Skip to main content

Electrophysiological Studies of the Magnocellular Neurons

  • Conference paper
Neurobiology of Vasopressin

Part of the book series: Current Topics in Neuroendocrinology ((CT NEUROENDOCRI,volume 4))

Abstract

The magnocellular neurons of the hypothalamus which synthesize and release the peptide hormones vasopressin and oxytocin present a fascinating and attractive target for the electrophysiologist. These neurons are relatively large and are clustered together in dense aggregates, mostly in the paraventricular nuclei (PVN) and supraoptic nuclei (SON), which can be easily located. They have relatively simple neuronal profiles and send the vast majority of their axons to the neural lobe of the pituitary, which itself is remote from the rest of the brain and consists predominantly of the terminals of the magnocellular neurons. These features allow the neurons to be recorded and identified electrophysiologically. The ultra- structural and biochemical characteristics of these neurons also allow them to be readily visualized histologically. The neurosecretory product of the magnocellular neurons can be detected and measured in the plasma, and several physiological reflexes cause a selective activation of the neurons, resulting in the release of detectable quantities of hormone. During the past 25 years considerable insight has been gained into the functions of these neurons and the significance of their electrical activity; yet, though information regarding them continues to accumulate, there are many fundamental aspects which remain unclear. Our understanding of their organization and regulation, rather than being enhanced, has actually become more uncertain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahn MS, Feldman SC, Makman MH (1979) Posterior pituitary adenylate cyclase: stimulation by dopamine and other agents. Brain Res 166: 422–425

    PubMed  CAS  Google Scholar 

  • Akaishi T, Negoro H, Kobayasi S (1980) Responses of paraventricular and supraoptic units to angiotensin II, sar1-ile3-angiotensin II, and hypertonic NaCl administered into the cerebral ventricle. Brain Res 188: 499–511

    PubMed  CAS  Google Scholar 

  • Alper RH, Moore KE (1982) Injection of hypertonic saline or mannitol accelerates the dehydration-induced activation of dopamine synthesis in the neurointermediate lobe of the rat hypophysis. Neuroendocrinology 35: 469–474

    PubMed  CAS  Google Scholar 

  • Ambach G, Palkovits M (1979) The blood supply of the hypothalamus of the rat. Morgane PJ, Panksepp J (eds) In: Anatomy of the hypothalamus. Dekker, New York

    Google Scholar 

  • Andersson B (1978) Regulation of water intake. Physiol Rev 58: 582–603

    PubMed  CAS  Google Scholar 

  • Armstrong WE, Sladek CD, Sladek JR (1982) Characterization of noradrenergic control of vasopressin release by the organ-cultured rat hypothalamo-neurohypophyseal system. Endocrinology 111: 273–9

    PubMed  CAS  Google Scholar 

  • Arnauld E, Cirino M, Layton BS, Renaud LP (1983) Contrasting actions of amino acids, acetylcholine, noradrenaline and leucine enkephalin on the excitability of supraoptic vasopressin-secreting neurones. Neuroendocrinology 36: 187–196

    PubMed  CAS  Google Scholar 

  • Aziz LA, Forsling ML, Woolf CJ (1981) The effect of intracerebroventricular injections of morphine on vasopressin release in the rat. J Physiol (Lond) 311: 401–409

    CAS  Google Scholar 

  • Balment RJ, Brimble MJ, Forsling ML (1980) Release of oxytocin induced by salt loading and its influence on renal excretion in the male rat. J Physiol (Lond) 308: 439–449

    CAS  Google Scholar 

  • Barden N, Chevillard C, Saavedra JM (1982) Diurnal variations in rat posterior pituitary catecholamine levels. Neuroendocrinology 34: 148–150

    PubMed  CAS  Google Scholar 

  • Barker JL, Crayton JW, Nicoll RA (1971) Noradrenaline and acetylcholine responses of supraoptic neurosecretory cells. J Physiol (Lond) 218: 19–32

    CAS  Google Scholar 

  • Barnard RR, Morris M (1982) Cerebrospinal fluid vasopressin and oxytocin: evidence for an osmotic response. Neurosci Lett 29: 275–279

    PubMed  CAS  Google Scholar 

  • Bennett CT, Pert A (1974) Antidiuresis produced by injections of histamine into the cat supraoptic nucleus. Brain Res 78: 151–156

    PubMed  CAS  Google Scholar 

  • Bicknell RJ, Leng G (1982) Endogenous opiates regulate oxytocin but not vasopressin secretion from the neurohypophysis. Nature 298: 161–162

    PubMed  CAS  Google Scholar 

  • Bie P (1980) Osmoreceptors, vasopressin and control of renal water excretion. Physiol Rev 60: 961–1048

    PubMed  CAS  Google Scholar 

  • Bioulac B, Gaffori O, Harris M, Vincent J-D (1978) Effects of acetylcholine, sodium glutamate and GABA on the discharge of supraoptic neurons in the rat. Brain Res 154: 159–162

    PubMed  CAS  Google Scholar 

  • Bisset GW, Chowdrey HS (1981) A central cholinergic link in the neural control of the release of vasopressin. Br J Pharmacol 74: 239

    Google Scholar 

  • Bisset GW, Feldberg W, Guertzenstein PG, Rocha E, Silva M Jr (1975) Vasopressin release by nicotine: the site of action. Br J Pharmacol 54: 463–474

    CAS  Google Scholar 

  • Blume HW, Pittman QJ, Renaud LP (1978) Electrophysiological indications of a “vasopressinergic” innervation of the median eminence. Brain Res 155: 153–159

    PubMed  CAS  Google Scholar 

  • Bridges TE, Hillhouse EW, Jones MT (1976) The effect of dopamine on neurohypophysial hormone release in vivo and from the rat neural lobe and hypothalamus in vitro. J Physiol (Lond) 260: 647–666

