  • De Wied D, Gaffori O, van Ree JM, de Jong W (1984) Central target for the behavioural effects of vasopressin neuropeptides. Nature 308:276–278

    Google Scholar 

  • Dierickx K (1980) Immunocytochemical localization of the vertebrate cyclic nonapetide neurohypophyseal hormones and neurophysins. Int Rev Cytol 62: 119–185

    PubMed  CAS  Google Scholar 

  • Dierickx K, Vandesande F (1977) Immunocytochemical demonstration in the external region of the amphibian median eminence of seperate vasotocinergic and mesotocinergic nerve fibers. Cell Tissue Res 177: 47–56

    PubMed  CAS  Google Scholar 

  • Dierick K, Vandesande F (1979a) Immunocytochemical demonstration of separate vasopressin-neurophysin oxytocin-neurophysin neurons in the human hypothalamus. Cell Tissue Res 196:201–212

    Google Scholar 

  • Dierickx K, Vandesande F (1979 b) Immunocytochemical localization of somatostatin neurons in the rat hypothalamus. Cell Tissue Res 201:349–359

    PubMed  CAS  Google Scholar 

  • Dierickx K, Vandesande F, De Mey J (1976) Identification in the external region of the rat median eminence of separate neurophysin-vasopressin and neurophysin-oxytocin containing nerve fibres. Cell Tissue Res 168: 141–151

    PubMed  CAS  Google Scholar 

  • Dogterom J, van Wimersma Greidanus TB, Swaab DF (1977) Evidence for the release of vasopressin and oxytocin into cerebrospinal fluid: measurements in plasma and CSF of intact and hypophysectomized rats. Neuroendocrinology 24: 108–118

    PubMed  CAS  Google Scholar 

  • Dogterom J, Snijdewint FGM, Buijs RM (1978 a) The distribution of vasopressin and oxytocin in the rat brain. Neurosci Lett 9:341–346

    PubMed  CAS  Google Scholar 

  • Dogterom J, van Wimersma Greidaus TB, De Wied D (1978 b) Vasopressin in cerebrospinal fluid and plasma of man, dog and rat. Am J Physiol 234:E463–E467

    PubMed  CAS  Google Scholar 

  • Dogterom J, Snijdewint FGM, Pevet P, Swaab DF (1980) Studies on the presence of vasopressin, oxytocin and vasotocin in the pineal gland, subcommissural organ and fetal pituitary gland: failure to demonstrate vasotocin in mammals. J Endocrinol 84: 115–123

    PubMed  CAS  Google Scholar 

  • Dorsa DM, Bottemiller L (1982) Age related changes of vasopressin content of microdis- sected areas of the rat brain. Brain Res 242: 151–156

    PubMed  CAS  Google Scholar 

  • Dorsa DM, Majumdar LA, Petracca FM, Baskin DG, Cornett LE (1983) Characterization and localization of 3H-arginine8-vasopressin binding to rat kidney and brain tissue. Peptides 4: 699–706

    PubMed  CAS  Google Scholar 

  • DuVigneaudV (1954) Hormones of the posterior pituitary gland: oxytocin and vasopressin. Harvey Lect 50: 1–26

    Google Scholar 

  • Dyball RE J, Kemplay SK (1982) Dendritic trees of neurones in the rat supraoptic nucleus. Neuroscience 7: 223–230

    PubMed  CAS  Google Scholar 

  • Edwards GL, Ritter RC (1981) Ablation of the area postrema causes exaggerated consumption of preferred foods in the rat. Brain Res 216: 265–276

    PubMed  CAS  Google Scholar 

  • Ellis HK, Watkins WB (1975) Ontogeny of the pig hypothalamic neurosecretory system with particular reference to the distribution of neurophysin. Cell Tissue Res 164: 543–557

    PubMed  CAS  Google Scholar 

  • Felix D, Akert K (1974) The effect of angiotensin II on neurones of the cat subfornical organ. Brain Res 169: 204–208

    Google Scholar 

  • Ferrario CM, Barnes KL, Szilagyi JE, Brosnihan KB (1979) Physiological and pharmacological characterization of the area postrema pressor pathways in the normal dog. Hypertension 1: 235–245

    PubMed  CAS  Google Scholar 

  • Fewtrell WD, House AO, Jamie PF, Oates MR, Cooper JE (1982) Effects of vasopressin on memory and new learning in a brain-injured population. Psychosom Med 12: 423–425

    CAS  Google Scholar 

  • Fields PhA, Eldridge RK, Fuchs A-R, Roberts RF, Fields MJ (1983) Human placental and bovine corpora luteal oxytocin. Endocrinology 112: 1544–1546

    PubMed  CAS  Google Scholar 

  • Finkelberg F, Kalant H, Le Blanc AE (1978) Effect of vasopressin-like peptides on consumption of ethanol by the rat. Pharmacol Biochem Behav 9: 453–458

    PubMed  CAS  Google Scholar 

  • Fisher AWF, Price PG, Burford GD, Lederis K (1979) A 3-dimensional reconstruction of the hypothalamo-neurohypophysial system of the rat. The neurons projecting to the neuro/intermediate lobe and those containing vasopressin and somatostatin. Cell Tissue Res 204: 343–354

    PubMed  CAS  Google Scholar 

  • Flexner JB, Flexner LB, Hoffman PL, Walter R (1977) Dose-response relationships in attenuation of puromycin-induced amnesia by neurohypophyseal peptides. Brain Res 134: 139–144

    PubMed  CAS  Google Scholar 

  • Flint APF, Sheldrick EL (1983) Evidence for a systemic role for ovarian oxytocin in luteal regressive sheep. J Reprod Fertil 67: 215–225

    PubMed  CAS  Google Scholar 

  • Fuxe K (1965) Evidence for the existence of monoamine neurons in the central nervous system. IV. Distribution of monoamine nerve terminals in the central nervous system. Acta Physiol Scand 64 [Suppl] 247: 37–85

    CAS  Google Scholar 

  • Fuxe K, Agnati LF, Ganten D, Lang RE, Calza L, Poulsen K, Infantinellina F (1982) Morphometry evaluation of the coexistence of renin-like and oxytocin-like immunoreactivity in nerve cells of the paraventricular hypothalamic nucleus of the rat. Neurosci Lett 33: 19–24

    PubMed  CAS  Google Scholar 

  • Gainer H, Same Y, Brownstein M J (1977) Biosynthesis and axonal transport of rat neuro-hypophysial proteins and peptides. J Cell Biol 73: 366–381

    PubMed  CAS  Google Scholar 

  • Ganten D, Fuxe K, Phillips IM, Mann JFE, Ganten U (1978) The brain isoreninangioten- sin system: biochemistry, localization, and possible role in drinking and blood pressure regulation. In: Ganong WF, Martini L (eds) Frontiers in Neuroendocrinology 5 Raven Press, New York, pp 61–99

    Google Scholar 

  • Gash DM, Thomas GJ (1983) What is the importance of vasopressin in memory processes? Trends Neurosci 6: 197–198

    CAS  Google Scholar 

  • Gash D, Sladek C, Scott D (1980) Cytodifferentiation of the supraoptic nucleus correlated with vasopressin synthesis in the rat. Brain Res 181: 345–355

    PubMed  CAS  Google Scholar 

  • Gaupp R (1944) Ein weiterer Beitrag zur pathologischen Anatomie des Diabetes insipidus. Z Ges Neurol Psychiatr 177: 50–73

    Google Scholar 

  • Gauquelin G, Geelen G, Louis F, Allevard AM, Meunier C, Cuisinaud G, Benjanet S, Seidah NG, Chrétien M, Legros J J, Gharib C (1983) Presence of vasopressin, oxytocin and neurophysin in the retina of mammals, effect of light and darkness, comparison with the neuropeptide content of the neurohypophysis and the pineal gland. Peptides 4: 509–515

    PubMed  CAS  Google Scholar 

  • George IM, Jacobowitz DM (1975) Localization of vasopressin in discrete areas of rat hypothalamus. Brain Res 93: 363–366

    PubMed  CAS  Google Scholar 

  • Gilberg MP, Cooke JH, Fleetwood-Walker S, Peterson DF (1982) The influence of the paraventriculo-spinal pathway and oxytocin and vasopressin on sympathetic preganglionic neurons. Brain Res 251: 283–290

    Google Scholar 

  • Girardie J, Remy C (1980) “Particularités histo-cytologiques des prolongements distaux de 2 cellules à „vasopressine-neurophysinelike” du Criquet migrateur. J Physiol (Paris) 76: 265–271

    CAS  Google Scholar 

  • Glick SM, Brownstein M (1980) Vasopressin content of rat brain. Life Sci 27: 1103–1110

    PubMed  CAS  Google Scholar 

  • Gold PW, Weingartner H, Ballenger JC, Goodwin FK, Post RM (1979) Effects of 1-des- amino-8-D-arginine vasopressin on behavior and cognition in primary affective disorder. Lancet 2: 992–994

    PubMed  CAS  Google Scholar 

  • Gomori G (1941) Observations with differential stains on human islets of Langerhans. Am J Pathol 17: 395–406

    PubMed  CAS  Google Scholar 

  • Goossens N, Dierickx K, Vandesande F (1977 a) Immunicytochemical demonstration of the hypothalamo-hypophysial vasotocinergic system of Lampetra fluviatilis. Cell Tissue res 177:317–323

    PubMed  CAS  Google Scholar 

  • Goosens N, Dierickx K, Vandesande F (1977 b) Immunocytochemical localization of vasotocin and isotocin in the preoptico-neurohypophysial system of teleost. Gen Comp Endocrimol 32:371–375

    Google Scholar 

  • Goossens N, Dierickx K, Vandesande F (1978) Immunocytochemical study of the neurohypophysial hormone producing system of the lungfish, Protopterus aethiopicus. Cell Tissue Res 190: 69–77

    PubMed  CAS  Google Scholar 

  • Goosens N, Dierickx K, Vandesande F (1979) Immunocytochemical localization of vasotocin and mesotocin in the hypothalamus of lacertilian reptiles. Cell Tissue Res 200: 223–227

    Google Scholar 

  • Grimmelikhuijzen CJP, Dierickx K, Boer GJ (1982) Oxytocin/vasopressinlike immunoreactivity is present in the nervous system of hydra. Neurosci 7: 3191–3199

    CAS  Google Scholar 

  • Guldenaar SEF, Wathes DC, Pickering BT (1984) Immunocytochemical evidence for the presence of oxytocin and neurophysin in the large cells of the bovine corpus luteum. Cell Tissue Res 237: 349–352

    PubMed  CAS  Google Scholar 

  • Hancock MR (1976) Cells of origin of hypothalamo-spinal projections in the rat. Neurosci Lett 3: 179–184

    PubMed  CAS  Google Scholar 

  • Hanley MR, Benton HP, Lightman SL, Todd K, Bone EA, Fretten P, Palmer S, Kirk CJ, Michell RH (1984) A vasopressin-like peptide in the mammalian sympathetic nervous system. Nature 309: 258–261

    PubMed  CAS  Google Scholar 

  • Hawthorn J, Ang VTY, Jenkins JS (1980) Localisation of vasopressin in the rat brain. Brain Res 197: 75–81

    PubMed  CAS  Google Scholar 

  • Hawthorn J, Graham JM, Jenkins JS (1984) Localization of vasopressin in synaptic vesicles of extrahypothalamic rat brain. Life Sci 35: 277–284

    PubMed  CAS  Google Scholar 

  • Haywood JR, Fink GD, Buggy J, Phillips MI, Brody M J (1980) The area postrema plays no role in the pressor action of angiotensin in the rat. Am J Physiol 239 (Heart Circ Physiol 8): H108–H113

    PubMed  CAS  Google Scholar 

  • Heller H, Hasan SH, Saifi AQ (1968) Antidiurectic activity in the cerebrospinal fluid. J Endocrinology 41: 273–280

    CAS  Google Scholar 

  • Hoffman PL, Ritzmann RF, Tabakoff B (1980) Neurohypophyseal peptide influences on ethanol tolerance and acute effects of ethanol. Pharmacol Biochem Behav 13 [Suppl 1]: 279–284

    PubMed  CAS  Google Scholar 

  • Hoorneman EMD, Buijs RM (1982) Vasopressin fiber pathways in the rat brain following suprachiasmatic nucleus lesioning. Brain Res 243: 235–241

    PubMed  CAS  Google Scholar 

  • Hosoya Y, Matsushita M (1979) Identification and distribution of the spinal and hypophyseal projection neurons in the paraventricular nucleus of the rat. A light and electron microscopic study with the horseradish peroxidase method. Exp Brain Res 35: 315–331

    PubMed  CAS  Google Scholar 

  • Hosoya Y, Matsushita M (1981) A direct projection from the hypothalamus to the area postrema in the rat, as demonstrated by the HRP and autoradiographic methods. Brain Res 214: 144–149

    PubMed  CAS  Google Scholar 

  • Hyde TM, Miselis RR (1983) Effects of area postrema/caudal medial nucleus of solitary tract lesions on food intake and body weight. Am J Physiol 244 (Reg Integr Comp Physiol 13): R577–R587

    PubMed  CAS  Google Scholar 

  • Jenkins JS, Mather HM, Ang VTY (1980) Vasopressin in human cerebrospinal fluid. J Clin Endocr Metab 50: 364–367

    PubMed  CAS  Google Scholar 

  • Jenkins JS, Ang VTY, Hawthorn J, Rossor MN, Iversen LL (1984) Vasopressin, oxytocin and neurophysins in the human brain and spinal cord. Brain Res 291: 111–117

    PubMed  CAS  Google Scholar 

  • Jolles J (1983) Vasopressin-like peptides and the treatment of memory disorders in man. In: The neurohypophysis: Structure, function and control. Prog Brain Res 60: 169–182

    Google Scholar 

  • Kahn P, Abrams GM, Zimmerman E, Carraway R, Leeman S (1980) Neurotensin neurons in the rat hypothalamus. An immunocytochemical study. Endocrinology 107: 47–51

    PubMed  CAS  Google Scholar 

  • Kalia M, Fuxe K, Hökfelt T, Johansson T, Lang R, Ganten D, Cuello C, Terenius L (1984) Distribution of neuropeptide immunoreactive nerve terminals within the subnuclei of the tractus solitarius of the rat. J Comp Neurol 222: 409–44

    PubMed  CAS  Google Scholar 

  • Kasson G, Meidan R, Hsueh AJW (1984) Identification of vasopressinlike substances in the rat testis. Proc Vllth Int Congr Endocrinol, Quebec Juli 1-7, Elsevier, Amsterdam, p 938

    Google Scholar 

  • Kasting NW, Veale WL, Cooper KE (1980) Vasopressin: a homeostatic effector in the febrile process. Neurosci Biol Rev 6: 215–222

    Google Scholar 

  • Kawata M, Hashimoto K, Takahara J, Sano Y (1983 a) Differences in the distributional pattern of CRF-, oxytocin-, and vasopressin-immunoreactive nerve fibers in the median eminence of the rat. Cell Tissue Res 230:247–258

    PubMed  CAS  Google Scholar 

  • Kawata M, Ueda S, Sano Y (1983 b) Two types of oxytocin and vasopressin nerve fibers in the intra- and extrahypothalamic neuronal systems as revealed by immunohistorychemistry. Acta Anat (Basel) 116:193–200

    PubMed  CAS  Google Scholar 

  • Kelly J, Swanson LW (1980) Additional forebrain regions projecting to the posterior pituitary: preoptic region, bed nucleus of the stria terminalis and zona incerta. Brain Res 197: 1–9

    PubMed  CAS  Google Scholar 

  • Keppens S, De Wulf H (1979) The nature of the hepatic receptors involved in vasopressin-induced glycogenolysis. Biochem Biophys Acta 538: 63–69

    Google Scholar 

  • Khan-Dawood FS, Dawood MY (1984) Oxytocin content of human fetal pituitary glands. Am J Obstet Gynecol 4: 420–23

    Google Scholar 

  • Khan-Dawood FS, Marut EL, Dawood MY (1984) Oxytocin in the corpus luteum of the cynomolgus monkey (Macaca fascicularis). Endocrinology 115: 570–574

    PubMed  CAS  Google Scholar 

  • Kilcoyne M, Hoffman DL, Zimmerman EA (1980) Immunocytochemical localization of angiotensin II and vasopressin in rat hypothalamus: evidence for production in the same neuron. Clin Sei 59: 57s–60s

    CAS  Google Scholar 

  • Kiss JZ, Williams TH, Palkovits M (1984) Distributions and projections of cholecystokinin immunoreactive neurons in the hypothalamic paraventricular nucleus of the rat. J Comp Neurol 227: 173–181

    PubMed  CAS  Google Scholar 

  • Kneisley LW, Biber MP, La Vail JH (1978) A study of the origin of brainstem projections to monkey spinal cord using the retrograde transport method. Exp Neurol 60: 116–139

    PubMed  CAS  Google Scholar 

  • Kok TP, van der Sluis PJ, Boer GJ (1983) Chemical identification of the vasopressin immunoreactive material present in the rat suprachiasmatic nucleus. Neuropeptides 3: 255–262

    PubMed  CAS  Google Scholar 

  • Kordower JH, Sikorszky V, Bodnar RJ (1982) Central antinociceptive effects of lysine-vasopressin and an analogue. Peptides 3: 613–617

    PubMed  CAS  Google Scholar 

  • Korf HW, Moller M (1984) The innervation of the mammalian pineal gland with special reference to central pinealopetal projections. Pineal Res Rev 2: 41–86

    Google Scholar 

  • Kovacs GL, Bohus B, Versteeg DHG (1979 a) Faciliation of memoty consolidation by vasopressin: mediation by terminals of the of the dorsal noradrenergic bundle? Brain Res 172:73–85

    PubMed  CAS  Google Scholar 

  • Kovács GL, Bohus B, Versteeg DHG (1979 b) The effects of vasopressin on memory processes: the role of noradrenergic neurotransmission. Neuroscience 4:1529–1537

    PubMed  Google Scholar 

  • Kovács GL, Buijs RM, Bohus B, van Wimersma Greidanus TB (1982) Microinjection of arginine 8-vasopressin antiserum into the dorsal hippocampus attenuates passive avoidance behavior in rats. Physiol Behav 28: 45–48

    PubMed  Google Scholar 

  • Kozlowski GP, Nilaver G, Zimmerman EA (1983) Distribution of neurohypophysial hormones in the brain. Pharmacol Ther 21: 325–349

    PubMed  CAS  Google Scholar 

  • Krisch B (1980) Electron microscopic immunocytochemical investigation on the postnatal development of the vasopressin system. Cell Tissue Res 205: 453–471

    PubMed  CAS  Google Scholar 

  • Kuypers HGJM, Maisky VA (1975) Retrograde axonal transport of horseradish peroxidase from spinal cord to brainstem cell groups in the cat. Neurosci Lett 1: 9–14

    PubMed  CAS  Google Scholar 

  • Laczi F, Van Ree JM, Balogh L, Szâsz A, Jârdânhâzy T, Wagner A, Gâspâr L, Valkusz Z, Dobranovics I, Szilârd J, Lâzlô FA, De Wied D (1983) Lack of effect of desglycin- amide-arginine-vasopressin (DGAVP) on memory in patients with Korsakoff s syndrome. Acta Endocrinol (Copenh) 104: 177–182

    CAS  Google Scholar 

  • Land H, Schütz G, Schmale H, Richter D (1982) Nucleotide sequence of cloned cDNA encording bovine arginine vasopressin-neurophysin II precursor. Nature 295: 299–303

    PubMed  CAS  Google Scholar 

  • Land H, Grez M, Ruppert S, Schmale H, Rehbein M, Richter D, Schütz G (1983) Deduced amino acid sequence from the bovine oxytocin-neurophysin I cDNA. Nature 302: 342–344

    PubMed  CAS  Google Scholar 

  • Le Boeuf A, Lodge J, Eames PG (1978) Vasopressin and memory in Korsakoff syndrome. Lancet:1370

    Google Scholar 

  • Lechan RM, Nestler JL, Jacobson S, Reichlin S (1980) The hypothalamo-tuberoinfundibu- lar system of the rat as demonstrated by horseradish peroxidase (HRP) microionto-phoresis. Brain Res 195: 13–27

    PubMed  CAS  Google Scholar 

  • Legait H (1957) Anatomie microscopique des noyaux hypothalamiques neurosécrétoires et de leurs voies efferentes chez la Poule Rhode Island. Acta Neuroveg 15: 252–262

    CAS  Google Scholar 

  • Legait H, Legait E (1957) Les voies extrahypophysaires des noyaux neurosécrétoires hypothalamiques chez les batraciens et les reptiles. Acta Anat (Basel) 30: 429–443

    CAS  Google Scholar 

  • Legros JJ, Gilot P, Seron X, Claessens J, Adam A, Moeglen JM, Audibert A, Berchier P (1978) Influence of vasopressin on learning and memory. Lancet:41–42

    Google Scholar 

  • Le Moal M, Koob GF, Koda LJ, Bloom FE, Manning M, Sawyer WH, Rivier J (1981) Vasopressor receptor antagonist prevents behavioral effects of vasopressin. Nature 291: 491–493

    PubMed  Google Scholar 

  • Leshner AI, Hofstein R, Samuel D, van Wimersma Greidanus TB (1978) Intraventricular injection of antivasopressin serum blocks learned helplessness in rats. Pharmacol Biochem Behav 9: 889–892 (1978)

    Google Scholar 

  • Lim ATW, Lolait SJ, Barlow JW, Autelitano DJ, Toh BH, Boublik J, Abraham J, Johnston CI, Funder JW (1984) Immunoreactive arginine-vasopressin in Brattleboro rat ovary. Nature 310: 61–64

    PubMed  CAS  Google Scholar 

  • Lind RW, Ohman LE, Lansing MB, Johnson AK (1983) Transection of subfornical organ neural connections diminishes the pressor response to intravenously infused angiotensin II. Brain Res 275: 361–364

    PubMed  CAS  Google Scholar 

  • Lindvall O, Björklund A (1974) The organization of the ascending catecholamine neurons system in the rat brain, as revealed by the glyoxylic acid fluorescence method. Acta Physiol Scand [Suppl] 412: 1–48

    CAS  Google Scholar 

  • Lorén I, Alumets J, Hâkanson R, Sundler F (1979) Distribution of gastrin and CCK-like peptides in rat brain. Histochemistry 59: 249–258

    PubMed  Google Scholar 

  • Lu CL, Cantin M, Seidah NG, Chrétien M (1982) Distribution pattern in the human pituitary and hypothalamus of a new neuropeptide: the C-terminal glycoprotein-fragment of human propressophysin (CPP). Histochemistry 75: 319–326

    PubMed  CAS  Google Scholar 

  • Luerssen TG, Robertson GL (1980) Cerebrospinal fluid vasopressin and vasotocin in health and disease. In: Wood JH (ed) Neurobiology of cerebrospinal fluid vol 1. Plenum, New York, pp 613–623

    Google Scholar 

  • Lutz-Bucher B, Koch B (1983) Characterization of specific receptors for vasopressin in the pituitary gland. Biochem Biophys Res Commun 115: 492–498

    PubMed  CAS  Google Scholar 

  • Makara GB, Stark E, Karteszi M, Palkovits M, Rappay GY (1981) Effects of paraventricular lesions on stimulated ACTH release and CRF in stalk-median eminence of the rat. J Physiol 240: E441–446

    CAS  Google Scholar 

  • Makino T, Nakazawa K, Ishii K, Haginiwa I, Nakayama A, Iizuka R (1983) Detection of immunoreactive human placental oxytocin and its contractile effect on the uterine muscle. Endocrinol Jpn 30: 389–395

    PubMed  CAS  Google Scholar 

  • Mannucci PM, Aberg DM, Nilsson BJM, Robertson B (1975) Mechanism of plasminogen activation and factor VIII increase after vasoactive drugs. Br J Haematol 30: 81

    PubMed  CAS  Google Scholar 

  • Martin G, Baverel G (1981) Vasopressin promotes the metabolism of near-physiological concentration of glutamine in isolated rat liver cells. Biosci Rep 4: 171

    Google Scholar 

  • Martin R, Voigt KH (1981) Enkephalins co-exist with oxytocin and vasopressin in nerve terminals of rat neurohypophysis. Nature 289: 502–504

    PubMed  CAS  Google Scholar 

  • Martin R, Geis R, Holl R, Schafer M, Voigt KH (1983a) Co-existence of unrelated peptides in oxytocin and vasopressin terminals of rat neurohypophysis: immunoreactive methionine5-enkephalin, leucine5-enkepghalin- and cholecystokinin-like substances. Neuroscience 8:213–227

    CAS  Google Scholar 

  • Martin R, Moll U, Voigt KH (1983 b) An attempt to characterize by immunocytochemical methods the enkephalin-like material in oxytocin endings of the rat neurohypophysis. Life Sci 33:69–72

    PubMed  CAS  Google Scholar 

  • Mason WT, Ho YW, Eckenstein F, Hatton GI (1983) Mapping of cholinergic neurones associated with rat supraoptic nucleus: combined immunocytochemical and histochemical identification. Brain Res Bull 11: 617–626

    PubMed  CAS  Google Scholar 

  • Mason WT, Ho YW, Hatton GI (1984) Axon collaterals of supraoptic neurons: Anatomical and electrophysiological evidence for their existence in the lateral hypothalamus. Neuroscience 11: 169–182

    PubMed  CAS  Google Scholar 

  • Matsuguchi H, Sharabi FM, Gordon FJ, Johnson AK, Schmid PG (1982) Blood pressure and heart rate responses to microinjection of vasopressin into the nucleus tractus soli- tarius region of the rat. Neuropharmacology 21: 687–693

    PubMed  CAS  Google Scholar 

  • Matsuura T, Kawata M, Yamada H, Kojima M, Sano Y (1983) Immunohistochemical studies on the peptidergic nerve fibres in the pineal organ of the dog. Arch Histol Jp 46: 373–379

    CAS  Google Scholar 

  • McGlone S, Ritter JJ, Kelley KW (1980) The antiaggressive effect of lithium is abolished by area postrema lesions. Physiol Behav 24: 1095–1100

    PubMed  CAS  Google Scholar 

  • McKellar S, Loewy AD (1981) Organization of some brain stem afferents to the paraventricular nucleus of the hypothalamus of the rat. Brain Res 217: 351–357

    PubMed  CAS  Google Scholar 

  • McNeill JR (1983) Role of vasopressin in the control of arterial pressure. Can J Physiol Pharmacol 61: 1226–1235

    PubMed  CAS  Google Scholar 

  • McNeill TH, Kozlowski GP, Abel JH jr, Zimmerman EA (1976) Neurosecretory pathways in the mallard duck (Anas platyrhynchos) brain: localization by aldehyde fuchsin and immunoperoxidase techniques for neurophysin (NP) and gonadotrophin releasing hormone. Endocrinology 99: 1323–1332

    PubMed  CAS  Google Scholar 

  • Mens WBJ (1983) Neurohypophyseal hormones in blood, cerebrospinal fluid and brain of the rat. Pharm Weekbl [Sci] 5: 79–80

    Google Scholar 

  • Mens WBJ, Andringa-Bakker EAD, van Wimersma Greidanus TB (1982) Changes in cerebrospinal fluid levels of vasopressin and oxytocin of the rat during various light-dark regimes. Neurosci Lett 34: 51–56

    PubMed  CAS  Google Scholar 

  • Meyer DK, Oertel WH, Brownstein MJ (1980) Deafferentation studies on the glutamic acid decarboxylase content of the supraoptic nucleus of the rat. Brain Res 200: 165–168

    PubMed  CAS  Google Scholar 

  • Micevych P, Elde R (1980) Relationship between enkephalinergic neurons and the vasopressin-oxytocin neuroendocrine system of the cat: an immunohistochemical study. J Comp Neurol 190: 135–146

    PubMed  CAS  Google Scholar 

  • Michelini LC, Barnes KL, Ferrario CM (1983) Arginine vasopressin modulates the central action of angiotensin II in the dog. Hypertension [Suppl 5] 5: V94–V100

    CAS  Google Scholar 

  • Miselis R (1981) The efferent projections of the subfornical organ of the rat; a circumven- tricular organ within a neural network subserving water balance. Brain Res 230: 1–23

    PubMed  CAS  Google Scholar 

  • Miselis R (1982) The subfornical organ’s neural connections and their role in water balance. Peptides 3: 501–502

    PubMed  CAS  Google Scholar 

  • Mollgard K, Wiklund L (1979) Serotonergic synapses on ependymal and hypendymal cells of the rat subcommissural organ. J Neurocytol 8: 445–467

    PubMed  CAS  Google Scholar 

  • Montastruc JL, Dang Tran L, Montastruc P (1983) Peptides neuro-hypophysaires et con- trole central cardiovasculaire. Arch Mai Coeur 76: 9–12 (1983)

    Google Scholar 

  • Moore JE (1983) Arginine vasopressin enhances retention of morphine tolerance. Pharmacol Biochem Behav 19: 561–565

    PubMed  CAS  Google Scholar 

  • Moore RY (1973) Retinohypothalamic projection in mammals. A comparative study. Brain Res 49: 403–109

    PubMed  CAS  Google Scholar 

  • Moore RY, Halaris AE, Jones BE (1978) Serotonin neurons of the midbrain raphe: Ascending projections. J Comp Neurol 180: 417–438

    PubMed  CAS  Google Scholar 

  • Moore RY, Gustafson EL, Card PJ (1984) Identical immunoreactivity of afferents to the rat suprachiasmatic nucleus with antisera against avian pancreatic polypeptide, molluscan cardioexcitatory peptide and neuropeptide Y. Cell Tissue Res 236: 41–46

    PubMed  CAS  Google Scholar 

  • Morris R, Salt THE, Sofroniew MY, Hill RG (1980) Actions of microintophoretically applied oxytocin and immunohistochemical localization of oxytocin, vasopressin and neurophysin in the rat caudal medulla. Neurosci Lett 18: 163–168

    PubMed  CAS  Google Scholar 

  • Mühlethaler M, Dreifuss JJ, Gähwiler BH (1982) Vasopressin excites hippocampal neurones. Nature 296: 749–751

    PubMed  Google Scholar 

  • Mühlethaler M, Raggenbass M, Dreifuss J (1984) Peptides related to vasopressin in invertebrates. Experientia 40: 777–782

    Google Scholar 

  • Myers RD, Critcher EC, Cornwell NN (1983) Effect of chronic vasopressin treatment on alcohol drinking of Brattleboro HZ and DI rats. Peptides 4: 359–366

    PubMed  CAS  Google Scholar 

  • Namboodiri MA A, Favilla JT, Klein DC (1981) Pineal N-acetyltransferase is inactivated by disulfide containing peptides: Insulin is the most potent. Science 213: 571–573

    PubMed  CAS  Google Scholar 

  • Negro-Vilar A, Sanchez-Franco F, Kwiatkowski M, Samson WK (1979) Failure to detect radioimmunoassay able arginine vasotocin in mammalian pineals. Brain Res Bull 4: 789–792

    PubMed  CAS  Google Scholar 

  • Nicholson HD, Swann RW, Burford GD, Wathes DC, Porter DG, Pickering BT (1984) Identification of oxytocin and vasopressin in the testis and in adrenal tissue. Regul Pept 8: 1141–1146

    Google Scholar 

  • Nilaver G, Zimmerman EA, Wilkins J, Michaels J, Hoffmann D, Silverman AJ (1980) Magnocellular hypothalamic projections to the lower brain stem and spinal cord of the rat. Neuroendocrinology 30: 150–158

    PubMed  CAS  Google Scholar 

  • Nilaver G, Mulhern J, Zimmerman EA (1982) Extrahypothalamic neurophysin projections in the brainstem and spinal cord of normal and homozygous Brattleboro rats. In: Brattleboro rat Ann NY Acad Sei 394: 759–763

    Google Scholar 

  • Nürnberger F, Korf HW (1981) Oxytocin- and vasopressin-immunoreactive nerve fibers in the pineal gland of the hedgehog (Erinaceus europaeus L). Cell Tissue Res 220: 87–97

    PubMed  Google Scholar 

  • Nussey SS, Ang VTY, Jenkins JS, Chowdrey HS, Bisset GW (1984) Brattleboro rat adrenal contains vasopressin. Nature 310: 64–66

    PubMed  CAS  Google Scholar 

  • Oertel W, Tappaz ML, Weindl A (1983) Glutamic acid decarboxylase immunoreactive terminals in the circumventricular organs of the rat. Neurosci Lett [Suppl] 14: S266

    Google Scholar 

  • Okamura H, Fukui K, Koyama E, Tsutou HLO, Tsutou T, Terubayashi H, Fujisawa H, Ibata Y (1983) Time of vasopressin neuron origin in the mouse hypothalamus: examination by combined technique of immunocytochemistry and 3[H]-thymidine autoradiography. Dev Brain Res 9: 223–226

    Google Scholar 

  • Olpe HR, Baltzer V (1981) Vasopressin activates noradrenergic neurons in the rat locus coeruleus: A microiontophoretic investigation. Eur J Pharmacol 73: 377–378

    CAS  Google Scholar 

  • Ono TH, Nishimo H, Sasaka K, Muramoto K, Yano I, Simpson A (1978) Paraventricular nucleus connections to spinal cord and pituitary. Neurosci Lett 10: 141–146

    PubMed  CAS  Google Scholar 

  • Palkovits M (1978) Topography of chemically identified neurons in the central nervous system: A review. Acta Morphol Acad Sei Hung 26: 211–290

    CAS  Google Scholar 

  • Palkovits M (1979) Microchemistry of microdissected hypothalamic nuclear areas. Int Rev Cytol 56: 315–339

    PubMed  CAS  Google Scholar 

  • Palkovits M (1982) Recent data on neuropeptide mapping in the central nervous system. In: McKerns KG, Pantic V (eds) Hormonally active peptides. Plenum, New York pp 279–306

    Google Scholar 

  • Paulin C, Dubois PM, Czernichow P, Dubois MP (1978) Immunocytochemical evidence for oxytocin neurons in the human fetal hypothalamus. Cell Tissue Res 188: 259–264

    PubMed  CAS  Google Scholar 

  • Pavel S, Dimitru I, Klepsh I, Dorescu M (1973) A gonadotropin inhibiting principle in the pineal of human fetuses. Evidence for its identity with vasotocin. Neuroendocrinology 13: 41–46

    PubMed  CAS  Google Scholar 

  • Pearlmutter AF, Costantini MG, Loeser B (1983) Characterization of 3H-AVP binding sites in particulate preparations of rat brain. Peptides 4: 335–341

    PubMed  CAS  Google Scholar 

  • Perlow MJ, Reppert SM, Artman HA, Fisher DA, Seif SM, Robinson AG (1982) Oxytocin, vasopressin and estrogen-stimulated neurophysin: Daily patterns of concentration in cerebrospinal fluid. Science 216: 1416–1418

    PubMed  CAS  Google Scholar 

  • Peterson RP (1966) Magnocellular neurosecretory centers in the rat hypothalamus. J Comp Neurol 128: 181–190

    PubMed  CAS  Google Scholar 

  • Pevet P, Reinharz AC, Dogterom J (1980) Neurophysins, vasopressin and oxytocin in the bovine pineal gland. Neurosci Lett 16: 301–306

    PubMed  CAS  Google Scholar 

  • Pfeifer WD, Bookin HB (1978) Vasopressin antagonizes retrograde amnesia in rats following electroconvulsive shock. Pharmacol Biochem Behav 9: 261–263

    PubMed  CAS  Google Scholar 

  • Phillips ML, Weyhenmeyer J, Felix J, Ganten D, Hoffman WE (1979) Evidence for an endogenous brain renin-angiotensin system. Fed Proc 38: 2260–2266

    PubMed  CAS  Google Scholar 

  • Pickard GE (1982) The afferent connections of the suprachiasmatic nucleus of the golden hamster with emphasis on the retinohypothalamic projection. J Comp Neurol 211: 65–83

    PubMed  CAS  Google Scholar 

  • Pickering BT (1976) The molecules of neurosecretion: Their formation, transport and release. Progr Brain Res 45: 161–179

    CAS  Google Scholar 

  • Pickering BT (1984) Precursors and products in the formation of neurohypophyseal hormones. Proceed Vllth Int Congr Endocrinol Quebec July 1-7, Elsevier, Amsterdam, p 144

    Google Scholar 

  • Piekut DT (1983) Ultrastructural characteristics of vasopressin-containing neurons in the paraventricular nucleus of the hypothalamus. Cell Tissue Res 234: 125–134

    PubMed  CAS  Google Scholar 

  • Pittman QJ, Blume HW, Renaud LP (1978) Electrophysiological indications that individual hypothalamic neurons innervate both median eminence and neurohypophysis. Brain Res 157: 364–368

    PubMed  CAS  Google Scholar 

  • Pittman QJ, Blume HW, Renaud LP (1981) Connections of the hypothalamic paraventricular nucleus with the neurohypophysis, median eminence, amygdala, lateral septum and midbrain periaqueductal gray: An electrophysiological study in the rat. Brain Res 215: 15–28

    PubMed  CAS  Google Scholar 

  • Pittman QJ, Lawrence D, McLean L (1982) Central effects of arginine vasopressin on blood pressure in rats. Endocrinol 110: 1058–1060

    CAS  Google Scholar 

  • Ramaekers F, Rigter H, Leonard BE (1977) Parallel changes in behaviour and hippocampal serotonin metabolism in rats following treatment with desglycinamide lysine vasopressin. Brain Res 120: 485–492

    PubMed  CAS  Google Scholar 

  • Reaves TA jr, Hayward JN (1979) Immunocytochemical identification of vasopressinergic and oxytocinergic neurons in the hypothalamus of the cat. Cell Tissue Res 196: 117–122

    PubMed  Google Scholar 

  • Reinharz AC, Vallotton MB (1977) Presence of two neurophysins in the human pineal gland. Endocrinology 100: 994–1001

    PubMed  CAS  Google Scholar 

  • Reinharz AC, Czernichow P, Vallotton MB (1974) Neurophysin-like protein in bovine pineal gland. J Endocrinology 62: 35–44

    CAS  Google Scholar 

  • Remy C, Girardie J (1980) Anatomical organisation of two vasopressin-neurophysin-like neurosecretory cells throughout the central nervous system of the migratory locust. Gen Comp Endocrinol 40: 27–35

    PubMed  CAS  Google Scholar 

  • Renaud LP, Rogers J, Sgro S (1983) Terminal degeneration in supraoptic nucleus following subfornical organ lesions: ultrastructural observations in the rat. Brain Res 275: 365–368

    PubMed  CAS  Google Scholar 

  • Reppert SM, Artman HG, Swaminathan S, Fisher DA (1981) Vasopressin exhibits a rhythmic daily pattern in cerebrospinal fluid but not in blood. Science 213: 1256–1257

    PubMed  CAS  Google Scholar 

  • Rexed B (1952) The cytoarchitectonic organization of the spinal cord in the cat. J Comp Neurol 96: 415–95

    Google Scholar 

  • Rhodes CH, Morrell JI, Pfaff DW (1981) Distribution of estrogen-concentrating, neurophysin-containing magnocellular neurons in the rat hypothalamus as demonstrated by a technique combining steroid autoradiography and immunohistology in the same tissue. Neuroendocrinology 33: 18–23

    PubMed  CAS  Google Scholar 

  • Ricardo J A, Koh ET (1978) Anatomical evidence of direct projections from the nucleus of the solitary tract to the hypothalamus, amygdala, and other forebrain structures in the rat. Brain Res 153: 1–26

    PubMed  CAS  Google Scholar 

  • Rigter H, Rijk H, Crabbe JC (1980) Tolerance to ethanol and severity of withdrawal in mice are enhanced by a vasopressin fragment. Eur J Pharmacol 64: 53–68

    PubMed  CAS  Google Scholar 

  • Ritter S, McGlone JY, Kelley KW (1980) Absence of lithium-induced taste aversion after area postrema lesion. Brain Res 201: 501–506

    PubMed  CAS  Google Scholar 

  • Robinson ICAF, Jones PM (1982) Neurohypophyseal peptides in cerebrospinal fluid: recent studies. In: Baertschi AJ, Dreifuss JJ (eds) Vasopressin, corticoliberin and opiome- lanocortins. Academic Press, New York, pp 21–32

    Google Scholar 

  • Rossier J, Battenberg E, Pittman Q, Bayon A, Koda L, Miller R, Guillemin R, Bloom F (1979) Hypothalamic enkephalin neurones may regulate the neurohypophysis. Nature 277: 653–655

    PubMed  CAS  Google Scholar 

  • Rossor MN, Iversen LL, Hawthorn J, Ang VTY, Jenkins JS (1981) Extrahypothalamic vasopressin in human brain. Brain Res 214: 349–355

    PubMed  CAS  Google Scholar 

  • Rossor MN, Hunt SP, Iversen LL, Bannister R, Hawthorn J, Ang VTY, Jenkins JS (1982) Extrahypothalamic vasopressin is unchanged in Parkinson’s disease and Huntington’s disease. Brain Res 253: 341–343

    PubMed  CAS  Google Scholar 

  • Roth KA, Weber E, Barchas ID (1982) Immunoreactive corticotropin releasing factor (CRF) and vasopressin are localized in a subpopulation of the immunoreactive vasopressin cells in the paraventricular nucleus of the hypothalamus. Life Sci 31: 1857–1860

    PubMed  CAS  Google Scholar 

  • Rubin BS, Menniti VPS, Bridges RS (1983) Intracerebroventricular administration of oxytocin and maternal behavior in rats after prolonged and acute steroid pretreatment. Horm Behav 17: 45–53

    PubMed  CAS  Google Scholar 

  • Saghal A (1984) A critique of the vasopressin-memory hypothesis. Psychopharmacology 83: 215–218

    Google Scholar 

  • Saper CB, Loewy AD, Swanson LW, Cowan WM (1976) Direct hypothalamoautonomic connections. Brain Res 117: 305–312

    PubMed  CAS  Google Scholar 

  • Sar M, Stumpf WE, Miller RJ, Chang KJ, Cuatrecasas P (1978) Immunohistochemical localization of enkephalin in rat brain and spinal cord. J Comp Neurol 182: 17–38

    PubMed  CAS  Google Scholar 

  • Sawchenko PE (1982) Anatomic relationships between the paraventricular nucleus of the hypothalamus and visceral regulatory mechanisms. Implications for the control of feeding behavior. In: Hoebel BG, Nobin D (eds) Neural basis of feeding and reward. Hear Inst, Brunswick, pp 259:274

    Google Scholar 

  • Sawchenko PE, Swanson LW (1981) A method for tracing biochemically defined pathways in the central nervous system using combined fluorescence retrograde transport and immunohistochemical techniques. Brain Res 210: 31–51

    PubMed  CAS  Google Scholar 

  • Sawchenko PE, Swanson LW (1982 a) Immunohistochemical identification of neurons in the paraventricular nucleus of the hypothalamus that project to the medulla or to the spinal cord in the rat. J Comp Neurol 205:260–272

    PubMed  CAS  Google Scholar 

  • Sawchenko PE, Swanson LW (1982b) The organization of noradrenergic pathways from the brainstem to the paraventricular and supraoptic nuclei in the rat. Brain Res Rev 4:275–325

    Google Scholar 

  • Sawchenko PE, Swanson LW (1983) The organization and biochemical specificity of afferent projections to the paraventricular and supraoptic nuclei. Prog Brain Res 60: 19–29

    PubMed  CAS  Google Scholar 

  • Sawchenko PE, Swanson LW (1984) Relationship of oxytocin pathways to the control of neuroendocrine and autonomic function. J Steroid Biochem 20: 1500

    Google Scholar 

  • Sawchenko PE, Swanson LW, Joseph SA (1982) The distribution and cells of origin of ACTH (l-39)-stained varicosities in the paraventricular and supraoptic nuclei. Brain Res 232: 365–374

    PubMed  CAS  Google Scholar 

  • Sawchenko PE, Swanson LW, Vale WW (1984) Corticotropin-releasing factor: Co-expression within distinct subsets of oxtocin-, vasopressin and neurotensin-immunoreac- tive neurons in the hypothalamus of the male rat. J Neurosci 4: 1118–1129

    PubMed  CAS  Google Scholar 

  • Scharrer B (1967) The neurosecretory neuron in neuroendocrine regulatory mechanisms. Am Zool 7: 161–169

    PubMed  CAS  Google Scholar 

  • Scharrer E (1934 a) Stammt alles Kolloid im Zwischenhirn aus der Hypophyse? Frankf Z Pathol 47:134–142

    Google Scholar 

  • Scharrer E (1934 b) Über die Beteiligung des Zellkerns an sekretorischen Vorgängen in Nervenzellen: Frankf Z Pathol 47:143–151

    Google Scholar 

  • Scharrer E, Scharrer B (1939) Secretory cells within the hypothalamus. In: The hypothalamus. Res Publ Assoc Nerv Ment Dis 20: 170–194

    Google Scholar 

  • Schimchowitsch S, Stoeckel ME, Klein MJ. Garaud JC, Suhmitt G, Porte A (1983a) Oxytocin-immunoreactive nerve fibers in the pars intermedia of the pituitary in the rabbit and here. Cell Tissue 228:255–263

    CAS  Google Scholar 

  • Schimchowitsch S, Stoeckel ME, Vigny A, Porte A (1983b) Oxytocinegic neurons with tyrosine hydroxylase-like immuoreactivity in the paraventricular nucleus of the rabbit hypothalamus. Neurosci Lett 43:55–59

    CAS  Google Scholar 

  • Schneider DR, Felt BT, Goldman H (1982) Desglylcyl-8-arginine vasopressin affects regional mouse brain cyclic AMP content. Pharmacol Biochem Behav 16: 139–143

    PubMed  CAS  Google Scholar 

  • Schreibmann MP, Halpern LR (1980) The demonstration of neurophysin and arginine vasotocin by immunocytochemical methods in the brain and pituitary gland of the platyflsh, Xiphophorus maculatus. Gen Comp Endocrinol 40: 1–7

    Google Scholar 

  • Schrell U, Sofroniew MY, Weindl A, Wetzstein R (1983) Analysis of vasopressin projections from the suprachiasmatic nucleus using combined tracer and peptide immunohistochemistry. Neurosci Lett [Suppl] 14: 334

    Google Scholar 

  • Schubert F, George JM, Rao MB (1981) Vasopressin and oxytocin content of human fetal brain at different stages of gestation. Brain Res 213: 111–117

    PubMed  CAS  Google Scholar 

  • Schultz WJ, Brownfield MS, Kozlowski GP (1977) The hypothalamochoroidal tract. II. Ultrastructural response of the choroid plexus to vasopressin. Cell Tissue Res 178: 129–141

    PubMed  CAS  Google Scholar 

  • Seif SM, Robinson AGH, Zimmerman EA, Wilkins J (1978) Plasma neurophysin and vasopressin in the rat: Response to adrenalectomy and steroid replacement. Endocrinology 103: 1009–1015

    PubMed  CAS  Google Scholar 

  • Sequeira RP, Chaiken IM (1984) Occurence of oxytocin, vasopressin and neurophysins in peripheral nerves. Proceed Vllth Int Congr Endocrinol Quebec, July 1-7, Elsevier, Amsterdam, p 1320

    Google Scholar 

  • Seybold V, Eide R, Hökfelt T (1981) Terminals of reserpine-sensitive vasopressin-neurophysin neurons in the external layer of the rat median eminence. Endocrinology 108: 1803–1809

    PubMed  CAS  Google Scholar 

  • Seybold V, Eide R, Hökfelt T (1981) Terminals of reserpine-sensitive vasopressin-neurophysin neurons in the external layer of the rat median eminence. Endocrinology 108: 1803–1809

    PubMed  CAS  Google Scholar 

  • Sherlock DA, Field PM, Raisman G (1975) Retrograde transport of horseradish peroxidase in the magnocellular neurosecretory system of the rat. Brain Res 88: 403–414

    PubMed  CAS  Google Scholar 

  • Silverman AJ, Zimmerman EA (1975) Ultrastructural immunocytochemical localization of neurophysin and vasopressin in the median eminence and posterior pituitary of the guinea pig. Cell Tissue Res 159: 291–301

    PubMed  CAS  Google Scholar 

  • Silverman AJ, Zimmerman EA (1982) Adrenalectomy increases sprouting in a peptidergic neurosecretory system. Neuroscience 7: 2705–2714

    PubMed  CAS  Google Scholar 

  • Silverman AJ, Zimmerman EA (1983) Magnocellular neurosecretory system. Annu Rev Neurosci 6: 357–380

    PubMed  CAS  Google Scholar 

  • Silverman AJ, Gadde CA, Zimmerman EA (1980 a) Effects of adrenalectomy on the incorporation of 3H-cytidine in neurophysin and vasopressin-containig neurons of the rat hypothalamus. Neuroendocrinology 30:285–290

    PubMed  CAS  Google Scholar 

  • Silverman AJ, Goldstein R, Gadde CA (1980 b) The ontogenesis of neurophysin-containing neurons in the muse hypothalamus. Peptides 1:27–44

    CAS  Google Scholar 

  • Silverman AJ, Hoffman D, Gadde CA, Krey LC, Zimmerman EA (1981 a) Adrenal steroid inhibition of the vasopressin-neurophysin neurosecretory system of the median eminence of the rat. Diiferential effects of corticosterone and desoxycorticosterone administration after adrenalectomy. Neuroendocrinology 32:129–133

    PubMed  CAS  Google Scholar 

  • Silverman AJ, Hoffman DL, Zimmerman EA (1981 b) The descending afferent connections of the paraventricular nucleus of the hypothalamus. Brain Res Bull 6:47–61

    PubMed  CAS  Google Scholar 

  • Sims K, Hoffman DL, Said SI, Zimmerman EA (1980) Vasoactive intestinal polypeptide (VIP) in mouse and rat brain: an immunocytochemical study. Brain Res 186: 165–183

    PubMed  CAS  Google Scholar 

  • Sladek CD, Gash DM, Khachaturian H, Scott DE, Sladek JR jr (1980) Maturation of the supraoptic nucleus: A multidisciplinary analysis. Peptides 1 [Suppl l]: 51–67

    Google Scholar 

  • Sladek CD, Gash DM, Khachaturian H, Scott DE, Sladek JR jr (1980) Maturation of the supraoptic nucleus: A multidisciplinary analysis. Peptides 1 [Suppl 1]: 51–67

    CAS  Google Scholar 

  • Sladek JR Jr, Sladek CD (1983) Anatomical reciprocity between magnocellular peptides and noradrenaline in putative cardiovascular pathways. In: The neurohypophysis: Structure, function and control. Prog Brain Res 60: 437–443

    Google Scholar 

  • Södersten P, Henning M, Melin P, Ludin S (1983) Vasopressin alters female sexual behaviour by acting on the brain independently of alterations in blood pressure. Nature 301: 608–610

    PubMed  Google Scholar 

  • Sofroniew MV (1980) Projections from vasopressin, oxytocin and neurophysin neurons to neural targets in the rat and human. J Histochem Cytochem 28: 475–478

    PubMed  CAS  Google Scholar 

  • Sofroniew (1982) Vascular and neural projections of hypothalamic neurons producing neurohypophyseal or ACTH-related peptides. In: Baertschi AJ, Dreifuss JJ (eds) Neuroendocrinology of vasopressin, corticoliberin and opiomelanocortins. Academic Press, New York, pp 73–83

    Google Scholar 

  • Sofroniew MV (1983 a) Morphology of vasopressin oxytocin neurons and their central and vascular projections. In: The neurohypophysis: Structure, function and control. Prog Brain Res 60:101–114

    PubMed  CAS  Google Scholar 

  • Sofroniew MV (1983 b) Vasopressin and oxytocin in the mammalian brain and spinal cord Trends Neurosci 6:467–72

    Google Scholar 

  • Sofroniew MV, Glasmann W (1981) Golgi-like immunoperoxidase staining of hypothalamic magnocellular vasopressin, oxytocin and neurophysin neurons in the rat. Neuroscience 6: 619–643

    PubMed  CAS  Google Scholar 

  • Sofroniew MV, Schrell U (1981) Evidence for a direct projection from oxytocin and vasopressin neurons in the hypothalamic paraventricular nucleus to the medulla oblongata: immunohistochemical visualization of both the horseradish peroxidase transported and the peptide produced by the same neurons. Neurosci Lett 22: 211

    Google Scholar 

  • Sofroniew MV, Weindl A (1978) Projections from the parvocellular vasopressin and neuro- physin-containing neurons of the suprachiasmatic nucleus. Amer J Anat 153: 391–30

    PubMed  CAS  Google Scholar 

  • Sofroniew MV, Weindl A (1980) Identification of parvocellular vasopressin and neurophysin neurons in the suprachiasmatic nucleus of a variety of mammals including primates. J Comp Neurol 193: 659–675

    PubMed  CAS  Google Scholar 

  • Sofroniew MV, Weindl A (1981) Central nervous system distribution of vasopressin, oxytocin and neurophysin. In: Martinez JL, Jensen RA, Messing RB, Rigter H, McGaugh JL, eds. Endogenous peptides and learning and memory processes. Acad Press New York pp 327–369

    Google Scholar 

  • Sofreniew MV, Weindl A (1982) Neuroanatomical organization and connections of the suprachiasmatic nucleus. In: Aschoff J. Daan S, Groos G (eds) Springer Berlin, Heidelberg, New York, pp 75–86

    Google Scholar 

  • Sofroniew MV, Weindl A, Wetzstein R (1977) Immunoperoxidase staining of vasopressin in the rat median eminence following adrenalectomy and steroid substitution. Acta Endocrinol [Suppl] 212: 72

    Google Scholar 

  • Sofroniew MV, Weindl A, Schinko I, Wetzstein R (1979) The distribution of vasopressin-, oxytocin- and neurophysin producing neurons in the guinea pig brain. I. The classical hypothalamo-neurohypophyseal system. Cell Tissue Res 196: 367–384

    PubMed  CAS  Google Scholar 

  • Sofroniew MV, Weindl A, Schrell U, Wetzstein R (1981) Immunohistochemistry of vasopressin, oxytocin and neurophysin in the hypothalamus and extrahypothalamic regions of the human and primate brains. Acta Histochemica [Suppl] 24: 79–95

    CAS  Google Scholar 

  • Sofroniew MV, Eckenstein F, Schrell U, Cuello AC (1983) Evidence for colocalization of neuroactive substances in hypothalamic neurons. In: Chan-Palay V, Palay SL (eds) Coexistence of neuroactive substances in neurons. Wiley, New York, pp 73–90

    Google Scholar 

  • Speidel CC (1917) Gland-cells of internal secretion in the spinal cord of the skates. Thesis, Princeton University, USA

    Google Scholar 

  • Sterba G (1974) Ascending neurosecretory pathways of the peptidergic type. In: Knowles F, Vollrath L (eds) Neurosecretion - the final neuroendocrine pathway. Springer, Berlin Heidelberg New York, pp 38–47

    Google Scholar 

  • Sternberger LA, Hardy PH jr, Cuculis J J, Meyer HG (1970) The unlabeled antibody enzyme method of immunohistochemistry. Preparation and properties of soluble antigen — antibody complex (horseradish peroxidase-antihorseradish peroxidase) and its use in identification of spirochetes. J Histochem Cytochem 18: 315–333

    PubMed  CAS  Google Scholar 

  • Stillman MA, Recht LD, Rosario SL, Seif SM, Robinson AG, Zimmerman EA (1977) The effects of adrenalectomy and glucocorticoid replacement on vasopressin-neurophysin in the zona externa of the median eminence of the rat. Endocrinol 101: 42–49

    CAS  Google Scholar 

  • Summy-Long JY, Keil LC, Severs WB (1978) Identification of vasopressin in the subfornical organ region: Effects of dehydration. Brain Res 140: 241–250

    PubMed  CAS  Google Scholar 

  • Sundquist J, Forsling ML, Olsson JE, Äkerlund M (1983) Cerebrospinal fluid arginine vasopressin in degenerative disorders and other neurological diseases. J Neurol Psychiatry 46: 14–17

    CAS  Google Scholar 

  • Swanson LW (1977) Immunohistochemical evidence for a neurophysin-containing autonomic pathway arising in the paraventricular nucleus of the hypothalamus. Brain Res 128: 346–353

    PubMed  CAS  Google Scholar 

  • Swanson LW, Hartman BK (1980) Biochemical specificity in central pathways related to peripheral and intracerebral homeostatic function. Neurosci Lett 16: 55–60

    PubMed  CAS  Google Scholar 

  • Swanson LW, Kuypers HGJM (1980) The paraventricular nucleus of the hypothalamus: Cytoarchitectonic subdivisions and organization of projections to the pituitary, dorsal vagal complex, and spinal cord as demonstrated by retrograde fluorescence double-la- beling methods. J Comp Neurol 194: 555–570

    PubMed  CAS  Google Scholar 

  • Swanson LW, McKellar S (1979) The distribution of oxytocin- and neurophy sin-stained fibers in the spinal cord of the monkey. J Comp Neurol 188: 87–106

    PubMed  CAS  Google Scholar 

  • Swanson LW, Mogenson GJ (1981) Neural mechanism for the functional coupling of autonomic, endocrine and somatomotor responses in adaptive behavior. Brain Res Rev 3: 1–34

    CAS  Google Scholar 

  • Swanson LW, Sawchenko PE (1980) Paraventricular nucleus: A site for the integration of neuroendocrine and autonomic mechanisms. Neuroendocrinology 31: 410–17

    PubMed  CAS  Google Scholar 

  • Swanson LW, Sawchenko PE (1983) Hypothalamic integration: organization of the paraventricular and supraoptic nuclei. Annu Rev Neurosci 6: 269–324

    PubMed  CAS  Google Scholar 

  • Swanson LW, Sawchenko PE, Wiegand SJ, Price JL (1980) Separate neurons in the paraventricular nucleus project to the median eminence and to the medulla or spinal cord. Brain Res 198: 190–195

    PubMed  CAS  Google Scholar 

  • Swanson LW, Sawchenko PE, Berod A, Hartmann BK, Helle KB, Vanorden DE (1981) An immunohistochemical study of the organization of catecholaminergic cells and terminal fields in the paraventricular and supraoptic nuclei of the hypothalamus. J Comp Neurol 196: 271–285

    PubMed  CAS  Google Scholar 

  • Tager H, Hohenböken M, Markese G, Dinerstein RJ (1980) Identification and localization of glucagon-related peptides in rat brain. Proc Natl Acad Sei USA 77: 6229–6233

    CAS  Google Scholar 

  • Tanaka M, Versteeg DHG, De Wied D (1977) Regional effects of vasopressin on rat brain catecholamine metabolism. Neurosci Lett 4: 321–325

    PubMed  CAS  Google Scholar 

  • Tigges J, Shantha TR (1969) A stereotaxic brain atlas of the tree shrew (Tupaia glis).

    Google Scholar 

  • Williams and Wilkins, Baltimore Tribollet E, Dreifuss J J (1981) Localization of neurones projecting to the hypothalamic paraventricular nucleus area of the rat: a horseradish peroxidase study. Neurosci 6: 1315–1328

    Google Scholar 

  • Ueda S, Kawata M, Sano Y (1983) Identification of serotonin- and vasopressin immunoreactivities in the suprachiasmatic nucleus of four mammalian species. Cell Tissue Res 234: 237–248

    PubMed  CAS  Google Scholar 

  • Van den Dungen HM, Buijs RM, Pool CW, Terlou M (1982) The distribution of vasotocin and isotocin in the brain of the rainbow trout. J Comp Neurol 212: 146–157

    PubMed  Google Scholar 

  • Van den Pol A (1982) The magnocellular and parvocellular paraventricular nucleus of the rat: intrinsic organization. J Comp Neurol 206: 317–345

    PubMed  Google Scholar 

  • Vanderhaeghen JJ, Lotstra F, De Mey J, Gilles C (1980) Immunohistochemical localization of cholecystokinin- and gastrin-like peptide in the brain and hypophysis of the rat. Proc Natl Acad Sei USA 77: 1190–1194

    CAS  Google Scholar 

  • Vanderhaeghen J J, Lotstra F, Vandesande F, Dierickx K (1981) Coexistence of cholecystokinin and oxytocin-neurophysin in some magnocellular hypothalamo-hypophyseal neurons. Cell Tissue Res 221: 227–231

    PubMed  CAS  Google Scholar 

  • Vanderhaeghen JJ, Lotstra F, Liston DR, Rossier J (1983) Proenkephalin, [metjenkephalin, and oxytocin immunoreactivities are colocalized in bovine hypothalamic magnocellular neurons. Proc Natl Acad Sei USA 80: 5139–5143

    CAS  Google Scholar 

  • Van der Kooy D (1984) Area postrema: site where cholecystokinin acts to decrease food intake. Brain Res 295: 345–347

    PubMed  Google Scholar 

  • Van der Kooy D, Koda LY (1983) Organization of the projections of a circumventricular organ. The area postrema in the rat. J Comp Neurol 219: 328–338

    PubMed  Google Scholar 

  • Vandesande F, Dierickx K (1975) Identification of the vasopressin producing and of the oxytocin producing neurons in the hypothalamic magnocellular neurosecretory system of the rat. Cell Tissue Res 164: 153–162

    PubMed  CAS  Google Scholar 

  • Vandesande F, De Mey J, Dierickx K (1974) Identification of neurophysin producing cells. I. The origin of the neurophysin-like substance-containing nerve fibres of the external region of the median eminence of the rat. Cell Tissue Res 151: 157–200

    Google Scholar 

  • Vandesande F, Dierickx K, De Mey J (1975) Identification of the vasopressin-neurophysin producing neurons of the rat suprachiasmatic nuclei. Cell Tissue Res 156: 377–380

    PubMed  CAS  Google Scholar 

  • Vandesande F, Dierickx K, De Mey J (1977) The origin of the vasopressinergic and oxy- tocinergic fibres of the external region of the median eminence of the rat hypophysis. Cell Tiss Res 180: 443–52

    CAS  Google Scholar 

  • Van Leeuwen FW, Caffé R (1983) Vasopressin immunoreactive cell bodies in the bed nucleus of the stria terminalis of the rat. Cell Tissue Res 228: 525–534

    PubMed  Google Scholar 

  • Van Leeuwen FW, De Vries GJ (1983) Enkephalin-glial interaction and its consequence for vasopressin and oxytocin release from the rat neural lobe. In: The neurohypophysis: Structure, function, control, Prog Brain Res 60: 343–351

    Google Scholar 

  • Van Leeuwen FW, Wolters P (1983) Light microscopic autoradiographic localization of 3H-arginine-vasopressin binding sites in the rat brain. Neuroscience 41: 61–66

    Google Scholar 

  • Van Leeuwen FW, Swaab DF, De Raay C (1978) Immunoelectron microscopic localization of vasopressin in the rat suprachiasmatic nucleus. Cell Tissue Res 193: 1–14

    PubMed  Google Scholar 

  • Van Leeuwen FW, Pool CW, Sluiter AA (1983) Enkephalin immunoreactivity in synaptoid elements on glial cells in the rat neural lobe. Neuroscience 8: 229–241

    PubMed  Google Scholar 

  • Van Ree JM, De Wied D (1977 a) Heroin self-administration is under control of vasopressin. Life Sci 21:315–320

    PubMed  Google Scholar 

  • Van Ree JM, De Weid D (1977 b) Modulation of heroin delf-administration by neurohypophyseal principles. Eur J Pharmacol 43:199–202

    PubMed  Google Scholar 

  • Van Vossel-Daeninck J, Dierickx K, Van Vossel A, Vandesande F (1979) Electron microscopic immunocytochemical demonstration of separate vasotocinergic and mesotoci- nergic nerve fibers in the median eminence of the frog hypophysis. Cell Tissue Res 204: 29–36

    PubMed  Google Scholar 

  • Van Wimersma Greidanus TB (1984) Behavioral effects of neurohypophyseal hormones. Proceed Vllth Int Congr Endocrinol, Quebec July 1-7, Elsevier, Amsterdam, p 30

    Google Scholar 

  • Van Wimersma Greidanus TB, Dogterom J, De Wied D (1975) Intraventricular administration of anti-vasopressin serum inhibits memory consolidation in rats. Life Sci 16: 637–644

    Google Scholar 

  • Van Wimersma Greidanus TB, De Wied D (1976) Dorsal hippocampus: a site of action of neuropeptides on avoidance behavior? The Neuropeptides. Pharmacol Biochem Behav 5:Suppl 1, 29–33

    Google Scholar 

  • Van Wimersma Greidanus TB, Bohus B, Kovàcs GL, Versteeg DHG, Burbach JPH, De Wied D (1983) Sites of behavioral and neurochemical action of ACTH-like peptides and neurohypophyseal hormones. Neurosci Biobehav Rev 7: 453–463

    PubMed  Google Scholar 

  • Veenstra JA, Romberg-Privee HM, Schooneveld H (1984) Immunocytochemical localization of peptidergic cells in the neuroendocrine system of the Colorado potato beetle, Leptinotarsa decemlineata, with antisera against vasopressin, vasotocin and oxytocin. Histochemistry 81: 29–34

    PubMed  CAS  Google Scholar 

  • Versteeg DHG, Tanaka M, De Kloet ER (1978) Catecholamine concentration and turnover in discrete regions of the brain of the homozygous Brattleboro rat deficient in vasopressin. Endocrinology 103: 1654–1661 (1978)

    Google Scholar 

  • Versteeg DHG, De Kloet ER, Van Wimersma Greidanus TB, De Wied D (1979) Vasopressin modulates the activity of catecholamine containing neurons in specific brain regions. Neurosci Lett 11: 69–73

    PubMed  CAS  Google Scholar 

  • Vigier J, Portalier P (1979) Efferent projections of the area postrema demonstrated by autoradiography. Arch Ital Biol 117: 308–324

    PubMed  CAS  Google Scholar 

  • Vigier J, Rouvière A (1979) Afferent and efferent connections of the area postrema demonstrated by the horseradish peroxidase method. Arch Ital Biol 117: 325–339

    PubMed  CAS  Google Scholar 

  • Voorn P, Buijs RM (1983) An immuno-electronmicroscopical study comparing vasopressin, oxytocin, substance P and enkephalin containing nerve terminals in the nucleus of the solitary tract of the rat. Brain Res 270: 169–173

    PubMed  CAS  Google Scholar 

  • Yorherr H, Bradbury, Leschelle MWB, Hoghoughi M, Kleeman CR (1968) Antidiuretic hormone in cerebrospinal fluid during endogenous and exogenous changes in its blood level. Endocrinology 83: 246–250

    Google Scholar 

  • Wali FA (1984) Effects of oxytocin and vasopressin on ganglionic transmission at the rabbit superior cervical ganglion. Pharmacol Res Commun 16: 55–62

    PubMed  CAS  Google Scholar 

  • Wathes DC, Swann RW (1982) Is oxytocin an ovarian hormone? Nature 297: 225–227

    PubMed  CAS  Google Scholar 

  • Wathes DC, Swann RW, Pickering BT, Porter DG, Hull MGR, Drife O (1982) Neurohypophysial hormones in the human ovary. Lancet 11: 410–412

    Google Scholar 

  • Wathes DC, Swann RW, Birkett SD, Porter DG, Pickering BT (1983) Characterization of oxytocin, vasopressin and neurophysin from the bovine corpus luteum. Endocrinology 113: 693–698

    PubMed  CAS  Google Scholar 

  • Wathes DC, Swann RW, Pickering BT (1984) Variations in oxytocin, vasopressin and neurophysin concentration in the bovine ovary during the oestrus cycle and pregnancy. J Reprod Fertil 71: 551–557

    PubMed  CAS  Google Scholar 

  • Watkins WB (1975) Immunohistochemical demonstration of neurophysin in the hypotha lamoneurohypophyseal system. Int Rev Cytol 41: 241–284

    PubMed  CAS  Google Scholar 

  • Watkins WB (1983) Immunohistochemical localization of neurophysin and oxytocin in the sheep corpora lutea. Neuropeptides 7: 51–54

    Google Scholar 

  • Watkins WB, Choy VJ (1979) Maturation of the hypothalamo-neurohypophyseal system. II. Neurophysin, vasopressin, and oxytocin in the median eminence of the developing rat brain. Cell Tissue Res 197: 337–346

    PubMed  CAS  Google Scholar 

  • Watkins WB, Choy VJ (1980) The impact of aging on neuronal morphology in the rat hypothalamo-neurohypophysial system: an immunohistochemical study. Peptides 1 [Suppl 1]: 239–245

    Google Scholar 

  • Watson SJ, Akil H, Fischli W, Goldstein A, Zimmerman E, Nilaver G, van Wimersma Greidanus TB (1982 a) Dynorphin and vasopressin: Common localization in magnocellular neurons. Science 216:85–87

    PubMed  CAS  Google Scholar 

  • Watson SJ, Seidah NG, Chretien M (1982 b) The carboxy terminus of the precursor to vasopressin and neurphysin and neurophysin: Immunocytochemistry in rat brain. Science 217:833–855

    Google Scholar 

  • Weber E, Evans CJ, Barchas JD (1982 a) Predominance of the aminoterminal octapeptide fragment of dynorphin in the rat brain regions. Nature 299:77–79

    PubMed  CAS  Google Scholar 

  • Weber E, Roth KA, Barchas JD (1982 b) Immunohistochemical distribution of alphaneoendorphin/dynorphin neuronal system in rat brain: evidence for colocalization Proc Natl Acad Sci USA 79:3062—3066

    PubMed  CAS  Google Scholar 

  • Weber E, Geis R, Voigt KH, Barchas JD (1983) Levels of pro-neoendorphin/dynorphin- derived peptides in the hypothalamo-posterior pituitary system of male and female Brattleboro rats. Brain Res 260: 166–171

    PubMed  CAS  Google Scholar 

  • Weindl A (1973) Neuroendocrine aspects of circumventricular organs. In: Ganong WF, Martini L (eds) Frontiers in Neuroendocrinology. Oxford Univ Press New York, pp 3–32

    Google Scholar 

  • Weindl A (1983) The blood-brain barrier and its role in the control of circulating hormone effects on the brain. In: Ganten D, Pfaff D (eds) Central cardiovascular control. Springer, Berlin Heidelberg New York Tokyo, pp 151–186 (Current topics in neuroendocrinology 3 )

    Google Scholar 

  • Weindl A, Sofroniew MV (1978) Neurohormones and circumventricular organs. In: Scott DE, Kozlowski GP, Weindl A (eds) Brain-endocrine interaction III. Neural hormones and reproduction. Karger, Basel, pp 117–137

    Google Scholar 

  • Weindl A, Sofroniew MV (1980) Immunohistochemical localization of hypothalamic peptide hormones in neural target areas. In: Wuttke W, Weindl A, Voigt KH, Driess RR (eds) Brain and pituitary peptides. Karger, Basel pp 97–109

    Google Scholar 

  • Weindl A, Sofroniew MV (1981) Relation of neuropeptides to mammalian circumventricular organs. In: Martin JB, Reichlin S, Bick KL (eds) Neurosecretion and brain peptides. Raven, New York, pp 303–320

    Google Scholar 

  • Weindl A, Sofroniew MV (1982) Peptide neurohormones and circumventricular organs in the pigeon. Front Horm Res 9: 88–104

    CAS  Google Scholar 

  • Weindl A, Sofroniew MV, Mestres P, Wetzstein R (1980) Immunohistochemische Lokali- sation von neurohypophysären Peptiden im Gehirn der Taube (Columba liviä). Anat Anz 74: 769–774

    Google Scholar 

  • Weindl A, Sofroniew MV, Fuchs E, Wetzstein R (1981) The distribution of neurohypophyseal peptides in the brain of the tree shrew (Tupaia belangen). Folia Morphol (Warsz) 29: 41–45

    CAS  Google Scholar 

  • Weindl A, Bruhn T, Parvizi N, Ellendorff F (1984) Ontogeny of neurohypophyseal peptides containing neurons in the pig brain. In: Ellendorff F, Gluckman P, Parvizi U (eds) Fetal neuroendocrinology. Perinatology Press New York, pp 35–38

    Google Scholar 

  • Weingartner H, Gold P, Ballenger JC, Smallberg SA, Summers R, Rubinow DR, Post RM, Goodwin FK (1981) Effects of vasopressin on human memory functions. Science 211: 601–603

    PubMed  CAS  Google Scholar 

  • Whitnall MH, Gainer H, Cox BM, Molineaux CJ (1983) Dynorphin (1–8) is contained within vasopressin neurosecretory vesicles in rat pituitary. Science: 1137–1139

    Google Scholar 

  • Wiegand SJ, Price JL (1980) The cells of origin of the afferent fibers to the median eminence in the rat. J Comp Neurol 192: 12–19

    Google Scholar 

  • Wittkowki W, Bock R (1972) Electron microscopical studies of the median eminence following interference with the feedback system anterior and pituitary-adrenal cortex. In: Brain-endocrine interaction. Median eminence, structure and function. Karger, Baserl, pp 171–180

    Google Scholar 

  • Wolf G, Trautmann B (1977) Ontogeny of the hypothalamo-neurohypophyseal system in rats - an immunohistochemical study. Endokrinologie 19: 222–226

    Google Scholar 

  • Yamamura HI, Gee KW, Brinton RE, Davis TP, Hadley M, Wamsley JK (1983) Light mi-croscopic autoradiographic visualization of (3H)-arginine vasopressin binding sites in the rat brain. Life Sci 32: 1919–1924

    PubMed  CAS  Google Scholar 

  • Yamashita H, Inenaga K, Koizumi K (1984) Possible projections from regions of paraventricular and supraoptic nuclei to the spinal cord: electrophysiological studies. Brain Res 296: 373–378

    PubMed  CAS  Google Scholar 

  • Yulis CR, Rodriguez EM (1982) Neurophysin pathways in the normal and hypophysectomized rat. Cell Tissue Res 227: 93–112

    PubMed  CAS  Google Scholar 

  • Zandberg P, Palkovits M, De Jong W (1977) The area postrema and control of arterial blood pressure; absence of hypertension after excision of the area postrema in rats. Pflügers Archiv 372: 169–173

    PubMed  CAS  Google Scholar 

  • Zerbe RL, Kirtland S, Faden AI, Feuerstein G (1983) Central cardiovascular effects of mammalian neurohypophyseal peptides in conscious rats. Peptides 4: 627–630

    PubMed  CAS  Google Scholar 

  • Zerihun L, Harris M (1981) Electrophysiological identification of neurons of paraventricular nucleus sending axons to both the neurohypophysis and the medulla in the rat. Neuroscience 23: 157–160

    CAS  Google Scholar 

  • Zimmerman EA, Carmel PW, Husain MK, Ferin M, Tannenbaum M, Frantz AG, Robinson AG (1973 a) Vasopressin and neurophysin: high concentration in monkey hypophyseal portal blood. Science 182:925–927

    PubMed  CAS  Google Scholar 

  • Zimmerman EA, Hsu KC, Robinson AG, Carmel PW, Frantz AG, Tannenbaum M (1973 b) Studies of neurophysin secreting neurons with immunoperoxidase technique employing antibody to bovine neurophysin. I. Light microscopic findings in monkey and bovine tissues. Endocrinology 92:931–940

    PubMed  CAS  Google Scholar 

  • Zimmerman EA, Krupp L, Hoffman DL, Matthew E and Nilaver G (1980) Exploration of peptidergic pathways in brain by immunocytochemistry: A ten years perspective. Peptides 1 [Suppl 1]: 3–10

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Weindl, A., Sofroniew, M. (1985). Neuroanatomical Pathways Related to Vasopressin. In: Ganten, D., Pfaff, D. (eds) Neurobiology of Vasopressin. Current Topics in Neuroendocrinology, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68493-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68493-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68495-1

  • Online ISBN: 978-3-642-68493-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics