Vasopressin, Cardiovascular Regulation, and Hypertension

Conference paper
Part of the Current Topics in Neuroendocrinology book series (CT NEUROENDOCRI, volume 4)


In 1895, Oliver and Schäfer reported that in anesthetized animals the injection of pituitary extracts was associated with a rise in blood pressure. Three years later, Howell (1898) demonstrated that the blood pressure-increasing material arose from the posterior lobe of the pituitary. This vasoactive substance from pituitary extracts was later called vasopressin.


Diabetes Insipidus Total Peripheral Resistance Arginine Vasopressin Nucleus Tractus Solitarii Cardiovascular Regulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aisenbrey GA, Berl T (1982) Role of vasopressin in the control of systemic hemodynamics- lessons learned from the Brattleboro rat. Ann NY Acad Sci 394: 299–307PubMedGoogle Scholar
  2. Aisenbrey GA, Handleman WA, Arnold P, Manning M, Schrier RW (1981) Vascular effects of arginine vasopressin during fluid deprivation in the rat. J Clin Invest 67: 961–968PubMedGoogle Scholar
  3. Altura BM (1973) Selective microvascular constrictor actions of some neurohypophyseal peptides. Eur J Pharmacol 24: 49–60PubMedGoogle Scholar
  4. Altura BM (1975) Dose-response relationships for arginine vasopressin and synthetic analogues on three types of rat blood vessels: possible evidence for regional differences in vasopressin receptor sites within a mammal. J Pharmacol Exp Ther 193: 413–423PubMedGoogle Scholar
  5. Altura BM, Altura BT (1977) Vascular smooth muscle and neurohypophyseal hormones. Fed Proc 36: 1853–1860PubMedGoogle Scholar
  6. Andrews CE, Brenner BM (1981) Relative contribution of arginine vasopressin and angiotensin II to maintenance of systemic arterial pressure in the anesthetized water-deprived rat. Circ Res 48: 254–258PubMedGoogle Scholar
  7. Arnauld F, Czernichow P, Fumoux F, Vincent JD (1977) The effects of hypotension and hypovolemia on the liberation of vasopressin during hemorrhage in the unanesthetized monkey. Pfluegers Arch 371: 193–200Google Scholar
  8. Bankowski K, Manning M, Haldar J, Sawyer WH (1978) Design of potent antagonists of the vasopressor response to arginine-vasopressin. J Med Chem 21: 850–853PubMedGoogle Scholar
  9. Bartelstone HJ, Nasmyth PA (1965) Vasopressin potentiation of catecholamine actions in dog, rat, cat and rat aortic strip. Am J Physiol 208: 754–762PubMedGoogle Scholar
  10. Berde B, Boissonnas RA (1968) Basic pharmacologic properties of synthetic analogues and homologues of the neurohypophyseal hormones. In: Berde B (ed) Neurohypophysial hormones and similar polypeptides, Springer, Berlin Heidelberg New York (Handbook of Experimental Pharmacology 23, pp 802–870 )Google Scholar
  11. Berde B, Hugnenin RL, Stürmer E (1964) Vasopressin analogues with selective pressor activity. Experimentia 20: 42–43Google Scholar
  12. Berecek KH, Murray RD, Gross F, Brody MJ (1982) Vasopressin and vascular reactivity in the development of DOCA hypertension in rats with hereditary diabetes insipidus. Hypertension 4: 3–12PubMedGoogle Scholar
  13. Blessing WW, Sved AF, Reis DJ (1982) Destruction of noradrenergic neurons in rabbit brainstem elevates vasopressin, causing hypertension. Science 217: 660–661Google Scholar
  14. Bohus B, Versteeg CAM, De Jong W (1982) Vasopressin and central blood pressure control in the rat. In: Rascher W, Clough D, Ganten D (eds), Hypertensive mechanisms. Schatthauer, Stuttgart, pp 592–596Google Scholar
  15. Bonjour JP, Malvin RL (1979) Plasma concentration of ADH in conscious and anesthetized dogs. Am J Physiol 218: 1128–1132Google Scholar
  16. Brazeau P (1975) Agents affecting the renal conservation of water. In: Goodman LS, Gilman A (eds) The pharmacological basis of therapeutics 5; MacMillan, New York, pp 849–859Google Scholar
  17. Bridges TE, Thorn NA (1970) The effect of autonomic blocking agents on vasopressin release in vivo induced by osmoreceptor stimulation: J Endocrinol 48: 265–276PubMedGoogle Scholar
  18. Brodish A, Lymangrover JR (1977) The pituitary adrenocortical system. In: McCann MD (eds) International review of physiology, endocrine physiology II, vol 16. University Park Press, Baltimore, pp 93–149Google Scholar
  19. Brownstein MJ, Russell JT, Gainer H (1980) Synthesis, transport and release of posterior pituitary hormones. Science 207: 373–378PubMedGoogle Scholar
  20. Buijs RM (1978) Intra- and extrahypothalamic vasopressin and oxytocin pathways in the rat. Cell Tissue Res 192: 423–435PubMedGoogle Scholar
  21. Buijs RM, Swaab DF (1979) Immuno-electron microscopical demonstration of vasopressin and oxytocin synapses in the limbic system of the rat. Cell Tissue Res 204: 355–365PubMedGoogle Scholar
  22. Buijs RM, van Heerikhuize JJ (1982) Vasopressin and oxytocin release in the brain - a synaptic event. Brain Res 252: 71–76PubMedGoogle Scholar
  23. Carlson DE, Dornhorst A, Seif SM, Robinson AG, Gann DS (1982) Vasopressin-dependent and vasopressin–independent control of the release of adrenocorticotropic Endocrinology 110: 680–682Google Scholar
  24. Chenoweth MB, Ellman GL, Reynolds RC, Shea PJ (1958) A secondary response to pressor stimuli caused by sensitization to an endogenous pituitary hormone. Circ Res 6: 334–342PubMedGoogle Scholar
  25. Ciriello J, Calaresu FR (1980) Role of paraventricular and supraoptic nuclei in central car-diovascular regulation in the cat. Am J Physiol 239: R123–R140Google Scholar
  26. Claybough JR, Share L (1973) Vasopressin, renin and cardiovascular responses to continuous slow hemorrhage. J Physiol (Lond) 224: 519–523Google Scholar
  27. Cowley AM Jr, Monos E, Guyton AC (1974) Interaction of vasopressin and the baroreceptor reflex system in the regulation of arterial blood pressure in the dog. Circ Res 34: 505–514PubMedGoogle Scholar
  28. Cowley AM, Switzer SJ, Guinn MM (1980) Evidence and quantification of the vasopressin arterial pressure control system in the dog. Circ Res. 46: 58–67PubMedGoogle Scholar
  29. Cowley AW, Cushman WC, Quillen EW, Skelton MM, Langford HG (1981) Vasopressin elevation in essential hypertension and increased responsiveness to sodium intake. Hypertension 3 [Suppl I]:I-93-I-100Google Scholar
  30. Crofton JT, Share L, Shade RE, Allen C, Tarnowski D (1978) Vasopressin in the rat with spontaneous hypertension. Am J Physiol 235: H361–H366PubMedGoogle Scholar
  31. Crofton JT, Share L, Shade RE, Lee-Kwon WJ, Manning M, Sawyer WH (1979) The importance of vasopressin in the development and maintenance of DOC-salt hypertension in the rat. Hypertension 1: 31–38PubMedGoogle Scholar
  32. Crofton JT, Share L, Wang BC, Shade RE (1980) Pressor responsiveness to vasopressin in the rat with DOC-salt hypertension. Hypertension 2: 424–431PubMedGoogle Scholar
  33. Crofton JT, Share L, Baer PG, Allen CM, Wang BC (1981) Vasopressin secretion in the New Zealand genetically hypertensive rat. Clin Exp Hyperten 3: 975–989Google Scholar
  34. De Wied D, Versteeg DHG (1979) Neurohypophyseal principles and memory. Fed Proc 38: 2348–2354PubMedGoogle Scholar
  35. Di Pette DJ, Gavras I, North WG, Brunner HR, Gavras H (1982) Vasopressin in salt-in- duced hypertension of experimental renal insufficiency. Hypertension 4 [Suppl II]:II- 125-11-130Google Scholar
  36. Dogterom J, Snijdewint FGM, Buijs RM (1978) The distribution of vasopressin and oxytocin in the rat brain. Neurosci Lett 9: 341–346PubMedGoogle Scholar
  37. Dousa TP, Valtin H (1976) Cellular actions of vasopressin in the mammalian kidney. Kidney Int 10: 46–63PubMedGoogle Scholar
  38. Dreifuss J J (1975) A review of neurosecretory granules: their contents and mechanism of release. Ann NY Acad Sci 248-184-201Google Scholar
  39. Dunn FJ, Brennan TJ, Nelson AE, Robertson GL (1973) The role of blood osmolality and volume in regulating vasopressin secretion in the rat. J Clin Invest 52: 3212–3219PubMedGoogle Scholar
  40. Du Vigneuad V, Gish DI, Katsoyannis PG (1954 a) A synthetic preparation possessing biological properties associated with arginine-vasopressin. J Am Chem Soc 76: 4751–4752Google Scholar
  41. Du Vigneaud V, Ressler C, Swan JM, Katsoyannis PG, Roberts CW (1954 b) The synthesis of oxytocin. J Am Chem Soc 76: 3115–3121Google Scholar
  42. Ellis ME, Grollman A (1949) The antidiuretic hormone in the urine in experimental and clinical hypertension. Endocrinology 44: 415–419PubMedGoogle Scholar
  43. Erker EF, Chan WY (1977) The site and mechanism of phenoxybenzamine potentiation of the pressor response to oxytocin and vasopressin: In vivo and isolated aortic strips studies. J Pharmacol Exp Ther 202: 287–293PubMedGoogle Scholar
  44. Farini F (1913) Diabete insipido ed opoterapia. Gazz Osped Clin 34: 1135–1139Google Scholar
  45. Fejes-Toth G, Naray-Fejes-Toth A, Ratge D, Frölich JC (1982) Vasopressin released by osmotic stimuli does not contribute to blood pressure regulation in the rat. Therapiewoche 32: 5723Google Scholar
  46. Fink B, Rascher W, Rettig R, Gross F (1982) Anstieg von Blutdruck und Herzfrequenz nach Mikroinjektion von Vasopressin in den Nucleus tractus solitarii. Therapiewoche 32: 5724Google Scholar
  47. Frieden J, Keller AD (1954) Decreased resistance to hemorrhage in neuro-hypophysecto-mized dogs. Circ Res 2: 214–220PubMedGoogle Scholar
  48. Friedman SM, Friedman CL, Nakashima M (1960) Accelerated appearance of DCA hypertension in rats treated with pitressin. Endocrinology 67: 752–759PubMedGoogle Scholar
  49. Fuxe K, Ganten D, Jonsson G, Agnati LF, Andersson K, Hökfelt T, Bolme P, Goldstein M, Hallman H, Unger Th, Rascher W (1979 a) Catecholamine turnover changes in hypothalamus and dorsal midline area of the caudal modedulla oblongata of spontaneously hypertensive rats. Neurosci Lett 15: 283–288PubMedGoogle Scholar
  50. Fuxe K, Ganten D, Jonsson G, Bolme P, Agnati LF, Andersson K, Goldstein M, Hökfelt T (1979 b) Evidence for a selective reduction of adrenaline turnover in the dorsal midline area of the caudal medulla oblongata of young spontaneously hypertensive rats. Acta Physiol Scand 107: 397–399PubMedGoogle Scholar
  51. Gainer H, Same Y, Brownstein MJ (1977) Neurophysin biosynthesis: Conversion of a putative precursor during axonal transport. Science 195: 1354–1356PubMedGoogle Scholar
  52. Ganten D, Unger T, Schölkens B, Rascher W, Speck G, Stock G (1981) Role of neuropeptides in regulation of blood pressure. In: Abboud FM, Fozzard HA, Gilmore JC, Reis DJ (eds) Disturbances in neurogenic control of the circulation. Am Physiol Soc, Washington, pp 139–151Google Scholar
  53. Ganten U, Rascher W, Lang RE, Dietz R, Rettig G, Unger T, Taugner R, Ganten D (1983) Development of a new strain of spontaneously hypertensive rats homozygous for hypothalamic diabetes insipidus. Hypertension 5 [Suppl I]:I-119-I-128Google Scholar
  54. Gauer OH, Henry JP, Behn C (1970) The regulation of extracellular fluid volume. Annu Rev Physiol 32: 547–595PubMedGoogle Scholar
  55. Gavras H, Hatzinikolaou P, North WG, Bresnahan M, Gavras I (1982) Interaction of the sympathetic nervous system with vasopressin and renin in the maintenance of blood pressure regulation. Hypertension 4: 400–405PubMedGoogle Scholar
  56. George JM, Jacobowitz DM (1975) Localization of vasopressin in discrete areas of the rat hypothalamus. Brain Res 93: 363–366PubMedGoogle Scholar
  57. Glick SM, Brownstein MJ (1980) Vasopressin content of rat brain. Life Sci 27: 1103–1110PubMedGoogle Scholar
  58. Gluck S, Al-Awqati Q (1980) Vasopressin increases water permeability by inducing pores. Nature 284: 631–632PubMedGoogle Scholar
  59. Goetz TL, Bond GL, Bloxham DD (1975) Atrial receptors and renal function. Physiol Rev 55: 157–205PubMedGoogle Scholar
  60. Harmanci MC, Stern P, Kackadorian WA, Valtin H, Di Scala VA (1980) Vasopressin and collecting duct intamembranous particle clusters: a dose-response relationship. Am J Physiol 239. F560–F564PubMedGoogle Scholar
  61. Hatzinikolaou P, Gavras H, Brunner HR, Gavras I (1980) Sodium-induced elevation of blood pressure in the anephritic state. Science 209: 935–936PubMedGoogle Scholar
  62. Hatzinikolaou P, Gavras H, Brunner HR, Gavras I (1981) Role of vasopressin, catecholamines and plasma volume in hypertonic saline-induced hypertension. Am J Physiol 240: H827–H831PubMedGoogle Scholar
  63. Hawthorn K, Ang VTY, Jenkins JS (1980) Localization of vasopressin in the rat brain. Brain Res 197: 75–81PubMedGoogle Scholar
  64. Hayward JN, Pavasuthipaisit K, Perez-Lopez FR, Sofroniew MV (1976) Radioimmunoassay of arginine-vasopressin in rhesus monkey plasma. Endocrinology 98: 975–981PubMedGoogle Scholar
  65. Heyndrickx G, Boettcher D, Vatner S (1976) Effects of angiotensin, vasopressin and methoxamine on cardiac function and blood flow distribution in conscious dogs. Am J Physiol 231: 1579–1587PubMedGoogle Scholar
  66. Hofbauer KG (1980) Effect of a competitive antagonist of arginine-vasopressin in glycerol- induced acute renal failure in rats. Naunyn Schmiedebergs Arch Pharmacol 311 [Suppl): R50Google Scholar
  67. Hofbauer KG, Konrads A, Bauereiss K, Möhring B, Möhring J, Gross F (1977) Vasopressin and renin in glycerol-induced acute renal failure in the rat. Circ Res 41: 424–428PubMedGoogle Scholar
  68. Hoffman WE, Phillips MI, Schmid PG, Falcon J, Weet JF (1977 a) Antidiuretic hormone release and the pressor response to central angiotensin II and cholinergic stimulation. Neuropharmacology 16: 463–472PubMedGoogle Scholar
  69. Hoffman EW, Phillips MI, Schmid P (1977 b) The role of catecholamines in central antidiuretic and pressor mechanism. Neuropharmacology 16: 563–569PubMedGoogle Scholar
  70. Howell WH (1898) The physiological effects of extracts of the hypophysis cerebri and infundibular body. J Exp Med 3: 245–258PubMedGoogle Scholar
  71. Ishikawa S, Schrier RW (1982) Evidence for a role of opioid peptides in the release of arginine vasopressin in the conscious rat. J Clin Invest 69: 666–672PubMedGoogle Scholar
  72. Ishikawa S, Handleman WA, Schrier RW, Berl T (1982) In vivo effect of cellular calcium uptake on osmotic and nonosmotic release of arginine vasopressin. Kidney Int 21:813—819PubMedGoogle Scholar
  73. Iwamoto HS, Rudolph AM, Keil LC, Heyman MA (1979) Hemodynamic responses to the sheep fetus to vasopressin infusion. Circ Res 44: 430–436PubMedGoogle Scholar
  74. Jard S, Bockaert J (1975) Stimulus response coupling in neurohypophysical peptide target cells. Physiol Rev 55: 489–536PubMedGoogle Scholar
  75. Johnson MD, Kinter LB, Beeuwkes R (1979) Effect of A VP and DDAVP on plasma renin activity and electrolyte excretion in conscious dogs. Am J Physiol 236: F66–F70PubMedGoogle Scholar
  76. Johnson JA, Ichikawa S, Kurz KD, Fowler WL, Payne CG (1981) Pressor responses to vasopressin in rabbits with 3-day renal artery stenosis. Am J Physiol 240: H862–H867PubMedGoogle Scholar
  77. Johnston CI, Newman M, Woods R (1981) Role of vasopressin in cardiovascular homeostasis and hypertension. Clin Sci 61: 129s–139sPubMedGoogle Scholar
  78. Kamm O, Aldrich TB, Corote FW, Row LW, Bugbee EP (1928) Active principles of the posterior lobe of the pituitary gland I. The demonstration of the presence of two active principles II. The separation of the two principles and their concentration in the form of potent solid preparations. J Am Chem Soc 50: 573–580Google Scholar
  79. Karashima T (1981) Effects of vasopressin on smooth muscle of guinea pig mesenteric vessels. Br J Pharmacol 72: 673–684PubMedGoogle Scholar
  80. Keil LC, Summy-Long J, Severs WB (1975) Release of vasopressin by angiotensin II. Endocrinology 96: 1063–1065PubMedGoogle Scholar
  81. Kepinow D (1912) Über den Synergismus von Hypophysisextrakt und Adrenalin. Naunyn Schmiedebergs Arch Pharmacol 67: 247–274Google Scholar
  82. Khokhar AM, Slater JDH (1976) Increased renal excretion of arginine-vasopressin (AVP) during mild hydropenia in young men with mild essential benign hypertension. Clin Sci Med 51: 691s–694sGoogle Scholar
  83. Khokhar AM, Slater JDH, Ma J, Ramage CM (1980) The cardiovascular effect of vasopressin in relation to its plasma concentration in man and its relevance to high blood pressure. Clin Endocrinol (Oxf) 13: 259–266Google Scholar
  84. Kimura T, Share L, Wang BC, Crofton JT (1981 a) Central effects of dopamine and bromocriptine on vasopressin release and blood pressure. Neuroendocrinology 33:347–351PubMedGoogle Scholar
  85. Kimura T, Share L, Wang BC, Crofton JT (1981 b) The role of central adrenoceptors in the control of vasopressin release and blood pressure. Endocrinology 108: 1829–1836PubMedGoogle Scholar
  86. Kirchheim HR (1976) Systemic arterial baroreceptor reflexes. Physiol Rev 56: 100–177PubMedGoogle Scholar
  87. Kirsch B (1978) Light- and electron microscopic localisation of vasopressin or vasopressin- like substance in the neurons of the rat suprachiasmatic nucleus. Cell Tissue Res 194: 361–365Google Scholar
  88. Kovacs GL, Bohus B, Versteeg DHG (1979) The effects of vasopressin in memory processes: the role of noradrenergic transmission. Neuroscience 4: 1529–1537PubMedGoogle Scholar
  89. Kruszynski M, Lammek B, Manning M, Seto J, Haldar J, Sawyer WH (1980) <l-(β-mercapto-β,β-cyclopentamethylenepropionic acid),2-(0-methyl)tyrosine> arginine vasopressin and <l-(β-mercapto- β, β -cyclopentamethylenepropionic acid> arginine vasopressin, two highly potent antagonists of the vasopressor response to arginine vasopressin. J Med Chem 23: 364–368PubMedGoogle Scholar
  90. Land H, Schütz G, Schmale H, Richter D (1982) Nucleotide sequence of cloned cDNA encoding bovine arginine vasopressin-neurophysin II precursor. Nature 295: 299–303PubMedGoogle Scholar
  91. Lang H, Grez M, Ruppert S, Schmale H, Rehbein M, Richter D, Schütz G (1983) Deduced amino acid sequence from the bovine oxytocin-neurophysin I precursor cDNA. Nature 302: 342–344Google Scholar
  92. Lang RE, Rascher W, Unger T, Ganten D (1981) Reduced content of vasopressin in the brain of spontaneously hypertensive as compared to normo tensive rats. Neursci Lett 23: 199–202Google Scholar
  93. Lang RE, Rascher W, Hermann K, Unger T, Ganten D (1982) Distribution of oxytocin and vasopressin in rat brain: reduced content in spontaneously hypertensive rats. In: Rascher W, Clough D, Ganten D (eds) Hypertensive mechanisms. Schattauer, Stuttgart, pp 581–587Google Scholar
  94. Lang RE, Heil J, Ganten D, Hermann K, Rascher W, Unger T (1983) Effects of lesions in the paraventricular nucleus of the hypothalamus on vasopressin and oxytocin contents in brainstem and spinal cord of rat. Brain Res 260: 326–329PubMedGoogle Scholar
  95. Larsson B, Olsson K, Fyhrquist F (1978) Vasopressin release induced by hemorrhage in the goat. Acta Physiol Scand 104: 309–317PubMedGoogle Scholar
  96. Laycook JF, Penn W, Shirley DG, Walter SJ (1979) The role of vasopressin in blood pressure regulation immediately following acute hemorrhage in the rat. J Physiol 296: 267–275Google Scholar
  97. Lee-Kwon WJ, Share L, Crofton JT, Shade RE (1981) Vasopressin in the rat with partial nephrectomy–salt hypertension. Clin Exp Hypertens 3: 281–297PubMedGoogle Scholar
  98. Leeuwen FW, van Swaab DG, De Raaby C (1978) Immunoelectron-microscopic localization of vasopressin in the rat suprachiasmatic nucleus. Cell Tissue Res 193: 1–10PubMedGoogle Scholar
  99. Liard JF (1980) The baroreceptor reflexes in experimental hypertension. Clin Exp Hypertens 2: 479–498PubMedGoogle Scholar
  100. Liard JF (1982) Vasopressin in cardiovascular control and hypertension. In: Rascher W, Clough D, Ganten D (eds) Hypertensive mechanisms. Schattauer, Stuttgart, pp. 561–573Google Scholar
  101. Liard JF, Deriaz O, Tschopp M, Schoun J (1981) Cardiovascular effects of vasopressin infused into the vertebral circulation of conscious dogs. Clin Sci 61: 345–347PubMedGoogle Scholar
  102. Lohmeier TE, Smith MK, Cowley AM, Manning TD, Guyton AC (1981) Is vasopressin an important hypertensive hormone? Hypertension 3: 416–425PubMedGoogle Scholar
  103. Lord JAH, Waterfield A A, Hughes J, Kosterlitz HW (1977) Endogenous opioid peptides: multiple agonists and receptors. Nature 267: 495–499PubMedGoogle Scholar
  104. Lowbridge J, Manning M, Haldar J, Sawyer WH (1978) <l-(β-mercapto- β, β-cyclopenta- methylenepropionic acid), 4-valine,-8-D-arginine> vasopressin, a potent and selective inhibitor of the vasopressor response to arginine vasopressin. J Med Chem 21: 313–315PubMedGoogle Scholar
  105. Manning M, Sawyer WH (1982) Antagonists of vasopressin and antidiuretic responses to arginine vasopressin. Ann Intern Med 96: 520–522PubMedGoogle Scholar
  106. Manning M, Balaspiri L, Acosta M, Sawyer WH (1973) Solid-phase synthesis of (1-deamino, 4-valine, 8-D-arginine) vasopressin (dV-DAVP), a highly potent and specific antidiuretic agent possessing protracted effects. J Med Chem 16: 975 - 978PubMedGoogle Scholar
  107. Manning M, Lowbridge J, Haldar J, Sawyer WH (1977 a) Design of neurohypophyseal peptides that exhibit selective agonistic and antagonistic properties. Fed Proc 36: 848–853Google Scholar
  108. Manning M, Lowbridge J, Stier CT, Haldar J, Sawyer WH (1977 b) (1-Deaminopenicill- amine,-4-valine)-8-D-arginine-vasopressin, a highly potent inhibitor of the vasopressor response to arginine-vasopressin. J Med Chem 20: 1228–1230PubMedGoogle Scholar
  109. Manning RD, Guyton AC, Coleman TG, McCaa RE (1979) Hypertension in dogs during antidiuretic hormone and hypertonic saline infusion. Am J Physiol 236: H314–H322PubMedGoogle Scholar
  110. Manning M, Gzronka Z, Sawyer WH (1981) Synthesis of posterior pituitary hormones and hormone analogues. In: Bearwell C, Robinson G (eds) The pituitary. Butterworths, Kent, pp 265–296Google Scholar
  111. Manning M, Klis WA, Olma A, Seto J, Sawyer WH (1982 a) Design of more potent and selective antagonists of the antidiuretic responses to arginine-vasopressin devoid of antidiuretic agonism. J Med Chem 25: 414–419PubMedGoogle Scholar
  112. Manning M, Ilma A, Klis WA, Kolodziejczykm AM, Seto J, Sawyer WH (1982 b) Design of more potent antagonists of the antidiuretic responses to arginine vasopressin. J Med Chem 25: 45–50PubMedGoogle Scholar
  113. Matsuguchi H, Schmid PG (1982) Pressor responses to vasopressin and impaired baroreflex function in DOC-salt hypertension. Am J Physiol 242: H44–H49PubMedGoogle Scholar
  114. Matsuguchi H, Schmid PG, van Orden D, Mark AL (1981) Does vasopressin contribute to salt-induced hypertension in the Dahl strain? Hypertension 3: 174–181PubMedGoogle Scholar
  115. Matsuguchi H, Sharabi FM, Gordon FJ, Johnson AK, Schmid PG (1982) Blood pressure and heart rate responses to microinjection of vasopressin into the nucleus tractus soli- tarii region of the rat. Neuropharmacology 21: 687–693PubMedGoogle Scholar
  116. McNeill JR (1974) Intestinal vasoconstriction following diuretic-induced volume depletion: role of angiotensin and vasopressin. Can J Physiol Pharmacol 52: 829–839PubMedGoogle Scholar
  117. McNeill JR, Stark RD, Greenway CV (1970) Intestinal vasoconstriction after hemorrhage: roles of vasopressin and angiotensin. Am J Physiol 219: 1342–1347PubMedGoogle Scholar
  118. Mc Neill JR, Wicox WC, Pang CCY (1976) Vasopressin and angiotensin: reciprocal mechanisms controlling mesenteric conductance. Am J Physiol 232: 262–266Google Scholar
  119. Miller TR, Handlman WA, Arnold PE, Mc Donald KM, Molinoff PB, Schrier RW (1979) Effect of central catecholaminergic depletion on the osmotic and nonosmotic stimulation of vasopressin (antidiuretic hormone) in the rat. J Clin Invest 64: 1599–1607PubMedGoogle Scholar
  120. Möhring J (1978) Neurohypophyseal vasopressor principle: vasopressor hormone as well as antidiuretic hormone? Klin Wochenschr 56 [Suppl I]: 71–79PubMedGoogle Scholar
  121. Möhring J, Möhring B, Petri M, Haack D (1976) Is vasopressin involved in the pathogenesis of malignant desoxycorticosterone hypertension in rats? Lancet 1: 170–173PubMedGoogle Scholar
  122. Möhring J, Möhring B, Petri M, Haack D (1977) Vasopressor role of ADH in the pathogenesis of malignant DOC hypertension. Am J Physiol 232: F260–F269PubMedGoogle Scholar
  123. Möhring J, Möhring B, Petri M, Haack D (1978 a) Plasma vasopressin concentrations and effects of vasopressin antiserum on blood pressure in rats with malignant two-kidney Goldblatt hypertension. Circ Res 42: 17–22PubMedGoogle Scholar
  124. Möhring J, Kintz J, Schoun J (1978 b) Role of vasopressin in blood pressure control of spontaneously hypertensive rats. Clin Sci Mol Med 55: 247s–250sGoogle Scholar
  125. Möhring J, Kintz J, Schoun J (1979) Studies on the role of vasopressin in blood pressure control of spontaneously hypertension rats with established hypertension. J Cardiovasc Pharmacol 1: 593–608PubMedGoogle Scholar
  126. Möhring J, Glänzer K, Maciel Jr JA; Düsing R, Kramer HJ, Arbogast R, Koch-Weser J (1980a) Greatly enhanced pressor response to antidiuretic hormone in patients with impaired cardiovascular reflexes due to idiopathic orthostatic hypotension. J Cardiovasc Pharmacol 2: 367–376PubMedGoogle Scholar
  127. Möhring J, Schoun J, Kintz J, McNeill R (1980 b) Decreased vasopressin content in brain stem of rats with spontaneous hypertension. Naunyn Schmiedebergs Arch Pharmacol 315: 83–84PubMedGoogle Scholar
  128. Möhring J, Kintz J, Schoun J, McNeill JR (1981) Pressor responsiveness and cardiovascular reflex activity in spontaneously hypertensive and normotensive rats during vasopressin infusion. J Cardio vase Pharmacol 3: 948–957Google Scholar
  129. Monos E, Cox RH, Robertson LH (1978) Direct effect of physiological doses of arginine vasopressin on the arterial wall in vivo. Am J Physiol 234: H167–H172PubMedGoogle Scholar
  130. Montani JP, Liard JF, Schoun J, Möhring J (1980) Hemodynamic effects of exogenous and endogenous vasopressin at low plasma concentration in conscious dogs. Circ Res 47: 346–355PubMedGoogle Scholar
  131. Morris M, Keller M (1982) A specific deficiency in paraventricular vasopressin and oxytocin in the spontaneously hypertensive rat. Brain Res 7: 173–176Google Scholar
  132. Morris M, Wren JA, Sundberg DK (1981) Central neural peptides and catecholamines in spontaneously and DOCA-salt hypertension. Peptides 2: 207–211PubMedGoogle Scholar
  133. Morton J J, Garcia del Rio C, Hughes MJ (1982) Effect of acute vasopressin infusion on blood pressure plasma angiotensin II in normotensive and DOCA-salt hypertensive rats. Clin Sci 62: 143–149PubMedGoogle Scholar
  134. Nakano J (1974) Cardiovascular responses to neurohypophyseal hormones. In: Greep RO, Astwood EB (eds) The pituitary gland and its neuroendocrine control. Am Physiol Soc, Washington, DC (Handbook of Physiology, sec 7, Endocrinology, vol. IV I, pp 395–442 )Google Scholar
  135. Nashold BSA, Mannarino E, Wunderlich M (1962) Pressor-depressor blood pressure responses in the cat after intraventricular injection of drugs. Nature 193: 1297–1298PubMedGoogle Scholar
  136. Nestor JJ, Ferger MF, Du Vigneaud V (1975) (l-β-mercapto-β, β-pentamethylenepropionic acid) oxytocin, a potent inhibitor of oxytocin. J Med Chem 18: 284–287PubMedGoogle Scholar
  137. Nilaver G, Zimmerman J, Wilkins J, Michaels J, Hoffman D, Silverman A J (1980) Mag- nocellular hypothalamic projections to the lower brain stem and spinal cord of the rat. Neuroendocrinology 30: 150–158PubMedGoogle Scholar
  138. Oliver G, Schäfer EA (1895) On the physiological actions of extracts of the pituitary body and certain other glandular organs. J Physiol (Lond) 18: 277–279Google Scholar
  139. Olpe HR, Baltzer V (1981) Vasopressin activates noradrenergic neurons in the locus coeruleus: a microiontophoretic investigation. Eur J Pharmacol 73: 377–378Google Scholar
  140. Padfield PL, Brown JJ, Lever AF, Morton JJ, Robertson JIS (1976) Changes of vasopressin in hypertension: cause or effect? Lancet 1: 1255–1257PubMedGoogle Scholar
  141. Padfield PL, Brown J J, Lever AF, Morton J J, Robertson JIS (1981) Blood pressure in acute and chronic vasopressin excess. Studies of malignant hypertension and the syndrome of inappropriate antidiuretic hormone secretion. N Engl J Med 304: 1067–1070PubMedGoogle Scholar
  142. Page IH, Sweet JE (1937) The effect of hypophysectomy on arterial blood pressure of dogs with experimental hypertension. Am J Physiol 120: 238–245Google Scholar
  143. Pang CCY, Wilcox WC, McNeill JR (1979) Hypophysectomy and saralasin on mesenteric vasoconstrictor response to vasopressin. Am J Physiol 236: H200–H205PubMedGoogle Scholar
  144. Penit J, Faure M, Jard S (1983) Vasopressin and angiotensin II receptors in rat aortic smooth muscle in culture. Am J Physiol 244: E72–E82PubMedGoogle Scholar
  145. Pittman QJ, Lawrence D, Mc Lean L (1982) Central effects of arginine vasopressin on blood pressure in rats. Endocrinology 110: 1058–1060PubMedGoogle Scholar
  146. Pohjavuori M, Fyhrquist F (1980) Hemodynamic significance of vasopressin in the newborn infant. J Pediatr 97: 462–465PubMedGoogle Scholar
  147. Pullan PT, Johnston CI, Anderson WP, Korner PI (1978) The role of vasopressin in blood pressure control and in experimental hypertension. Clin Sci 55:251s–254sGoogle Scholar
  148. Pullan PT, Johnston CI, Anderson WP, Korner PI (1980) Plasma vasopressin in blood pressure homeostasis and in experimental renal hypertension. Am J Physiol 239: H81–H87PubMedGoogle Scholar
  149. Quillen EW, Cowley AM (1983) Influence of volume changes on osmolality-vasopressin relationship in conscious dogs. Am J Physiol 244: H73–H79PubMedGoogle Scholar
  150. Rabito SF, Carretero OA, Scicli AG (1981) Evidence against a role of vasopressin in the maintenance of high blood pressure in mineralocorticoid and renovascular hypertension. Hypertension 3: 34–38PubMedGoogle Scholar
  151. Rascher W, Lang RE, Taubitz M, Meffle H, Unger T, Ganten D, Gross F (1981 a) Vasopressin induced increase in total peripheral resistance in deoxycorticosterone acetate hypertension is buffered by the baroreceptor reflex. Clin Sci 61:153s–156sPubMedGoogle Scholar
  152. Rascher W, Weidemann E, Gross F (1981b) Vasopressin in the plasma of stroke-prone spontaneously hypertensive rats. Clin Sci 61: 295–298PubMedGoogle Scholar
  153. Rascher W, Fink B, Gross F (1982 a) Increased pressor responses following microinjections of arginine vasopressin into the nucleus tractus solitarii of spontaneously hypertensive rats. Naunyn Schmiedebergs Arch Pharmacol 319 [Suppl]:R48Google Scholar
  154. Rascher W, Lang RE, Fink B, Ganten D, Unger T, Gross F (1982b) Reduced synthesis of (arginine)-vasopressin in spontaneously hypertensive rats. Clin Sci 63: 117s–119sGoogle Scholar
  155. Rascher W, Lang RE, Unger T, Ganten D, Gross F (1982c) Vasopressin in brain of spontaneously hypertensive rats. Am J Physiol 242: H496–H499PubMedGoogle Scholar
  156. Rascher W, Lang RE, Weidemann E, Ganten D, Unger T, Gross F (1982d) Evidence against a role of circulating vasopressin in the pathogenesis of spontaneous hypertension in rats. In: Rascher W, Clough D, Ganten D (eds) Hypertensive mechanisms, Schattauer, Stuttgart, pp 574–576Google Scholar
  157. Rascher W, Lang RE, Ganten D, Meffle H, Taubitz M, Unger T, Gross F (1983) Vasopressin in deoxycorticosterone acetate hypertension of rats: a hemodynamic analysis. J Cardiovasc Pharmacol 5: 418–425PubMedGoogle Scholar
  158. Rhodes CH, Morrell JI, Pfaff DW (1981) Immunohistochemical analysis of magnocellular elements in rat hypothalamus: distribution and numbers of cells containing neurophysin, oxytocin and vasopressin. J Comp Neurol 198: 45–64PubMedGoogle Scholar
  159. Richardson PDA, Withrington PG (1978) The effects of intraarterial and intraportal injections of vasopressin on the simultaneously perfused hepatic arterial and portal venous vascular beds of the dog. Circ Res 43: 496–503PubMedGoogle Scholar
  160. Robertson GL (1977) The regulation of vasopressin function in health and disease. Recent Prog Horm Res 33: 333–385Google Scholar
  161. Robertson GL, Athar S (1976) The interaction of blood osmolality and blood volume in regulating plasma vasopressin in man. J Endocrinol Metab 42: 613–620Google Scholar
  162. Robertson GL, Mahr EA, Athar S, Sinha T (1973) Development and clinical application of a new method for the radioimmunoassay of arginine-vasopressin in human plasma. J Clin Invest 52: 2340–2352PubMedGoogle Scholar
  163. Robertson GL, Aycinana P, Zerbe RL (1982) Neurogenic disorders of osmoregulation. Am J Med 72: 339–353PubMedGoogle Scholar
  164. Rocha e Silva M Jr, Rosenberg M (1969) The release of vasopressin in response to hemorrhage and its role in the mechanism of blood pressure regulation. J Physiol (Lond) 202: 533–557Google Scholar
  165. Rosenbloom A A, Fisher DA (1975) Radioimmunoassayable AVT and A VP in adult mammalian brain tissue: Comparison of normal and Brattleboro rat. Neuroendocrinology 17: 354–361PubMedGoogle Scholar
  166. Rossier J, Pittman Q, Bloom F, Guillemin R (1980) Distribution of opioid peptides in the pituitary: a new hypothalamic-pars nervosa encephalinergic pathway. Fed Proc 39: 2555–2560PubMedGoogle Scholar
  167. Rossor MN, Iversen LL, Hawthorn J, Ang VTY, Jenkins JS (1981) Extrahypothalamic vasopressin in human brain. Brain Res 214: 349–355PubMedGoogle Scholar
  168. Saavedra J, Grobecker H, Axelrod J (1978) Changes in central catecholaminergic neurons in spontaneously (genetic) hypertensive rats. Circ Res 42: 529–534PubMedGoogle Scholar
  169. Sachs H, Takabakate Y (1964) Evidence for a precursor in vasopressin biosynthesis. Endocrinology 75: 943–948PubMedGoogle Scholar
  170. Sachs H, Fawcett P, Takabatake Y, Portanova R (1969) Biosynthesis and release of vasopressin and neurophysin. Recent Prog Horm Res 25: 447–491PubMedGoogle Scholar
  171. Saito T, Yajima Y (1982) Development of DOCA-salt hypertension in the Brattleboro rat. Ann NY Acad Sci 394: 309–318PubMedGoogle Scholar
  172. Sawyer WH, Manning M (1973) Synthetic analogues of oxytocin and vasopressin. Annu Rev Pharmacol 13: 5–17Google Scholar
  173. Sawyer WH, Acosta M, Manning M (1974) Structural changes in the arginine vasopressin molecule that prolong its antidiuretic action. Endocrinology 95: 140–149PubMedGoogle Scholar
  174. Sawyer WH, Grzonka Z, Manning M (1981 a) Neurohypophyseal peptides: Design of tissue-specific agonists and antagonists. Mol Cell Endocrinol 22: 117–134PubMedGoogle Scholar
  175. Sawyer WH, Pang PKT, Seto J, McEnroe M, Lammek B, Manning M (1981 b) Vasopressin analogues that antagonize antidiuretic responses by rats to the antidiuretic hormone. Science 212: 49–51PubMedGoogle Scholar
  176. Schmid PG, Abboud FM, Wendling MG, Ramberg ES, Mark AL, Heistad DD, Eckstein JW (1974) Regional vascular effects of vasopressin: plasma levels and circulatory responses. Am J Physiol 227: 998–1004PubMedGoogle Scholar
  177. Schömig A, Dietz R, Rascher W, Lüth JB, Mann JFE, Schmidt M, Weber J (1978) Sympathetic vascular tone in spontaneous hypertension of rats. Klin Wochenschr 56 [Suppl I]: 131–138PubMedGoogle Scholar
  178. Schrier RW, Berl T, Anderson RJ (1979) Osmotic and nonosmotic release of vasopressin release. Am J Physiol 236: F321–F332PubMedGoogle Scholar
  179. Schulz H, Du Vigneaud V (1966) Synthesis of (1-L-penicillamine) oxytocin, (1-D-penicillamine)oxytocin and (l-deaminopenicillamine)oxytocin, potent inhibitors of the oxytocin response to oxytocin. J Med Chem 9: 647–650PubMedGoogle Scholar
  180. Schwartz J, Reid IA (1981) Effect of vasopressin blockade on blood pressure regulation during hemorrhage in conscious dogs. Endocrinology 109: 1778–1780PubMedGoogle Scholar
  181. Share L (1961) Acute reduction in extracellular fluid volume and the concentration of antidiuretic hormone in blood. Endocrinology 69: 925–933PubMedGoogle Scholar
  182. Share L (1974) Blood pressure, blood volume and the release of vasopressin. In: Greep RO, Astwood EB (eds) The pituitary gland and its neuroendocrine control, Vol IV, Part I. Am Physiol Soc, Washington DC, pp 243–255Google Scholar
  183. Share L, Levy MN (1966) Carotid sinus pulse pressure, a determinant of plasma antidiuretic hormone concentration. Am J Physiol 211: 721–724PubMedGoogle Scholar
  184. Share L, Crofton JT, Rockhold RW, Rapp JP (1982) Vasopressin secretion and responses to captopril and a vasopressin antagonist in the Dahl rat. In: Rascher W, Clough D, Ganten D (eds) Hypertensive mechanisms. Schattauer, Stuttgart, pp 577–580Google Scholar
  185. Skowsky WR, Rosenbloom A A, Fischer DF (1974) Radioimmunoassay of arginine vasopressin: development and application. J Clin Endocrinol Metab 38: 278–287PubMedGoogle Scholar
  186. Sladek CD, Joynt RJ (1979 a) Characterization of cholinergic control of vasopressin release by the organ-cultured rat hypothalamo-neurohypophyseal system. Endocrinology 104: 659–663PubMedGoogle Scholar
  187. Sladek CD, Joynt RJ (1979 b) Cholinergic involvement in osmotic control of vasopressin release by the organ-cultured rat hypothalamo-neurohypophyseal system. Endocrinology 105: 367–371PubMedGoogle Scholar
  188. Smith MJ, Cowley AW, Guyton AC, Manning RD (1979) Acute and chronic effects of vasopressin on blood pressure, electrolytes and fluid volumes. Am J Physiol 237: F232–240PubMedGoogle Scholar
  189. Sofroniew MV, Schrell U (1981) Evidence of a direct projection from oxytocin and vaso-pressin neurons in the hypothalamic paraventricular nucleus to the medulla oblongata. Immunohistochemical visulization of both the horseradish peroxidase transported and the peptide produced by the same neurons. Neurosci Lett 22: 211–217Google Scholar
  190. Sofroniew MV, Weindl A (1978 a) Extrahypothalamic neurophysin-containing perikarya, fiber pathway and fiber cluster in the rat brain. Endocrinology 102: 334–337PubMedGoogle Scholar
  191. Sofroniew MV, Weindl A (1978 b) Projections from the parvocellular vasopressin- and neurophysin-containing neurons of the suprachiasmatic nucleus. Am J Anat 153:391–401PubMedGoogle Scholar
  192. Starling EH, Verney EB (1924) The secretion of urine as studied on the isolated kidney. Proc R Soc, Lond [Biol] 97: 321–363Google Scholar
  193. Swanson LW (1977) Immunohistochemical evidence for a neurophysin containing autonomic pathway in the paraventricular nucleus of the hypothalamus. Brain Res 128: 346–353PubMedGoogle Scholar
  194. Szczepanska-Sadowska E (1973) Hemodynamic effects of a moderate increase of the plasma vasopressin level in conscious dogs. Pfluegers Arch 338: 313–322Google Scholar
  195. Szczepanska-Sadowska, E, Sobocinska J, Sadowski B (1982) Central dipsogenic effect of vasopressin. Am J Physiol 242: R372–R379PubMedGoogle Scholar
  196. Tanaka M, De Kloet ER, De Wied D, Versteeg DHG (1977 a) Arginine-vasopressin affects catecholamine metabolism in specific brain nuclei. Life Sci 20: 1799–1808PubMedGoogle Scholar
  197. Tanaka M, Versteeg DHG, De Wied D (1977 b) Regional effects of vasopressin on rat brain catecholamine metabolism. Neurosci Lett 4: 321–325PubMedGoogle Scholar
  198. Thames MD, Schmid PG (1979) Cardiopulmonary receptors with vagal afferents tonically inhibit ADH release in the dog. Am J Physiol 237: H299–H304PubMedGoogle Scholar
  199. Thames MD, Schmid PG (1981) Interaction between carotid and cardiopulmonary baroreflexes in control of plasma ADH. Am J Physiol 241: H431–H434PubMedGoogle Scholar
  200. Thorn NA, Torp-Pedersen, Treiman M, Dartt DA, Worm-Petersen S (1980) Influence of calcium on release of neurohypophyseal hormones. In: Wuttke W et al. (eds) Brain and pituitary peptides. Karger, Basel, pp 118–124Google Scholar
  201. Turner RA, Pierce JG, Du Vigneaud V (1951) The purification and amino acid content of vasopressin preparations. J Biol Chem 191: 21–28PubMedGoogle Scholar
  202. Valtin H, Sawyer WH, Sokol HW (1965) Neurohypophyseal principles in rats homozygous and heterozygous for hypothalamic diabetes insipidus (Brattleboro rats). Endocrinology 77: 701–706PubMedGoogle Scholar
  203. Vandesande F, Dierickx K, De Mey J (1975) Identification of vasopressin-neurophysin neurons of the rat suprachiasmatic nuclei. Cell Tissue Res 156: 377–380PubMedGoogle Scholar
  204. Varma S, Bhuwaneshwar PJ, Bhargava KP (1969) Mechanism of vasopressin-induced bradycardia in dogs. Circ Res 24: 787–792PubMedGoogle Scholar
  205. Vávra I, Machová A, Holeček V, Cort JH, Zaoral M, Šorm F (1968) Effect of a synthetic analogue of vasopressin in animals and in patients with diabetes insipidus. Lancet I: 948–952Google Scholar
  206. Veale WL, Kasting NW, Cooper KE (1981) Arginine vasopressin and endogenous antipyresis: evidence and significance. Fed Proc 40: 2750–2753PubMedGoogle Scholar
  207. Versteeg D, Palkovits M, Van der Gugten J, Wijnen H, Smeets G, De Jong W (1976) Catecholamine content of individual brain regions of spontaneously hypertensive rats (SH- rats). Brain Res 112: 429–434PubMedGoogle Scholar
  208. Vilhardt J, Hedquist P (1970) A possible role of prostaglandin E2 in the regulation of vasopressin secretion in rats. Life Sci 9: 825–830Google Scholar
  209. Von den Velden R (1913) Die Nierenwirkung von Hypophysenextrakten beim Menschen. Berlin Klin Wochenschr 45: 2083–2086Google Scholar
  210. Wagner HN, Braunwald E (1956) The pressor effect of the antidiuretic principle of the posterior pituitary in orthostatic hypotension. J Clin Invest 35: 1412–1418PubMedGoogle Scholar
  211. Walter R (1975) Neurophysins: carriers of peptide hormones. Ann NY Acad Sci 248: 1–512Google Scholar
  212. Weindl A, Sofroniew MV (1978) The functional morphology of vascular and neuronal efferent connections of neuroendocrine systems. Arzneimittelforsch 28 (II): 1264–1268PubMedGoogle Scholar
  213. Weinstein H, Berne RM, Sachs H (1960) Vasopressin in blood: Effect of hemorrhage. Endocrinology 66: 712–718PubMedGoogle Scholar
  214. Weitzman RE, Fisher DA (1977) Log linear relationship between plasma arginine vasopressin and plasma osmolality. Am J Physiol 233: E37–E40PubMedGoogle Scholar
  215. Weitzman RE, Reviczky A, Oddie TH, Fisher DA (1980) Effect of osmolality on arginine vasopressin and renin release after hemorrhage. Am J Physiol 238: E62–E68PubMedGoogle Scholar
  216. Wijnen HJLM, Spierenburg HA, De Kloet ER, De Jong W, Versteeg DHG (1980) Decrease in noradrenergic activity in hypothalamic nuclei during the development of spontaneous hypertension. Brain Res 184: 152–162Google Scholar
  217. Wisgerhof MV, Northrup TE, Heubelein DM, Brown RD, Dousa TP (1977) Role of antidiuretic hormone in the elevation of blood pressure caused by deoxycorticosterone and NaCl. Fed Proc 36:491 abstractGoogle Scholar
  218. Woods RL, Johnston CI (1982) Role of vasopressin in hypertension: studies using the Brattleboro rat. Am J Physiol 242: F727–F732PubMedGoogle Scholar
  219. Woods RL, Abrahams JM, Kincaid-Smith P, Johnston CI (1983) Malignant hypertension in Brattleboro (vasopressin-deficient) rats. J Hypertens 1: 37–43PubMedGoogle Scholar
  220. Yamamoto M, Share L, Shade RE (1976) Vasopressin release during ventriculo-cisternal perfusion with prostaglandin E2 in the dog. J Endocrinol (Lond) 71: 325–331Google Scholar
  221. Yates FE, Russell DM, Maran JW (1971) Brain adrenohypophyseal communication in mammals. Annu Rev Physiol 33: 393–444PubMedGoogle Scholar
  222. Young DB, Pan YJ, Guyton AC (1977) Control of extracellular sodium concentration by antidiuretic hormone-thirst feedback mechanism. Am J Physiol 232: R145–R149PubMedGoogle Scholar
  223. Zerbe RL, Feuerstein G, Meyer DK, Kopin IJ (1982) Cardiovascular, sympathetic, and renin-angiotensin system responses to hemorrhage in vasopressin-deficient rats. Endocrinology 111: 608–613PubMedGoogle Scholar
  224. Zimmerman EA (1981) The organization of oxytocin and vasopressin pathways. In: Martin JB, Reichlin S, Bick KL (eds) Neurosecretion and brain peptides. Raven, New York, pp 63–75Google Scholar
  225. Zimmerman EA, Stillman MA, Recht LD, Antunes JL, Carmel PW (1977) Vasopressin and corticotropin-releasing factor: an axonal pathway to portal capillaries in the externa zona of the median eminence containing vasopressin and its interaction with adrenal corticoids. Ann NY Acad Sci 297: 405–419PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  1. 1.Department of Pediatrics, Department of Pharmacology and German Institute for High Blood Pressure ResearchUniversity of HeidelbergHeidelbergGermany

Personalised recommendations