    CAS  Google Scholar 

  • Bridges TE, Thorn NA (1970) The effect of autonomic blocking agents on vasopressin release in vivo induced by osmoreceptor stimulation. J Endocrinol 48: 265–276

    PubMed  CAS  Google Scholar 

  • Brimble MJ, Dyball REJ (1977) Characterization of the responses of oxytocin- and vasopressin-secreting neurones in the supraoptic nucleus to osmotic stimulation. J Physiol 271: 253–271

    PubMed  CAS  Google Scholar 

  • Brimble MJ, Dyball REJ, Forsling ML (1978) Oxytocin release following osmotic activation of oxytocin neurones in the paraventricular and supraoptic nuclei. J Physiol 278: 69–78

    PubMed  CAS  Google Scholar 

  • Buggy J, Hoffman WE, Phillips MI, Fisher AE, Johnson AK (1979) Osmosensitivity of rat third ventricle and interactions with angiotensin. Am Physiol Soc 236: R75–82

    CAS  Google Scholar 

  • Buijs RM, Swaab DF, Dogterom J, van Leeuwen FW (1978) Intra- and extrahypothalamic vasopressin and oxytocin pathways in the rat. Cell Tissue Res 186: 423–433

    PubMed  CAS  Google Scholar 

  • Buijs RM, van Heerikhuize JJ (1982) Vasopressin and oxytocin release in the brain–a synaptic event. Brain Res 252: 71–76

    PubMed  CAS  Google Scholar 

  • Buranarugsa P, Hubbard JI (1979) The neuronal organization of the rat subfornical organ in vitro and a test of the osmo- and morphine-receptor hypotheses. J Physiol 291: 101–116

    PubMed  CAS  Google Scholar 

  • Chapman DB, Way EL (1980) Metal ion interactions with opiates. Annu Rev Pharmacol Toxicol 20: 553–579

    PubMed  CAS  Google Scholar 

  • Christensen JD, Fjalland B (1982) Lack of effect of opiates on release of vasopressin from isolated rat neurohypophysis. Acta Pharmacol Toxicol (Copenh) 50: 113–116

    CAS  Google Scholar 

  • Ciriello J, Calaresu FR (1980) Monosynaptic pathway from cardiovascular neurons in the nucleus tractus solitarii to the paraventricular nucleus in the cat. Brain Res 193: 529–533

    PubMed  CAS  Google Scholar 

  • Clarke G, Merrick LP (1982) Stimulation of vasopressin and oxytocin neurones by hypertonic sodium chloride injected into the cerebral ventricles. J Physiol (Lond) 327: 24–25

    Google Scholar 

  • Clarke G, Patrick G (1983) Differential inhibitory action by morphine on the release of oxytocin and vasopressin from isolated neural lobe. Neurosci Lett 39: 175–180

    PubMed  CAS  Google Scholar 

  • Clarke G, Fall CHD, Lincoln DW, Merrick LP (1978) Effects of cholinoceptor antagonists on the suckling-induced and experimentally evoked release of oxytocin. Br J Pharmacol 63: 519–527

    PubMed  CAS  Google Scholar 

  • Clarke G, Lincoln DW, Merrick LP (1979a) Dopaminergic control of oxytocin release in lactating rats. J Endocrinol 83: 409–420

    PubMed  CAS  Google Scholar 

  • Clarke G, Wood P, Merrick L, Lincoln DW (1979b) Opiate inhibition of peptide release from the neurohumoral terminals of hypothalamic neurones. Nature 282: 746–748

    PubMed  CAS  Google Scholar 

  • Clarke G, Kirby PJC, Thomson AM (1980) Effects on vasopressinergic and oxytocinergic neurones of intraventricular substance P. J Physiol (Lond) 307: 59

    Google Scholar 

  • Cowley AW (1982) Vasopressin and cardiovascular regulation. Int Rev Physiol 26:189–242

    PubMed  CAS  Google Scholar 

  • Cox BM (1982) Mini review: endogenous opioid peptides: a guide to structures and terminology. Life Sci 31: 1645–1658

    PubMed  CAS  Google Scholar 

  • Dellman HD, Simpson JB (1979) The subfornical organ. Int Rev Cytol 58: 333–421

    Google Scholar 

  • Douglas WW (1974) Mechanism of release of neurohypophysial hormones: stimulus-secretion coupling. In: Handbook of physiology-endocrinology. American Physiological Society, Washington D. C. Vol IV, Part 1, pp 191–224

    Google Scholar 

  • Douglas WW, Poisner AM (1964) Stimulus-secretion coupling in a neurosecretory organ and the role of calcium in the release of vasopressin from the neurohypophysis. J Physiol (Lond) 172: 1–18

    CAS  Google Scholar 

  • Dreifuss JJ, Kelly JS (1972a) The activity of identified supraoptic neurones and their response to acetylcholine applied by iontophoresis. J Physiol (Lond) 220: 105–118

    CAS  Google Scholar 

  • Dreifuss J J, Kelly JS (1972b) Recurrent inhibition of antidromically identified rat supraoptic neurones. J Physiol (Lond) 220: 87–103

    CAS  Google Scholar 

  • Dreifuss J J, Kalnins I, Kelly JS, Ruf KB (1971) Action potentials and release of neurohypophysial hormones in vitro. J Physiol 215: 805–817

    PubMed  CAS  Google Scholar 

  • Dreifuss J J, Harris MC, Tribollet E (1976) Excitation of phasically firing hypothalamic su-praoptic neurones by carotid occlusion in rats. J Physiol (Lond) 257: 337–354

    CAS  Google Scholar 

  • Dreifuss J J, Tribollet E, Baertschi A J (1976) Excitation of supraoptic neurones by vaginal distention in lactating rats; correlation with neurohypophysial hormone release. Brain Res 113: 600–605

    PubMed  CAS  Google Scholar 

  • Dreifuss JJ, Tribollet E, Muhlethaler (1981) Temporal patterns of neural activity and their relation to the secretion of posterior pituitary hormones. Biol Reprod 24: 51–72

    PubMed  CAS  Google Scholar 

  • Duke HN, Pickford M, Watt JA (1951) The antidiuretic action of morphine, its site and mode of action in the hypothalamus of the dog. Q J Exp Physiol 36:149–158

    CAS  Google Scholar 

  • Dutton A, Dyball RE J (1979) Phasic firing enhances vasopressin release from the rat neurohypophysis. J Physiol 290: 433–440

    PubMed  CAS  Google Scholar 

  • Dyball RE J (1971) Oxytocin and ADH secretion in relation to eletrical activity in antidromically identified supraoptic and paraventricular units. J Physiol 214: 245–256

    PubMed  CAS  Google Scholar 

  • Dyball RE J, McPhaill CI (1974) Unit activity in the supraoptic and paraventricular nuclei — the effects of anaesthetics. Brain Res 67: 43 — 50

    PubMed  CAS  Google Scholar 

  • Dyball REJ, Prilusky J (1981) Responses of supraoptic neurones in the intact and deafferented rat hypothalamus to injections of hypertonic sodium chloride. J Physiol (Lond) 311: 443–452

    CAS  Google Scholar 

  • Fisher AWF, Price PG, Burford GD, Lederis K (1979) A 3-dimensional reconstruction of the hypothalamo-neurohypophysial system of the rat. Cell Tissue Res 204: 343–354

    PubMed  CAS  Google Scholar 

  • Freund-Mercier MJ, Richard Ph (1981) Excitatory effects of intraventricular injections of oxytocin on the milk-ejection reflex in the rat. Neurosci Lett 23: 193–198

    PubMed  CAS  Google Scholar 

  • Gahwiler BH, Dreifuss J J (1979) Phasically firing neurons in long-term cultures of the rat hypothalamic supraoptic area: pacemaker and follower cells. Brain Res 177: 95–103

    PubMed  CAS  Google Scholar 

  • Gahwiler BH, Dreifuss J J (1980) Transition from random to phasic firing induced in neurons cultured from the hypothalamic supraoptic area. Brain Res 193: 415–425

    PubMed  CAS  Google Scholar 

  • Ganten D, Lang RE, Lehmann E, Unger Th (1984) Brain angiotensin: On the way to becoming a well-studied neuropeptide system. Biochem Pharmacol 33: 3523–3528

    PubMed  CAS  Google Scholar 

  • Gauer OH, Henry JP, Behn C (1970) The regulation of extracellular fluid volume. Annu Rev Physiol 32: 547–595

    PubMed  CAS  Google Scholar 

  • Gilbey MP, Coote JH, Fleetwood-Walker S, Peterson DF (1982) The influence of the paraventriculo-spinal pathway and oxytocin and vasopressin on sympathetic preganglionic neurons. Brain Res 251: 283–290

    PubMed  CAS  Google Scholar 

  • Haas HL, Wolf P, Nussbaumer J-C (1975) Histamine action on supraoptic and other hy-pothalamic neurones of the cat. Brain Res 88: 166–170

    PubMed  CAS  Google Scholar 

  • Harris GW, Manabe Y, Ruf KB (1969) A study of the parameters of electrical stimulation of unmyelinated fibres in the pituitary stalk. J Physiol (Lond) 203: 67–81

    CAS  Google Scholar 

  • Harris MC (1979) Effects of chemoreceptor and baroreceptor stimulation on the discharge of hypothalamic supraoptic neurones in rats. J Endocrinol 82: 115–125

    PubMed  CAS  Google Scholar 

  • Harris MC, Banks D, Zerihun L (1982) Inputs from hypothalamic paraventricular nucleus to dorsal medullary nuclei in the rat. Baertschi AJ, Dreifuss JJ (eds) In: Neuroendocrinology of vasopressin corticoliberin and opiomelanocortin. Academic, London, pp 153–165

    Google Scholar 

  • Harris MC, Dreifuss J J, Legross JJ (1975) Excitation of phasically firing supraoptic neurones during vasopressin release. Nature 258: 80–82

    PubMed  CAS  Google Scholar 

  • Hatton GI (1982) Phasic bursting activity of rat paraventricular neurones in the absence of synaptic transmission. J Physiol (Lond) 327: 273–284

    CAS  Google Scholar 

  • Hatton GI, Armstrong WE, Gregory WA (1978) Spontaneous and osmotically stimulated activity in slices of rat hypothalamus. Brain Res Bull 3: 497–508

    PubMed  CAS  Google Scholar 

  • Hayward JN, Jennings DP (1973) Activity of magnocellular neuroendocrine cells in the hypothalamus of unanaesthetised monkeys. 1. Functional cell types and their anatomical distribution in the supraoptiv nucleus and internuclear zone. J Physiol 232: 515–543

    PubMed  CAS  Google Scholar 

  • Hoffman PK, Share L, Crofton JT, Shade RE (1982) The effect of intracerebroventricular indomethacin on osmotically stimulated vasopressin release. Neuroendocrinology 34: 132–139

    PubMed  CAS  Google Scholar 

  • Hoffman WE, Schmid PG (1979) Cardiovascular and antidiuretic effects of central prostaglandin E2. J Physiol (Lond) 288: 159–169

    CAS  Google Scholar 

  • Hoffman WE, Phillips MI, Schmid P (1977) The role of catecholamines in central antidiuretic and pressor mechanisms. Neuropharmacology 16: 563–569

    PubMed  CAS  Google Scholar 

  • Holzbauer M, Sharman DF, Godden U (1978) Observations on the function of the dopaminergic nerves innervating the pituitary gland. Neuroscience 3: 1251–1262

    PubMed  CAS  Google Scholar 

  • Ingram CD, Bicknell RJ, Brown D, Leng G (1982) Rapid fatigue of neuropeptide secretion during continual electrical stimulation. Neuroendocrinology 35: 424–428

    PubMed  CAS  Google Scholar 

  • Iversen LL, Iversen SD, Bloom FE (1980) Opiate receptors control vasopressin release from nerve terminals in rat neurohypophysis. Nature 284: 350–351

    PubMed  CAS  Google Scholar 

  • Jennings DP, Haskins JT, Rogers JM (1978) Comparison of firing patterns and sensory responsiveness between supraoptic and other hypothalamic neurons in the unanesthe- tized sheep. Brain Res 149: 347–364

    PubMed  CAS  Google Scholar 

  • Joels M, Urban IJA (1982) The effect of microiontophoretically applied vasopressin and oxytocin on single neurones in the septum and dorsal hippocampus of the rat. Neurosci Lett 33: 79–84

    PubMed  CAS  Google Scholar 

  • Karasek M, Traczyk WZ, Orlowska-Majdak M, Rubacha G (1980) Quantitative changes of the neurosecretory granules in the rat neurohypophysis after preganglionic stimulation of the superior cervical ganglion. Acta Med Pol 21: 351–352

    PubMed  CAS  Google Scholar 

  • Kasting NW, Cooper KE, Veale WL (1979) Antipyresis following perfusion of brain site with vasopressin. Experientia 35: 208–209

    PubMed  CAS  Google Scholar 

  • Keil LC, Summy-Long J, Severs WB (1975) Release of vasopressin by angiotensin II. Endocrinology 96: 1063–1065

    PubMed  CAS  Google Scholar 

  • Kimura T, Share L, Wang BC, Crofton JT (1981) Central effects of dopamine and bromocriptine on vasopressin release and blood pressure. Neuroendocrinology 33: 347–351

    PubMed  CAS  Google Scholar 

  • Koizumi K, Yamashita H (1978) Influence of atrial stretch receptors on hypothalamic neurosecretory neurones. J Physiol (Lond) 285: 341–358

    CAS  Google Scholar 

  • Kuhn ER (1974) Cholinergic and adrenergic release mechanism for vasopressin in the male rat: a study with injections of neurotransmitters and blocking agents into the third ventricle. Neuroendocrinology 16: 255–264

    PubMed  CAS  Google Scholar 

  • Kuhn ER, McCann SM (1971) Release of oxytocin and vasopressin in lactating rats after injection of carbachol into the third ventricle. Neuroendocrinology 8: 48–58

    PubMed  CAS  Google Scholar 

  • Leng G (1980) Rat supraoptic neurones: the effects of locally applied hypertonic saline. J Physiol (Lond) 304: 405–414

    CAS  Google Scholar 

  • Leng G (1981) The effects of neural-stalk stimulation upon firing patterns in rat supraoptic neurones. Exp Brain Res 41: 135–145

    PubMed  CAS  Google Scholar 

  • Leng G, Mason WT, Dyer RG (1982) The supraoptic nucleus as an osmoreceptor. Neuroendocrinology 34: 75–82

    PubMed  CAS  Google Scholar 

  • Leng G, Wiersma J (1981) Effects of neural-stalk stimulation on phasic discharge of supraoptic neurones in Brattleboro rats devoid of vasopressin. J Endocrinol 90: 211–220

    PubMed  CAS  Google Scholar 

  • Lightman SL, Iversen LI, Forsling MI (1982) Dopamine and (D-Ala, D-Leu) enkephalin inhibit the electrically stimulated neurohypophyseal release of vasopressin in vitro: evidence for calcium-dependent opiate action. J Neurosci 2: 78–81

    PubMed  CAS  Google Scholar 

  • Lincoln DW (1969) Correlation of unit activity in the hypothalamus with EEG patterns associated with the sleep cycle. Exp Neurol 24: 1–18

    PubMed  CAS  Google Scholar 

  • Lincoln DW (1974) Dynamics of oxytocin secretion. In: Knowls F, Vollrath L (eds) Neurosecretion - the final neuroendocrine pathway. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Lincoln DW, Wakerley JB (1974) Electrophysiological evidence for the activation of supraoptic neurones during the release of oxytocin. J Physiol 242: 533–554

    PubMed  CAS  Google Scholar 

  • Lincoln DW, Wakerley JB (1975) Factors governing the periodic activation of supraoptic and paraventricular neurosecretory cells during suckling in the rat. J Physiol 250:443–461

    PubMed  CAS  Google Scholar 

  • Lincoln DW, Hill A, Wakerley JB (1973) The milk-ejection reflex of the rat: an intermittent function not abolished by surgical levels of anaesthesia. J Endocrinol 57: 459–476

    PubMed  CAS  Google Scholar 

  • Lincoln DW, Clarke G, Mason CA, Dreifuss J J (1976) Physiological mechanisms determining the release of oxytocin in milk ejection and labour. In: Moses AH, Shave L (eds) neurohypophysis. Karger, Basel

    Google Scholar 

  • Lincoln DW, Hentzen K, Hin T, Shoot P, Clarke G, Summerlee AJS (1980) Sleep: a prerequisite for reflex milk ejection in the rat. Exp Brain Res 38: 151–162

    PubMed  CAS  Google Scholar 

  • Lind RW, Swanson LW, Ganten D (1985) Organization of angiotensin II immunoreactive cells and fibers in the rat central nervous system. Neuroendocrinology 40: 2–24

    PubMed  CAS  Google Scholar 

  • Lindvall O, Bjorklund A (1974) The organization of the ascending catecholamine neuron systems in the rat brain. Acta Physiol Scand [Suppl] 314

    Google Scholar 

  • Martin R, Voigt KH (1981) Enkephalins co-exist with oxytocin and vasopressin in nerve terminals of rat neurohypophysis. Nature 289: 502–504

    PubMed  CAS  Google Scholar 

  • Mason WT (1980) Supraoptic neurones of rat hypothalamus are osmosensitive. Nature 287: 154–157

    PubMed  CAS  Google Scholar 

  • McNeill TH, Sladek JR Jr (1980) Simultaneous monoamine histofluorescence and neuropeptide immunocytochemistry. II. Correlative distribution of catecholamine varicosities and magnocellular neurosecretory neurons in the rat supraoptic and paraventricular nuclei. J Comp Neurol 193: 1023–1033

    PubMed  CAS  Google Scholar 

  • Menninger RP (1979) Effects of carotid occlusion and left atrial stretch on supraoptic neurosecretory cells. Am J Physiol 237: R63–67

    PubMed  CAS  Google Scholar 

  • Meyer DK, Phillips MI, Eiden L (1982) Studies on the presence of angiotensin II in rat brain. J Neurochem 38: 816–820

    PubMed  CAS  Google Scholar 

  • Mills E, Wang SC (1964) Liberation of ADH: Pharmacologic blockade of ascending pathways. Am J Physiol 207: 1405–1410

    PubMed  CAS  Google Scholar 

  • Milton AS, Paterson AT (1974) A microinjection study of the control of antidiuretic hormone release by the supraoptic nucleus of the hypothalamus in the cat. J Physiol (Lond) 241: 607–628

    CAS  Google Scholar 

  • Miselis RR (1981) The efferent projections of the subfornical organ of the rat: a circumventricular organ within a neural network subserving water balance. Brain Res 230: 1–23

    PubMed  CAS  Google Scholar 

  • Moos F, Richard PH (1979) Effects of dopaminergic antagonist and agonist on oxytocin release induced by various stimuli. Neuroendocrinology 28: 138–144

    PubMed  CAS  Google Scholar 

  • Moos F, Richard P (1982) Excitatory effect of dopamine on oxytocin and vasopressin reflex releases in the rat. Brain Res 241: 249–260

    PubMed  CAS  Google Scholar 

  • Moos F, Richard P (1983) Serotonergic control of oxytocin release during suckling in the rat: opposite effects in conscious and anaesthetized rats. Neuroendocrinology 36: 300–306

    PubMed  CAS  Google Scholar 

  • Morris JF, Nordmann JJ, Shaw FP (1981) Granules, microvesicles, and vacuoles - their roles in the functional compartments of the neural lobe. In: Farner DS, Lederis K (eds) Neurosecretion. Plenum, New York

    Google Scholar 

  • Morris R, Salt TE, Sofroniew MV, Hill RG (1980) Actions of microiontophoretically applied oxytocin and immunohistochemical localisation of oxytocin vasopressin and neurophysin in the rat caudal medulla. Neurosci Lett 18: 163–168

    PubMed  CAS  Google Scholar 

  • Moss RL, Dyball REJ, Cross BA (1972a) Excitation of antidromically identified neurosecretory cells of the paraventricular nucleus by oxytocin applied iontophoretically. Exp Neurol 34: 95–102

    PubMed  CAS  Google Scholar 

  • Moss RL, Urban I, Cross BA (1972b) Microelectrophoresis of cholinergic and aminergic drugs on paraventricular neurons. Am J Physiol 223: 310–318

    PubMed  CAS  Google Scholar 

  • Muehlethaler M, Dreifuss JJ (1982) A neuronal action of posterior pituitary peptides in the rat hippocampus. In: Neuroendocrinology of vasopressin, corticoliberin and opiomelanocortins. Academic, London

    Google Scholar 

  • Muehlethaler M, Gaehwiler BH, Dreifuss JJ (1980) Enkephalin-induced inhibition of hypothalamic paraventricular neurones. Brain Res 197: 264–268

    PubMed  CAS  Google Scholar 

  • Neve HA, Paisley AC, Summerlee A J (1982) Arousal a pre-requisite for suckling in the conscious rabbit? Physiol Behav 28: 213–217

    PubMed  CAS  Google Scholar 

  • Nicoll RA, Barker JL (1971) The pharmacology of recurrent inhibition in the supraoptic neurosecretory system. Brain Res 35: 501–511

    PubMed  CAS  Google Scholar 

  • Nilaver G, Zimmerman EA, Wilkins J, Michaels J, Hoffman D, Silverman AJ (1980) Magnocellular hypothalamic projections to the lower brain stem and spinal cord of the rat. Neuroendocrinology 30: 150–158

    PubMed  CAS  Google Scholar 

  • Nordmann JJ, Chevallier J (1980) The role of microvesicles in buffering [Ca2+]: in the neurohypophysis. Nature 287: 54–56

    PubMed  CAS  Google Scholar 

  • Nordmann JJ, Dreifuss JJ (1972) Hormone release evoked by electrical stimulation of rat neurohypophyses in the absence of action potentials. Brain Res 45: 604–607

    PubMed  CAS  Google Scholar 

  • O’Donohue TL, Dorsa DM (1982) The opiomelanotropinergic neuronal and endocrine systems. Peptides 3: 353–395

    PubMed  Google Scholar 

  • Oertel WH, Muenaini E, Tappaz ML, Weise VK, Dahl AL, Schmechel DE, Kopin IJ (1982) Central GABAergic innervation of neurointermediate pituitary lobe: biochemical and immunocytochemical study in the rat. Proc Natl Acad Sci USA 79: 675–679

    PubMed  CAS  Google Scholar 

  • Pickford M (1939) The inhibitory effect of acetylcholine on water diuresis in the dog and its pituitary transmission. J Physiol 95: 226–238

    PubMed  CAS  Google Scholar 

  • Pickford M (1947) The action of acetylcholine in the supraoptic nucleus of the chloralosed dog. J Physiol (London) 106: 264–270

    CAS  Google Scholar 

  • Pittman QJ, Hatton JD, Bloom FE (1980) Morphine and opioid peptides reduce paraventricular neuronal activity: studies on the rat hypothalamic slice preparation. Proc Natl Acad Sci USA 77: 5527–5531

    PubMed  CAS  Google Scholar 

  • Pittman QJ, Veale WL, Lederis K (1982) Central neurohypophyseal peptide pathways: interactions with endocrine and other autonomic functions. Peptides 3: 515–520

    PubMed  CAS  Google Scholar 

  • Poulain DA, Wakerley JB (1982) Electrophysiology of hypothalamic magnocellular neurones secreting oxytocin and vasopressin. Neuroscience 7: 773–808

    PubMed  CAS  Google Scholar 

  • Poulain DA, Wakerley JB, Dyball REJ (1977) Electrophysiological differentiation of oxytocin- and vasopressin-secreting neurones. Proc R Soc Lond [Biol] 196: 367–384

    CAS  Google Scholar 

  • Poulain DA, Ellendorff F, Vincent JD (1980) Septal connections with identified oxytocin and vasopressin neurones in the supraoptic nucleus of the rat. An electrophysiological investigation. Neuroscience 5: 379–387

    PubMed  CAS  Google Scholar 

  • Poulain DA, Rodriguez F, Ellendorff F (1981a) Sleep is not a prerequisite for the milk- ejection reflex in the pig. Exp Brain Res 43: 107–110

    PubMed  CAS  Google Scholar 

  • Poulain DA, Lebrun CJ, Vincent JD (1981b) Electrophysiological evidence for connections between septal neurones and the supraoptic nucleus of the hypothalamus of the rat. Exp Brain Res 42: 260–268

    PubMed  CAS  Google Scholar 

  • Racké K, Ritzel H, Trapp B, Muschell E (1982a) Dopaminergic modulation evoked vasopressin release from the isolated neurohypophysis of the rat. Naunyn Schmiedebergs Arch Pharmacol 319: 56–65

    PubMed  Google Scholar 

  • Racké K, Rothländer M, Muscholl E (1982b) Isoprenaline and forskolin increase evoked vasopressin release from rat pituitary. Eur J Pharmacol 82: 97–100

    PubMed  Google Scholar 

  • Reid IA (1979) The brain renin-angiotensin system: a critical analysis. Fed Proc 38:2255–2259

    PubMed  CAS  Google Scholar 

  • Reid IA, Brooks VL, Rudolph CD, Keil LC (1982) Analysis of the actions of angiotensin on the central nervous system of conscious dogs. Am J Physiol 243: R82–91

    PubMed  CAS  Google Scholar 

  • Rhodes CH, Morrell JI, Pfaff DW (1981a) Immunohistochemical analysis of magnocellular elements in rat hypothalamus: distribution and numbers of cells containing neurophysin, oxytocin and vasopressin. J Comp Neurol 198: 45–64

    PubMed  CAS  Google Scholar 

  • Rhodes CH, Morrell JI, Pfaff DW (1981b) Distribution of estrogen-concentrating, neurophysin-containing magnocellular neurones in the rat hypothalamus as demonstrated by a technique combining steroid autoradiography and immunohistology in the same tissue. Neuroendocrinology 33: 18–23

    PubMed  CAS  Google Scholar 

  • Robinson ICAF, Jones PM (1982) Oxytocin and neurophysin in plasma and CSF during suckling in the guinea-pig. Neuroendocrinology 34: 59–63

    PubMed  CAS  Google Scholar 

  • Rossier J, Battenberg E, Pittman Q, Bayon A, Koda L, Miller R, Guillemin R, Bloom F (1979) Hypothalamic enkephalin neurones may regulate the neurohypophysis. Nature 277: 653–655

    PubMed  CAS  Google Scholar 

  • Roth KA, Weber E, Barchas JD, Chang D, Chang J-W (1982) Immunoreactive dynorphin- (1–8) and corticotropin releasing factor in subpopulation of hypothalamic neurones. Science 219: 189–191

    Google Scholar 

  • Saavedra JM, Palkovitz M, Kizer JS, Brownstein M, Zivin JA (1975) Distribution of biogenic amines and related enzymes in the rat pituitary gland. J Neurochem 25: 257–260

    PubMed  CAS  Google Scholar 

  • Sawchenko PE, Swanson LW, Joseph SA (1982) The distribution and cells of origin of ACTH (l–39)-stained varicosities in the paraventricular and supraoptic nuclei. Brain Res 232: 365–374

    PubMed  CAS  Google Scholar 

  • Seybold VS, Miller JW, Lewis PR (1978) Investigation of a dopaminergic mechanism for regulating oxytocin release. J Pharmacol Exp Ther 207: 605–610

    PubMed  CAS  Google Scholar 

  • Share L (1979) Interrelations between vasopressin and the renin-angiotensin system. Fed Proc 38: 2267–2271

    PubMed  CAS  Google Scholar 

  • Share L, Levy MN (1966) Carotid sinus pulse pressure, a determinant of plasma and antidiuretic hormone concentration. Am J Physiol 211: 721–724

    PubMed  CAS  Google Scholar 

  • Sharman DC, Holzer P, Holzbauer M (1982) In vitro release of endogenous catecholamines from the neural and intermediate lobe of the hypophysis. Neuroendocrinology 34: 175–179

    PubMed  CAS  Google Scholar 

  • Shaw FD, Morris JF (1980) Calcium localization in the rat neurophypophysis. Nature 287: 56–58

    PubMed  CAS  Google Scholar 

  • Silverman AJ, Hoffman DL, Zimmerman EA (1981) The descending afferent connections of the paraventricular nucleus of the hypothalamus (PVN). Brain Res Bull 6: 47–61

    PubMed  CAS  Google Scholar 

  • Simantov R, Snyder SH (1977) Opiate receptor binding in the pituitary gland. Brain Res 124: 178–184

    PubMed  CAS  Google Scholar 

  • Simonnet G, Bioulac B, Rodriguez F, Vincent JD 1980 ) Evidence of a direct action of angiotensin II on neurones in the septum and in the medial preoptic area. Pharmacol Biochem Behav 13: 359–363

    PubMed  CAS  Google Scholar 

  • Simpson JB (1981) The circumventricular organs and the central actions of angiotensin. Neuroendocrinology 32: 248–256

    PubMed  CAS  Google Scholar 

  • Simpson JB, Routtenberg A (1975) Subfornical organ lesions reduce intravenous angioten-sin-induced drinking. Brain Res 88: 154–161

    PubMed  CAS  Google Scholar 

  • Sladek CD, Joynt RJ (1979) Cholinergic involvement in osmotic control of vasopressin release by the organ-cultured rat hypothalamo-neurohypophyseal system. Endocrinology 105: 367

    PubMed  CAS  Google Scholar 

  • Sladek CD, Knigge KM (1977) Cholinericg stimulation of vasopressin release from the rat hypothalamo-neurohypophyseal system in organ culture. Endocrinology 101: 411–420

    PubMed  CAS  Google Scholar 

  • Sofroniew MV, Glasmann W (1981) Golgi-like immunoperoxidase staining of hypothalamic magnocellular neurons that contain vasopressin, oxytocin or neurophysin in the rat. Neuroscience 6: 619–643

    PubMed  CAS  Google Scholar 

  • Sofroniew MV, Weindl A (1978) Extrahypothalamic neurophysin-containing perkarya, fiber pathways and fiber clusters in the rat brain. Endocrinology 102: 334–337

    PubMed  CAS  Google Scholar 

  • Stamler JF, Phillips MI (1981) Attenuation of the central hypertonic NaCl pressor response by angiotensin II inhibition. Brain Res 213: 427–431

    PubMed  CAS  Google Scholar 

  • Stefanini E, Devoto P, Marachisio AM, Vernaleone F, Collu R (1980) [3H] Spiroperidol binding to a putative dopaminergic receptor in rat pituitary gland. Life Sci 26:583–587

    PubMed  CAS  Google Scholar 

  • Summerlee AJS (1981) Extracellular recordings from oxytocin neurones during the expulsive phase of birth in unanaesthetized rats. J Physiol (Lond) 321: 1–9

    CAS  Google Scholar 

  • Summerlee AJS (1983) Hypothalamic neurone activity: hormone release and behaviour in freely moving rats. Q J Exp Physiol 68 (in press)

    Google Scholar 

  • Summerlee AJS, Lincoln DW (1981) Electrophysiological recordings from oxytocinergic neurones during suckling in the unanaesthetized lactating rat. J Endocrinol 90:255–265

    PubMed  CAS  Google Scholar 

  • Summerlee AJS, Paisley AC (1982) The effect of behavioural arousal on the activity of hypothalamic neurons in unanaesthetized, freely moving rats and rabbits. Proc R Soc Lond [Biol] 214: 263–272

    CAS  Google Scholar 

  • Summy-Long JY, Keil LC, Deen K, Severs WB (1981a) Opiate regulation of angiotensin-induced drinking and vasopressin release. J Pharmacol Exp Ther 217: 630–637

    PubMed  CAS  Google Scholar 

  • Summy-Long JY, Rosella LM, Keil LC (1981b) Effects of centrally administered endogenous opioid peptides on drinking behaviour, increased plasma vasopressin concentration and pressor response to hypertonic sodium chloride. Brain Res 221: 343–357

    PubMed  CAS  Google Scholar 

  • Summy-Long JY, Severs WB (1979) Macromolecular changes in the subfornical organ area after dehydration and renin. Am J Physiol 237: R26–38

    PubMed  CAS  Google Scholar 

  • Swanson LW, Kuypers HGJM (1980) The paraventricular nucleus of the hypothalamus: cytoarchitectonic subdivisions and organization of projections to the pituitary, dorsal vagal complex and spinal cord as demonstrated by retrograde fluorescence double-labeling methods. J Comp Neurol 194: 555–570

    PubMed  CAS  Google Scholar 

  • Swanson LW, Sawchenko PE, Rivier J, Vale WW (1983) Organization of ovine corticotro-pin-releasing factor immunoreactive cells and fibers in the rat brain: an immuno-histo- chemical study. Neuroendocrinology 36: 165–186

    PubMed  CAS  Google Scholar 

  • Theodosis DT (1982) Secretion-related accumulation of horseradish peroxidase in magnocellular cell bodies of the rat supraoptic nucleus. Brain Res 233: 3–16

    PubMed  CAS  Google Scholar 

  • Theodosis DT, Poulain DA, Vincent JD (1981) Possible morphological bases for synchronisation of neuronal firing in the rat supraoptic nucleus during lactation. Neuroscience 6: 919–929

    PubMed  CAS  Google Scholar 

  • Tribollet E, Clarke G, Dreifuss J J, Lincoln DW (1978) The role of central adrenergic receptors in the reflex release of oxytocin. Brain Res 142: 69–84

    PubMed  CAS  Google Scholar 

  • Tweedle CD, Hatton GI (1977) Ultrastructural changes in rat hypothalamic neurosecretory cells and their associated glia during minimal dehydration and rehydration. Cell Tissue Res 181: 59–72

    PubMed  CAS  Google Scholar 

  • Unger T, Rascher W, Schuster C, Pavlovitch R, Schomig A, Dietz R, Ganten D (1981) Central blood pressure effects of substance P and antiotensin II: role of the sympathetic nervous system and vasopressin. Eur J Pharmacol 71: 33–42

    PubMed  CAS  Google Scholar 

  • Urban IJA (1981) Intraseptal administration of vasopressin and oxytocin affects hippocampal electroencephalogram in rats. Exp Neurol 74: 131–147

    PubMed  CAS  Google Scholar 

  • Vale MR, Hope DB (1982) Cyclic nucleotides and the release of vasopressin from the rat posterior pituitary gland. J Neurochem 39: 569–573

    PubMed  CAS  Google Scholar 

  • Vandesande F, Dierickx K (1975) Identification of the vasopressin-producing and of the oxytocin-producing neurons in the hypothalamic magnocellular neurosecretory system of the rat. Cell Tissue Res 164: 153–162

    PubMed  CAS  Google Scholar 

  • Vandesande F, Dierickx K, De May J (1977) The origin of the vasopressinergic and oxytocinergic fibres of the external region of the median eminence of the rat hypophysis. Cell Tissue Res 180: 443–452

    PubMed  CAS  Google Scholar 

  • Van Leeuwen F (1980) Immunocytochemical specificity for peptides with special reference to arginine-vasopressin and oxytocin. J Histochem Cytochem 28: 479–482

    PubMed  Google Scholar 

  • Van Ree JM, Bohus B, Versteeg DHG, De Wied D (1978) Neurohypophysial principles and memory processes. Biochem Pharmacol 27: 1793–1800

    PubMed  Google Scholar 

  • Verney EB (1947) The antidiuretic hormone and the factors which determine its release. Proc R Soc Lond [Biol] 135-25-105

    Google Scholar 

  • Vincent SR, Hokfelt T, Wu J-Y (1982) GABA neuron systems in hypothalamus and the pituitary gland. Neuroendocrinology 34: 117–125

    PubMed  CAS  Google Scholar 

  • Vizi ES, Volbekas V (1980) Inhibition by dopamine of oxytocin release from isolated posterior lobe of the hypophysis of the rat; disinhibitory effect of ß-endorphin/enkephalin. Neuroendocrinology 31: 46–52

    PubMed  CAS  Google Scholar 

  • Voloschin LM, Tramezzani JH (1979) Milk-ejection reflex linked to slow-wave sleep in nursing rats. Endocrinology 105: 1202–1207

    PubMed  CAS  Google Scholar 

  • Wakerley JB, Lincoln DW (1971) Phasic discharge of antidromically identified units in the paraventricular nucleus of the hypothalamus. Brain Res 25: 192–194

    Google Scholar 

  • Wakerley JB, Lincoln DW (1973) The milk-ejection reflex of the rat: a 20- to 40-fold acceleration in the firing of paraventricular neurones during oxytocin release. J Endocrinol 57: 477–493

    PubMed  CAS  Google Scholar 

  • Wakerley JB, Noble R (1982) Electrophysiological behaviour of putative vasopressin neurones in intact brains and hypothalamic slices. In: Baertschi AJ, Dreifuss J J (eds) Neuroendocrinology of vasopressin, corticoliberin and opiomelanocortins. Academic, London

    Google Scholar 

  • Wakerley JB, Dyball RE J, Lincoln DW (1973) Milk ejection in the rat: the result of a selective release of oxytocin. J Endocrinol 57: 557–558

    PubMed  CAS  Google Scholar 

  • Wakerly JB, Poulain DA, Dyball RE J, Cross BA (1975) Activity of phasic neurosecretory cells during haemorrhage. Nature 258: 82–84

    Google Scholar 

  • Wakerley JB, Poulain DA, Brown D (1978) Comparison of firing patterns in oxytocin- and vasopressin-releasing neurones during progressive dehydration. Brain Res 148:425–440

    PubMed  CAS  Google Scholar 

  • Wakerley JB, Noble R, Clarke G ( 1983a) In vitro studies of the control of phasic discharge in neurosecretory cells of the supraoptiv nucleus. In: Cross BA, Leng G (eds) The neurohypophysis - structure, function and control. Elsevier, Amsterdam

    Google Scholar 

  • Wakerley BJ, Noble R, Clarke G (1983b) Effects of morphine and D-Ala, D-Leu enkephalin on the electrical activity of supraoptic neurosecretory cells in vitro. Neuroscience 10: 73–81

    PubMed  CAS  Google Scholar 

  • Wang BC, Share L, Crofton JT, Kimura T (1982) Effect of intravenous and intracere- broventricular infusion of hypertonic solutions on plasma and cerebrospinal fluid vasopressin concentrations. Neuroendocrinology 34: 215–221

    PubMed  CAS  Google Scholar 

  • Watson SJ, Akil H, Fischli W, Goldstin A, Zimmerman E, Nilaver G, van Wimersma Greidanus TB (1982) Dynorphin and vasopressin: common localization in magnocellular neurons. Science 216: 85–87

    PubMed  CAS  Google Scholar 

  • Weindl A, Sofroniew MV (1981) Relation of neuropeptides to mammalian circumventricular organs. Adv Biochem Psychopharmacol 28: 303–320

    PubMed  CAS  Google Scholar 

  • Yagi K, Azuma T, Matsuda K (1966) Neurosecretory cell: capable of conducting impulse in rats. Science 154: 778–779

    PubMed  CAS  Google Scholar 

  • Zerihun L, Harris M (1981) Electrophysiological identification of neurones of paraventricular nucleus sending axons to both the neurohypophysis and the medulla in the rat. Neurosci Lett 23: 157–160

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Clarke, G., Merrick, L.P. (1985). Electrophysiological Studies of the Magnocellular Neurons. In: Ganten, D., Pfaff, D. (eds) Neurobiology of Vasopressin. Current Topics in Neuroendocrinology, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68493-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68493-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68495-1

  • Online ISBN: 978-3-642-68493-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics