Peptides: Gastrointestinal Hormones

  • G. Bertaccini
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 59 / 2)

Abstract

The history of hormones, which began as a physiologic era with the discovery of secretin by Bayliss and Starling in 1902, turned into a biochemical era with the isolation of gastrin by Gregory and Tracy in 1964. From pig antral mucosa these authors isolated two heptadecapeptides that they named gastrin I and gastrin II, according to the absence (I) or presence (II) of a sulfated group on the tyrosyl residue in the sixth position (starting unconventionally from the COOH terminus). Since then, gastrin heptadecapeptides have been purified from the antral mucosa of several species (including human, dog, pig, cat, sheep, and cow) and found to differ in only one or two amino acid substitutions in the middle of the linear peptide chain (Gregory 1974). The development of immunologic methods of study made it possible to measure gastrin in tissues and body fluids and established the heterogeneity of this peptide which can be present in several forms because of its biosynthetic pathways and enzymatic degradation: a “big gastrin” with 34 amino acid residues (this is referred to as G 34), the heptadecapeptide “little gastrin,” (G 17), and a “minigastrin” isolated from gastrinoma tissue by Gregory and Tracy (1974) and thought initially to be the COOH terminal tridecapeptide of G 17. It has since become apparent that there is an additional tryptophan at the NH2 terminus, bringing the total of aminoacid residues to 14 (G 14) (Gregory et al. 1979), in the same sequence as in the COOH terminal tetradecapeptide of G 17.

Keywords

Histamine PGE1 Kelly Dipeptide Hyoscine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Bailes R, Picker S, Bremmer CG (1972) The effect of intragastric aluminum hydroxide on lower esophageal sphincter pressure. S Afr Med J 46: 1387–1389Google Scholar
  2. Bayliss WM, Starling EH (1902) On the causation of the so-called “peripheral reflex secretion” of the pancreas. Proc R Soc Lond [Biol] 69: 352–353Google Scholar
  3. Behar J, Biancani P, Zabinski MP (1979) Characterization of feline gastroduodenal junction by neural and hormonal stimulation. Am J Physiol 236: E45–E51PubMedGoogle Scholar
  4. Bell FR, Titchen DA, Watson DJ (1975) The effects of pentagastrin on gastric (abomasal) motility in the unweaned calf. J Physiol (Lond) 251: 12P-13 PGoogle Scholar
  5. Bell FR, Titchen DA, Watson DJ (1977) The effects of the gastrin analogue, pentagastrin, on the gastric electromyogram and abomasal emptying in the calf. Res Vet Sci 23: 165–170PubMedGoogle Scholar
  6. Bennett A (1965) Effect of gastrin on isolated smooth muscle preparations. Nature 208: 170–173PubMedGoogle Scholar
  7. Bennett A, Whitney B (1966) A pharmacological study of the motility of the human gastrointestinal tract. Gut 7: 307–316PubMedGoogle Scholar
  8. Bennett A, Misiewicz JJ, Waller SL (1967) Analysis of the motor effects of gastrin and pentagastrin on the human alimentary tract in vitro. Gut 8: 470–474PubMedGoogle Scholar
  9. Bertaccini G (1972) Pharmacological actions of kinins occurring in amphibian skin. In: Pharmacology and the future of man. Proceedings of the 5th International Congress of Pharmacology, San Francisco. Karger, Basel, pp 336–346Google Scholar
  10. Bertaccini G, Scarpignato C (1981) Effects of some cholecystokinin (CCK)-like peptides on gastric emptying of a liquid meal in the rat. Br J Pharmacol 72: 103P-104 PGoogle Scholar
  11. Bertaccini G, Impicciatore M, De Caro G (1973) Action of caerulein and related substances on the pyloric sphincter of the anaesthetized rat. Eur J Pharmacol 22: 320–324PubMedGoogle Scholar
  12. Bingham J (1958) Oesophageal structures after gastric surgery and nasogastric intubation. Br Med J 2: 817–819PubMedGoogle Scholar
  13. Brown FC, Dubois A, Castell DO (1976) Failure of H2-receptor blockade with cimetidine to affect resting lower esophageal sphincter pressure and response to pentagastrin. Gastroenterology 70: A867Google Scholar
  14. Burleigh DE (1979) The effects of drugs and electrical field stimulation on the human lower oesophageal sphincter. Arch Int Pharmacodyn Ther 240: 169–176PubMedGoogle Scholar
  15. Bybee DE, Brown FC, Georges LP, Castell DO, McGuigan JE (1977) Somatostatin (GHRIH) inhibition of hormonally induced increases in lower esophageal sphincter pressure ( LESP ). Clin Res 25: A570Google Scholar
  16. Calvert CH, Parks TG, Buchanan KD (1975) The relationship of lower oesophageal sphincter pressure to plasma gastrin concentration. Gut 16: A403Google Scholar
  17. Cameron AJ, Phillips SF, Summerskill WHJ (1970) Comparison of effects of gastrin, cholecystokinin-pancreozymin, secretin, and glucagon on human stomach muscle in vitro. Gastroenterology 59: 539–545PubMedGoogle Scholar
  18. Carter DC, Taylor IL, ElashoffJ, Grossman MI (1979) Reappraisal of the secretory potency and disappearance rate of pure human minigastrin. Gut 20: 705–708Google Scholar
  19. Castell DO, Harris LD (1970) Hormonal control of gastro-esophageal sphincter strength. N Engl J Med 282: 886–889PubMedGoogle Scholar
  20. Castell DO, Levine SM (1971) A new mechanism for treatment of heartburn with antacids: lower esophageal sphincter response to gastric alkalinization. Ann Intern Med 74: 223–227PubMedGoogle Scholar
  21. Chey WY, Gutiérrez J, Yoshimori M, Hendricks J (1974) Gut hormones on gastrointestinal motor function. In: Chey WY, Brooks FP (eds) Endocrinology of the gut. Slack, Thorofare, NJ, pp 192–211Google Scholar
  22. Chijikwa JB, Davison JS (1974) The action of gastrin-like polypeptides on the peristaltic reflex in guinea-pig intestine. J Physiol (Lond) 238: 68P-70 PGoogle Scholar
  23. Christensen J (1975) Pharmacology of the esophageal motor function. Annu Rev Pharmacol Toxicol 15: 243–258Google Scholar
  24. Cohen S (1975) Symptomatic diffuse esophageal spasm and its relation to gastrin supersensitivity. Ann Intern Med 82: 714–715PubMedGoogle Scholar
  25. Cohen S, Green FE (1973) The mechanics of esophageal muscle contraction. Evidence of an inotropic effect of gastrin. J Clin Invest 52: 2029–2040Google Scholar
  26. Cohen S, Harris LD (1972) The lower esophageal sphincter. Gastroenterology 63: 1066–1073PubMedGoogle Scholar
  27. Cohen S, Snape WJ (1975) Action of metiamide on the lower esophageal sphincter. Gastroenterology 69: 911–919PubMedGoogle Scholar
  28. Cohen S, Lipshutz W, Hughes W (1971) Role of gastrin supersensitivity in the pathogenesis of lower esophageal sphincter hypertension in achalasia. J Clin Invest 50: 1241–1247PubMedGoogle Scholar
  29. Cooke AR, Chvasta TE, Weisbrodt NW (1972) Effect of pentagastrin on emptying and electrical and motor activity of the dog stomach. Am J Physiol 223: 934–938PubMedGoogle Scholar
  30. Corazziari E, Pozzessere C, Dani S, Delle Fave GF, De Magistris L, Anzini F (1977) Lower esophageal sphincter pressure (LESP) response to intravenous infusions of pentagastrin ( PG ). Gastroenterology 72: A1041Google Scholar
  31. Corazziari E, Pozzessere C, Dani S, Anzini F, Torsoli A (1978) Lower oesophageal sphincter response to intravenous infusions of pentagastrin in normal subjects, antrectomized and achalasic patients. Gut 19: 1121–1124PubMedGoogle Scholar
  32. Cox KR (1961) Oesophageal structure after gastrectomy. Br J Surg 49: 307–313PubMedGoogle Scholar
  33. Csendes A, Oster M, Brandsborg O, Möller J, Brandsborg M, Amdrup E (1978 a) Gastroesophageal sphincter pressure and serum gastrin studies following food intake before and after vagotomy for duodenal ulcer. Scand J Gastroenterol 13: 437–441Google Scholar
  34. Csendes A, Oster M, Brandsborg O, Möller J, Brandsborg M, Amdrup E (1978 b) Gastroesophageal sphincter pressure and serum gastrin: reaction to food stimulation in normal subjects and in patients with gastric or duodenal ulcer. Scand J Gastroenterol 13: 879–884Google Scholar
  35. De Carle DJ, Glover WE (1975) Independence of gastrin and histamine receptors in the lower oesophageal sphincter of the monkey and possum. J Physiol (Lond) 245: 78P-79 PGoogle Scholar
  36. Dent J, Hansky J (1976) Relationship of serum gastrin response to lower oesophageal sphincter pressure. Gut 17: 144–146PubMedGoogle Scholar
  37. Dockray GJ, Gregory RA (1980) Does the C-terminal tetrapeptide of gastrin and CCK exist as an entity? Nature 286: 742PubMedGoogle Scholar
  38. Dodds WJ, Hogan WJ, Miller WN, Barrera RF, Arndofer RC, Stef JJ (1975) Relationship between serum gastrin concentration and lower esophageal sphincter pressure. Dig Dis Sci 20: 201–207Google Scholar
  39. Domschke W, Lux G, Domschke S, Strunz U, Bloom SR, Wünsch E (1978) Effect of vasoactive intestinal peptide on resting and pentagastrin-stimulated lower esophageal sphincter pressure. Gastroenterology 75: 9–12PubMedGoogle Scholar
  40. Dozois RR, Kelly KA (1971) Gastrin pentapeptide and delayed gastric emptying. Am J Physiol 221: 113–117PubMedGoogle Scholar
  41. Dubois A, Castell DO (1978) Abnormal gastric emptying response to pentagastrin in duodenal ulcer. Scand J Gastroenterol [Suppl 49] 13: 50Google Scholar
  42. Eckardt VF, Kruger A (1974) The effect of pentagastrin on esophageal peristalsis in diffuse esophageal spasm. Clin Res 22: A693Google Scholar
  43. Eckardt VF, Grace ND, Osborne MP, Fischer JE (1978) Lower esophageal sphincter pressure and serum gastrin levels after mapped antrectomy. Arch Intern Med 138: 243–245PubMedGoogle Scholar
  44. Eeckhout C, De Weyer I, Peeters T, Hellemans J, Vantrappen G (1978) Role of gastrin and insulin in postprandial disruption of migrating complex in dogs. Am J Physiol 235: E666–E669PubMedGoogle Scholar
  45. El-Sharkawy TY, Szurszewski JH (1978) Modulation of canine antral circular smooth muscle by acetylcholine, noradrenaline, and pentagastrin. J Physiol (Lond) 279: 309–320Google Scholar
  46. Fara JW, Berkowitz JM (1978) Effects of histamine and gastrointestinal hormones on dog antral smooth muscle in vitro. Scand J Gastroenterol [Suppl 49] 13: 60Google Scholar
  47. Fara JW, Praissman M, Berkowitz JM (1979) Interaction between gastrin, CCK, and se-Google Scholar
  48. cretin on canine antral smooth muscle in vitro. Am J Physiol 236:E39–E44Google Scholar
  49. Farrell RL, Nebel OT, McGuire AT, Castell DO (1973) The abnormal lower esophageal sphincter in pernicious anaemia. Gut 14: 767–772PubMedGoogle Scholar
  50. Farrell RL, Castell DO, McGuigan JE (1974) Measurements and comparisons of lower esophageal sphincter pressure and serum gastrin levels in patients with gastroesophageal reflux. Gastroenterology 67: 415–422PubMedGoogle Scholar
  51. Fiddian-Green RG, Quinn TS (1978) Physiological actions of luminal gastrin in human gastric juice. Gut 19: A435Google Scholar
  52. Fisher RS, Boden G (1976) Gastrin inhibition of the pyloric sphincter. Am J Dig Dis 21: 468–472PubMedGoogle Scholar
  53. Fisher RS, Cohen S (1980) Effects of gut hormones on gastrointestinal sphincters. In: Jerzy Glass G (ed) Gastrointestinal hormones. Raven, New York, pp 613–638Google Scholar
  54. Fisher RS, Lipshutz W, Cohen S (1973) The hormonal regulation of pyloric sphincter func-tion. J Clin Invest 52: 1289–1296PubMedGoogle Scholar
  55. Fisher RS, Di Marino AJ, Cohen S (1975) Mechanism of cholecystokinin-inhibition of lower esophageal sphincter pressure. Am J Physiol 228: 1469–1473PubMedGoogle Scholar
  56. Freeland GR, Higgs RH, Castell DO, McGuigan JE (1975) Lower esophageal sphincter (LES) and gastric acid (GA) response to intravenous infusion of synthetic human gastrin heptadecapeptide I ( HGH ). Gastroenterology 68: A894Google Scholar
  57. Freeland GR, Higgs RH, Castell DO, McGuigan JE (1976) Lower esophageal sphincter and gastric acid responses to intravenous infusions of synthetic human gastrin I heptadecapeptide. Gastroenterology 71: 570–574PubMedGoogle Scholar
  58. Gamblin GT, Dubois A, Castell DO (1977) Contrasting, effect of pentagastrin on gastric emptying in normals and patients with gastric ulcer. Clin Res 25: A17Google Scholar
  59. Geoghegan J, Fielding JF (1978) Brief report serum gastrin and the irritable bowel syndrome. Ir J Med Sci 147: 156PubMedGoogle Scholar
  60. Gerner T, Haffner JFW, (1977) The role of local cholinergic pathways in the motor response to cholecystokinin and gastrin in isolated guinea-pig fundus and antrum. Scand J Gastroenterol 12: 751–757PubMedGoogle Scholar
  61. Gerner T, Haffner JFW (1978) Interactions of cholecystokinin ( CCK-PZ) and gastrin on motor activity of isolated guinea-pig antrum and fundus. Scand J Gastroenterol 13: 789–794Google Scholar
  62. Gerner T, Haffner JFW, Norstein J (1979) The effects of mepyramine and cimetidine on the motor responses to histamine, cholecystokinin, and gastrin in the fundus and antrum of isolated guinea-pig stomachs. Scand J Gastroenterol 14: 65–72PubMedGoogle Scholar
  63. Goyal RK, McGuigan JE (1976) Is gastrin a major determinant of basal lower esophageal sphincter pressure? A double-blind controlled study using high titer gastrin antiserum. J Clin Invest 57: 291–300PubMedGoogle Scholar
  64. Goyal RK, Rattan S (1978) Neurohumoral, hormonal, and drug receptors for the lower esophageal sphincter. Gastroenterology 74: 598–619PubMedGoogle Scholar
  65. Gregory RA (1974) The Bayliss-Starling lecture 1973. The gastrointestinal hormones: a review of recent advance. J Physiol (Lond) 241: 1–32Google Scholar
  66. Gregory RA (1978) The gastrins: structure and heterogeneity. In: Grossman M, Speranza V, Basso N, Lezoche E (eds) Gastrointestinal hormones and pathology of the digestive system. Plenum, New York London, pp 75–83Google Scholar
  67. Gregory RA, Tracy HJ (1964) The constitution and properties of two gastrins extracted from hog antral mucosa. Gut 5: 103–117PubMedGoogle Scholar
  68. Gregory RA, Tracy HJ (1974) Isolation of two minigastrins from Zollinger-Ellison tumour tissue. Gut 15: 683–685PubMedGoogle Scholar
  69. Gregory RA, Tracy HJ, Harris JI, Runswick MJ, Moore S, Kenner GW, Ramage R (1979) Minigastrin: corrected structure and synthesis. Hoppe Seylers Z Physiol Chem 360: 7380Google Scholar
  70. Gustaysson S, Jung B, Lundgvist G, Nilsson F (1978) Propulsion and mixing of small bowel contents during exogenous gastrin infusion. An experimental study in rats. Acta Chir Scand 144: 103–108Google Scholar
  71. Hamilton SG, Sheiner HJ, Quinlan MF (1976) Continuous monitoring of the effect of pentagastrin on gastric emptying of solid food in man. Gut 17: 273–279PubMedGoogle Scholar
  72. Hara Y (1980) Actions of tetragastrin on smooth muscles of human stomach. Eur J Physiol 386: 127–134Google Scholar
  73. Harvey RF (1975) Hormonal control of gastrointestinal motility. Dig Dis Sci 20: 523–539Google Scholar
  74. Heil T, Mattes P, Raptis S (1977) Effects of somatostatin and human gastrin I on the lower esophageal sphincter in man. Digestion 15: 461–468PubMedGoogle Scholar
  75. Helsinger N (1960) Oesophagitis following total gastrectomy. Acta Clin Scand 118: 190–201Google Scholar
  76. Henderson JM, Lidgard G, Osborne DH, Carter DC, Heading RC (1978) Lower oesoph-ageal sphincter response to gastrin pharmacological or physiological? Gut 19: 99–102PubMedGoogle Scholar
  77. Hiatt GA, Wells RF (1974) Clinical physiology review: gastrin. Am J Gastroenterol 62: 59–66PubMedGoogle Scholar
  78. Higgs RH, Castell DO (1975) Increased response of the lower esophageal sphincter after truncal vagotomy. Clin Res 23: A16Google Scholar
  79. Higgs RH, Smyth RD, Castell DO (1974) Gastric alkalinization; effect on lower esophageal sphincter pressure and serum gastrin. N Engl J Med 291: 486–490PubMedGoogle Scholar
  80. Higgs RH, Humphries TJ, Castell CO, McGuigan JE (1976) Lower esophageal sphincter pressure and serum gastrin levels after cholinergic stimulation. Am J Physiol 231: 1250–1253PubMedGoogle Scholar
  81. Hunt JN, Ramsbottom N (1967) Effect of gastrin II on gastric emptying and secretion during a test meal. Br Med J 4: 386–387PubMedGoogle Scholar
  82. Isenberg JI, Grossman MI (1969) Effect of gastrin and SC 15396 on gastric motility in dogs. Gastroenterology 56: 450–455PubMedGoogle Scholar
  83. Itoh Z, Honda R, Hiwatashi K ( 1978 a) Hormonal control of the lower oesophageal sphincter in man and dog: reevaluation of the present manometric methods for diagnosis of gastro-oesophageal reflux. In: Grossman M, Speranza V, Basso N, Lezoche E (eds) Gastrointestinal hormones and pathology of the digestive system. Plenum, New York London, pp 121–131Google Scholar
  84. Itoh Z, Takayanagi R, Takeuchi S, Issgiki S (1978 b) Interdigestive motor activity of Heidenhain pouches in relation to main stomach in conscious dogs. Am J Physiol 234: E333–E338Google Scholar
  85. Jennewein HM, Hummelt H, Siewert R, Waldeck F (1976) The effect of intravenous infusion of synthetic human gastrin-I on lower esophageal sphincter ( LES) pressure in the dog and its relation to gastrin level. Digestion 14: 376–380Google Scholar
  86. Jensen DM, McCallum RW, Walsh JH (1978 a) Failure of atropine to inhibit gastrin-17 stimulation of the lower esophageal sphincter in man. Gastroenterology 75: 825–827Google Scholar
  87. Jensen DM, McCallum RW, Walsh JH ( 1978 b) Human lower oesophageal sphincter (LES) response to submaximal and maximal effective doses of synthetic human big gastrin (G34) and gastrin I (G-17). In: Duthie HL (ed) Gastrointestinal motility in health and disease. MTP Press, Lancaster, pp 337–338Google Scholar
  88. Johnson LR (1977) Gastrointestinal hormones and their functions. Annu Rev Physiol 39: 135–158PubMedGoogle Scholar
  89. Kelly KA (1975) The effect of pentagastrin on canine gastric myoelectric and motor activity. In: Thompson G (ed) Gastrointestinal hormones. University of Texas Press, Austin London, pp 381–389Google Scholar
  90. Kline MM, Curry N, Sturdevant RAL, McCallum RW (1974) Effect of gastric alkalinization on lower esophageal sphincter pressure and serum gastrin. Gastroenterology 66: A724Google Scholar
  91. Kline MM, McCallum RW, Curry N, Sturdevant RAL (1975) Effect of gastric alkalinization on lower esophageal sphincter pressure and serum gastrin. Gastroenterology 68: 1137–1139PubMedGoogle Scholar
  92. Kowalewski K, Zajac S, Kolodej A (1975a) Effect of release of endogenous gastrin on myoelectrical and mechanical activity of isolated canine stomach. Pharmacology 13: 5664Google Scholar
  93. Kowalewski K, Zajac S, Kolodej A (1975b) The effect of drugs on the electrical and mechanical activity of the isolated porcine stomach. Pharmacology 13: 86–95PubMedGoogle Scholar
  94. Kwong NK, Brown BH, Whittakez GE, Duthie HL (1972) Effect of gastrin I, secretin and cholecystokinin-pancreozymin on the electrical activity, motor activity, and acid output of the stomach in man. Scand J Gastroenterol 7: 161–170PubMedGoogle Scholar
  95. Lane W, McCallum R, Ippoliti A (1977) The effect of gastrin heptadecapeptide on esoph-ageal contractions in patients with diffuse esophageal spasm. Clin Res 25: A111Google Scholar
  96. Lane WH, Ippoliti AF, McCallum RW (1979) Effect of gastrin heptadecapeptide (G17) on oesophageal contractions in patients with diffuse oesophageal spasm. Gut 20: 756–759PubMedGoogle Scholar
  97. Lipshutz W, Cohen S (1971) Physiological determinants of lower esophageal sphincter func-tion. Gastroenterology 61: 16–24PubMedGoogle Scholar
  98. Lipshutz W, Cohen S (1972) Interaction of gastrin I and secretin on gastrointestinal circular muscle. Am J Physiol 222: 775–781PubMedGoogle Scholar
  99. Lipshutz W, Tuch AF, Cohen S (1971) A comparison of the site of action of gastrin I on lower esophageal sphincter and antral circular smooth muscle. Gastroenterology 61: 454–460PubMedGoogle Scholar
  100. Lipshutz W, Hughes W, Cohen S (1972) The genesis of lower esophageal sphincter pressure: its identification through the use of gastrin antiserum. J Clin Invest 51: 522–529PubMedGoogle Scholar
  101. Lipshutz W, Gaskins RD, Lukash WM, Sode J (1973) Pathogenesis of lower esophageal sphincter incompetence. N Engl J Med 289: 182–184PubMedGoogle Scholar
  102. Lipshutz W, Gaskins RD, Lukash WM, Sode J (1974) Hypogastrinemia in patients with lower esophageal sphincter incompetence. Gastroenterology 67: 423–427PubMedGoogle Scholar
  103. Logan CJH, Connell AM (1966) The effect of a synthetic gastrin-like pentapeptide (I.C.I.123) on intestinal motility in man. Gastroenterology 1:996–999Google Scholar
  104. MacGregor IL, Wiley ZD, Martin PM (1978) Effect of pentagastrin infusion on gastric emptying rate of solid food in man. Am J Dig Dis 23: 72–75PubMedGoogle Scholar
  105. Malloy MH, Morriss FH, Denson SE, Weisbrodt NW, Lichtenberger LM, Adcock EW (1979) Neonatal gastric motility in dogs: maturation and response to pentagastrin. Am J Physiol 236: E562–E566PubMedGoogle Scholar
  106. Mantovani P, Bertaccini G (1971) Action of caerulein and related substances on gastroin-testinal motility of the anaesthetized dog. Arch Int Pharmacodyn Ther 193: 362–371PubMedGoogle Scholar
  107. Marik F, Code CF (1975) Control of the interdigestive myoelectric activity in dogs by the vagus nerves and pentagastrin. Gastroenterology 69: 387–395PubMedGoogle Scholar
  108. McCallum RW, Walsh JH (1979) Relationship between lower esophageal sphincter pressure and serum gastrin concentration in Zollinger-Ellison syndrome and other clinical settings. Gastroenterology 76: 65–81Google Scholar
  109. Menghelli UG, Godoy RA, Padovan W, Santos JCM, Dantas RO, Oliveira RB (1978) L’action de la pentagastrine sur la motilité du sigmoide et du rectum normaux et sur le megacolon chagasique. VIth World Congr Gastroenterol, Madrid, June 5–9, 1978, p 205Google Scholar
  110. Meves M, Beger HG, Hüthwohl BB (1975) The effect of some gastrointestinal hormones on gasric evacuation in man. In: Vantrappen G (ed) Fifth International Symposium on Gastrointestinal Motility. Typoff, Herentals, pp 327–332Google Scholar
  111. Mikos E, Vane JR (1967) Effects of gastrin and its analogues on isolated smooth muscles. Nature 214: 105–107PubMedGoogle Scholar
  112. Misiewicz JJ, Holdstock DJ, Waller SL (1967) Motor responses of the human alimentary tract to near-maximal infusions of pentagastrin. Gut 8: 463–469PubMedGoogle Scholar
  113. Monges H, Salducci J (1972) Variations of the gastric electrical activity in man produced by administration of pentagastrin and by introduction of water or liquid nutritive substance into the stomach. Am J Dig Dis 17: 333–338PubMedGoogle Scholar
  114. Morgan KG, Szurszewski JH (1978) Effects of pentagastrin on intracellular electrical activity of canine corpus. Gastroenterology 74: A1069Google Scholar
  115. Morgan KG, Szurszewski JH (1980) Mechanisms of phasic and tonic actions of pentagastrin on canine gastric smooth muscle. J Physiol (Lond) 301: 229–242Google Scholar
  116. Morgan KG, Schmalz PF, Go VLW, Szurzewski JH (1978) Effects of pentagastrin G17 and G34 on the electrical and mechanical activities of canine antral smooth muscle. Gastroenterology 75: 405–412PubMedGoogle Scholar
  117. Morris SJ, Perez C, Rogers AI (1978) Sensitivity of esophageal peristalsis to pentagastrin in patients with symptomatic diffuse esophageal spasm. Gastroenterology 74: A1137Google Scholar
  118. Morris DW, Shoen H, Brooks FP, Cohen S (1974) Relationship of serum gastrin and lower esophageal sphincter pressure in normals and patients with antrectomy. Gastroenterology 66: 75Google Scholar
  119. Munk JF, Hoare M, Johnson AG (1978) Hormonal influence of pyloric diameter and antral motility in man: Gut 19: A435Google Scholar
  120. Nebel OT, Castell DO (1972) Lower esophageal sphincter pressure changes after food ingestion. Gastroenterology 66: 778–783Google Scholar
  121. Nilsson G(1980) Gastrin: isolation, characterization, and functions. In: Jerzy Glass GB (ed) Gastrointestinal hormones (comprehensive endocrinology). Raven, New YorkGoogle Scholar
  122. Ohkawa H (1978) Inhibition of the electrical and mechanical activities of the intestinal smooth muscle by pentagastrin. Tohoku J Exp Med 125:271–271PubMedGoogle Scholar
  123. Ohkawa H, Watanabe M (1977a) Effects of gastrointestinal hormones on the electrical and mechanical activity of the cat stomach. Tohoku J Exp Med 122: 287–298Google Scholar
  124. Ohkawa H, Watanabe M (1977b) Effects of gastrointestinal hormones on the electrical and mechanical activities of the cat small intestine. Jpn J Physiol 27: 71–79Google Scholar
  125. Onapito SJ, Donawick WJ, Merritt AM (1978) Effects of gastrin on emptying and composition of digesta of the omasum of sheep. Am J Vet Res 39: 1455–1458PubMedGoogle Scholar
  126. Orlando RC, Bozymski EM (1979) The effects of pentagastrin in achalasia and diffuse esophageal spasm. Gastroenterology 77: 472–477PubMedGoogle Scholar
  127. Pearce EAN, Wingate DL, Wunsch E (1978) The effects of gastrointestinal hormones and feeding on the basic electric rhythm of the stomach and duodenum of the conscious dog. J Physiol (Lond) 276: 41P-42 PGoogle Scholar
  128. Pittinger G, Kothary P, Fiddian-Green RG (1978) The effect of luminal gastrin on the rate of gastric emptying. Clin Res 26: A665Google Scholar
  129. Rattan S, Goyal RK (1978) Influence of verapamil on the stimulated lower esophageal sphincter pressure. Gastroenterology 74: A1082Google Scholar
  130. Rattan S, Coln D, Goyal RK (1976) The mechanism of action of gastrin on the lower esophageal sphincter. Gastroenterology 70: 828–831PubMedGoogle Scholar
  131. Rehfeld JF, Larsson LI (1979) The predominanting molecular form of gastrin and cholecystokinin in the gut is a small peptide corresponding to their COOH-terminal tetrapeptide amide. Acta Physiol Scand 105: 177–119Google Scholar
  132. Rehfeld JF, Stadil F (1973) Gel-filtration studies on immunoreactive gastrin in serum from Zollinger-Ellison patients. Gut 14: 369–373PubMedGoogle Scholar
  133. Rösch W, Lux G, Schittenhelm W, Demling L (1976) Interaction of somatostatin and pentagastrin on lower oesophageal sphincter pressure ( LESP) in man. Acta Hepatogastroenterol (Stuttg) 23: 209–212Google Scholar
  134. Roth SH, Schofield B, Yates JC (1979) Effects of atropine on secretion and motility in isolated gastric mucosa and attached muscularis externa from ferret and cat. J Physiol (Lond) 292: 351–361Google Scholar
  135. Ryan JP, Duffy KR (1978) LES pressure response to pentagastrin: effect of cholinergic augmentation and inhibition. Am J Physiol 234: E301–E305PubMedGoogle Scholar
  136. Scheurer U, Halter F (1976) Lower esophageal sphincter in reflux esophagitis. Scand J Gastroenterol 11: 629–634PubMedGoogle Scholar
  137. Schuurkes JAJ, Charbon GA (1979) Pentagastrin stimulates tonic and phasic contractile activity of the canine stomach. Arch Int Pharmacodyn Ther 239: 128–137PubMedGoogle Scholar
  138. Schuurkes JAJ, Beijer HJM, Brouwer FAS, Charbon GA (1978) Motor effects of graded doses of pentagastrin on the gut of the anesthetized dog. Arch Int Pharmacodyn Ther 234: 97–106PubMedGoogle Scholar
  139. Siewert R, Jennewein HM, Arnold R, Creutzfeldt W (1973) The lower oesophageal sphincter in the Zollinger-Ellison-Syndrome. Ger Med Man 3: 101–102Google Scholar
  140. Siewert R, Weiser F, Jennewein HM, Waldeck F (1974) Clinical and manometric investigations of the lower esophageal sphincter and its reactivity to pentagastrin in patients with hiatus hernia. LES-pentagastrin-test. Digestion 10: 287–297Google Scholar
  141. Siewert R, Weiser HF, Lepsien G, Jennewein H, Waldeck F, Arnold R, Creutzfeldt W (1977) The relationship between serum IRG levels and LES pressure under various conditions. Digestion 15: 162–174PubMedGoogle Scholar
  142. Smith AN, Hogg D (1966) Effect of gastrin II on the motility of the gastrointestinal tract. Lancet 1: 403–404PubMedGoogle Scholar
  143. Snape WJ Jr, Cohen S (1979) Effect of bethanecol, gastrin I, or cholecystokinin on myoelectrical activity. Am J Physiol 236: E458–E463PubMedGoogle Scholar
  144. Snape WJ Jr, Carlson GM, Cohen S (1977) Human colonic myoelectric activity in response to prostigmine and the gastrointestinal hormones. Am J Dig Dis 22: 881–887PubMedGoogle Scholar
  145. Snape WJ Jr Matarazzo SA, Cohen S (1978) Effect of eating and gastrointestinal hormones on human colonic myoelectrical and motor activity. Gastroenterology 75: 373–378Google Scholar
  146. Spedale SB, Morriss FH, Denson SE, Adcock EW (1978) Neonatal lower esophageal sphincter pressure in dogs: maturation and response to pentagastrin. Clin Res 26: A827Google Scholar
  147. Stewart JJ, Burks TF (1976) Investigation of the intestinal smooth muscle response to pen-tagastrin. Pharmacologist 18: 181Google Scholar
  148. Strunz UT, Grossman MI (1977) Antral motility stimulated by gastrin: a physiological action affected by cholinergic activity. In: Chey WY, Brooks FP (eds) Endocrinology of the gut. Slack, Thorofare, NJ, pp 233–243Google Scholar
  149. Strunz UT, Grossman MI (1978) Effect of intragastric pressure on gastric emptying and secretion. Am J Physiol 235: E552–E555PubMedGoogle Scholar
  150. Strunz UT, Code CF, Grossman MI (1979) Effect of gastrin on electrical activity of antrum and duodenum of dogs. Proc Soc Exp Biol Med 161: 25–27PubMedGoogle Scholar
  151. Sugawara K, Isaza J, Woodward ER (1969) Effect of gastrin on gastric motor activity. Gastroenterology 57: 649–658PubMedGoogle Scholar
  152. Székely A, Major T, Romvâri H (1969) Über die Wirkung von Pentagastrin auf die Magenmotilität. Fortsch Geb Roentgenstr Ver Roentgenprax 111: 841–846Google Scholar
  153. Szurszewski JH (1975) Mechanism of action of pentagastrin and acetylcholine on the longitudinal muscle of the canine antrum. J Physiol (Lond) 252: 335–361Google Scholar
  154. Takayanagi I, Kasuya Y (1977) Effects of some drugs on the circular muscle of the isolated lower esophagus. J Pharm Pharmacol 29: 559–560PubMedGoogle Scholar
  155. Thomas PA, Schang JC, Kelly KA, Go VLW (1979) Inhibition of interdigestive proximal gastric motor cycles by endogenously-released gastrin. Gastroenterology 76:Al262Google Scholar
  156. Tracy HJ, Gregory RA (1964) Physiological properties of a series of synthetic peptides structurally related to gastrin I. Nature 204: 935–938PubMedGoogle Scholar
  157. Valenzuela JE, Grossman MI (1975) Effect of pentagastrin and caerulein on intragastric pressure in the dog. Gastroenterology 69: 1383–1384PubMedGoogle Scholar
  158. Vizi SE, Bertaccini G, Impicciatore M, Knoll J (1973) Evidence that acetylcholine released by gastrin and related polypeptides contributes to their effect on gastrointestinal motility. Gastroenterology 64: 268–277PubMedGoogle Scholar
  159. Vizi SE, Bertaccini G, Impicciatore M, Mantovani P, Zséli J, Knoll J (1974) Structure-activity relationship of some analogues of gastrin and cholecystokinin on intestinal smooth muscle of the guinea pig. Naunyn Schmiedebergs Arch Pharmacol 284: 233–243PubMedGoogle Scholar
  160. Walker CO, Frank SA, Manton J, Fordtran JS (1975) Effect of continuous infusion of pentagastrin on lower esophageal sphincter pressure and gastric acid secretion in normal subjects. J Clin Invest 56: 218–225PubMedGoogle Scholar
  161. Wallin L, Madsen T, Brandsborg M, Brandsborg O, Larsen NE (1979) The influence of cimetidine on basal gastroesophageal sphincter pressure, intragastric pH, and serum gastrin concentration in normal subjects. Scand J Gastroenterol 14: 349–353PubMedGoogle Scholar
  162. Walsh JH, Grossman MI (1975 a) Gastrin (first of two parts). N Engl J Med 292: 1324–1334Google Scholar
  163. Walsh JH, Grossman MI (1975 b) Gastrin (second of two parts). N Engl J Med 292: 1377–1384Google Scholar
  164. Walsh JH, Debas HT, Grossman MI, (1974) Pure human big gastrin: immunochemical properties, disappearance half-time and acid stimulating action in dogs. J Clin Invest 54: 477–485PubMedGoogle Scholar
  165. Waterfall WE, Brown BH, Duthie HL, Whittaker GE (1972) The effects of humoral agents on the myoelectrical activity of the terminal ileum. Gut 13: 528–534PubMedGoogle Scholar
  166. Weisbrodt NW, Copeland EM, Kearley RW, Moore EP, Johnson LR (1974) Effects of pen-tagastrin on electrical activity of small intestine of the dog. Am J Physiol 227: 425–429PubMedGoogle Scholar
  167. Weiss SM, Hughes SR, Paskin DL, Lipshutz WH (1976) Effects of drugs and hormones on human colon muscle. Clin Res 24: A293Google Scholar
  168. White CM, Keighley MRB (1978) An explanation of the paradoxical effect of pentagastrin on gastric motility. Gut 19: A434–A435Google Scholar
  169. Wilbur BG, Kelly KA (1974) Gastrin pentapeptide decreases canine gastric transmural pressure. Gastroenterology 67: 1139–1142PubMedGoogle Scholar
  170. Windsor C (1964) Gastro-oesophageal reflux after partial gastrectomy Br Med J 2: 1233–1234Google Scholar
  171. Wingate D, Thompson H, Pearce E, Dand A (1977) Similar-but different: the myoelectric response to cholecystokinin and pentagastrin in the conscious dog. Gut 18: A966Google Scholar
  172. Wingate DL, Pearce EA, Hutton M, Dand A, Thompson HH, Wünsch E (1978) Quantita-tive comparison of the effects of cholecystokinin, secretin, and pentagastrin on gastro-intestinal myoelectric activity in the conscious fasted dog. Gut 19: 593–601PubMedGoogle Scholar
  173. Wright LF, Slaughter RL, Gibson RG, Hirschowitz BI (1975) Correlation of lower esoph-ageal sphincter pressure and serum gastrin level in man. Am J Dig Dis 20: 603–606PubMedGoogle Scholar
  174. Yalow RS, Berson SA (1971) Further studies on the nature of immunoreactive gastrin in human plasma. Gastroenterology 60: 203–214PubMedGoogle Scholar
  175. Yalow RS, Berson SA (1972) And now, “big, big” gastrin. Biochem Biophys Res Commun 48: 391–395PubMedGoogle Scholar
  176. Yates JC, Schofield B, Roth SH (1978) Acid secretion and motility of isolated mammalian gastric mucosa and attached muscularis externa. Am J Physiol 234: E319–E326PubMedGoogle Scholar
  177. Yau WM (1974) The actions of cholecystokinin and related peptides on the small intestinal muscle. In: Chey WY, Brooks FP (eds) Endocrinology of the gut. Slack, Thorofare, NJ, pp 212–219Google Scholar
  178. Zetler G (1979) Antagonism of cholecystokinin-like peptides by opioid peptides, morphine or tetrodotoxin. Eur J Pharmacol 60: 67–77PubMedGoogle Scholar
  179. Zwick R, Bowes KL, Daniel EE, Sarna SK (1976) Mechanism of action of pentagastrin on the lower esophageal sphincter. J Clin Invest 57: 1644–1651PubMedGoogle Scholar

Reference

  1. Adlercreutz E, Pettersson T, Adlercreutz H, Gribbe P, Wegelius C (1960) Effect of chole-cystokinin on duodenal tonus and motility. Acta Med Scand 167: 339–342PubMedGoogle Scholar
  2. Agosti A, Bertaccini G, Paolucci R, Zanella E (1971) Cerulein treatment for paralytic ileus. Lancet 1: 395PubMedGoogle Scholar
  3. Agosti A, Paolucci R, Zanella E, Bertaccini G (1972) Preliminary studies on the effects of cerulein in paralytic ileus. Chir Gastroenterol 6: 122–128Google Scholar
  4. Albot G, Kapandji M (1958) Troubles fonctionnels synergiques biliaires et duodénaux. In: Vittel (ed) Congres international de la fonction biliaire. Masson, Paris, pp 255–277Google Scholar
  5. Aloisio F, Giannoni MF, Montesani C, Pizzirani F (1976) Effetti del ceruletide nel tratta-mento dell’ileo paralitico postoperatorio. Chir Ital 28: 846–853PubMedGoogle Scholar
  6. Anastasi A, Erspamer V, Endean R (1967) Isolation and structure of caerulein an active decapeptide from the skin of Hyla caerulea. Experientia 23: 699–700PubMedGoogle Scholar
  7. Anastasi A, Bertaccini G, Cei JM, De Caro G, Erspamer V, Impicciatore M (1969) Structure and pharmacological actions of phyllocaerulein, a caerulein-like nonapeptide. Its occurrence in extracts of the skin of Phyllomedusa sauvagei and related Phyllomedusa species. Br J Pharmacol 37: 198–206PubMedGoogle Scholar
  8. Angelucci L, Baldieri M, Linari G (1969) Actions of caerulein on secretions and motility of the digestive tract in the chicken. In: Mantegazza P, Horton EW (eds) Prostaglandins, peptides, and amines. Academic Press, London, pp 147–156Google Scholar
  9. Angelucci L, Micossi L, Cantalamessa F (1972) The action of caerulein on the motility of intestinal villi of avians. Arch Int Pharmacodyn Ther [Suppl] 196: 89–91Google Scholar
  10. Anuras S, Cooke R (1978) Effects of some gastrointestinal hormones on two muscle layers of duodenum. Am J Physiol 234: 60–63Google Scholar
  11. Baur S, Grant B, Spaulding RS (1978) Adenylate cyclase of antral muscle: hormonal and neural regulation. Gastroenterology 74: A1006Google Scholar
  12. Behar J, Biancani P (1977) Effect of cholecystokinin-octapeptide on lower esophageal sphincter. Gastroenterology 73: 57–61PubMedGoogle Scholar
  13. Behar J, Biancani P, Zabinski MP (1979) Characterization of feline gastroduodenal junction by neural and hormonal stimulation. Am J Physiol 236: E45–E51PubMedGoogle Scholar
  14. Bertaccini G (1972) Pharmacological actions of kinins occurring in amphibian skin. In: Pharmacology and the future of man. Proc 5th Int Congr Pharmacol, 5, San Francisco. Karger, Basel, pp 336–346Google Scholar
  15. Bertaccini G (1973a) Pharmacology and clinical use of caerulein. In: Bory J, Mozsik G (eds) Symposium on gastrin and its antagonists: Akadémiai Kiadò, Budapest, pp 47–66Google Scholar
  16. Bertaccini G (1973b) Action of caerulein on the motility of the biliary system and the gastrointestinal tract in man. Med Chir Dig 2:133–138Google Scholar
  17. Bertaccini G, Agosti A (1971) Action of caerulein on intestinal motility in man. Gastroenterology 60: 55–63PubMedGoogle Scholar
  18. Bertaccini G, Impicciatore M (1975) Action of bombesin on the motility of the stomach. Naunyn Schmiedebergs Arch Pharmacol 289: 149–156PubMedGoogle Scholar
  19. Bertaccini G, Scarpignato C (1981) Effects of some cholecystokinin (CCK) — like peptides on gastric emptying of a liquid meal in the rat. Br J Pharmacol 72: 103P-104 PGoogle Scholar
  20. Bertaccini G, Cei JM, Erspamer V (1965) Occurrence of physalaemin in extracts of the skin of Physalaemus fuscumaculatus and its pharmacological actions on extravascular smooth muscle. Br J Pharmacol 25: 363–379Google Scholar
  21. Bertaccini G, De Caro G, Endean R, Erspamer V, Impicciatore M (1968) The actions of caerulein on the smooth muscle of the gastrointestinal tract and the gall bladder. Br J Pharmacol 34: 291–310PubMedGoogle Scholar
  22. Bertaccini G, Mantovani P, Piccinin GL (1970) Activity ratio between intestinal and cardiovascular actions of caerulein and related substances in the anaesthetized dog. In: Sicuteri F, Rocha e Silva M, Back N (eds) Bradykinin and related kinins. Plenum, New York London, pp 213–220Google Scholar
  23. Bertaccini G, Agosti A, Impicciatore M (1971) Caerulein and gastrointestinal motility in man. Rend Gastroenterol 3: 23–27Google Scholar
  24. Bertaccini G, Agosti A, Mantovani P, Impicciatore M, Romano A (1972) Azione della cae- ruleina sul tubo gastroenterico umano in vitro. Boll Soc Ital Biol Sper 48: 322–325PubMedGoogle Scholar
  25. Bertaccini G, Impicciatore M, De Caro G (1973) Action of caerulein and related substances on the pyloric sphincter of the anaesthetized rat. Eur J Pharmacol 22: 320–324PubMedGoogle Scholar
  26. Bertaccini G, Impicciatore M, De Caro G, Chiavarini M, Burani A (1974) Further observations on the spasmogenic activity of caerulein on the rat pylorus. Pharmacol Res Commun 6: 23–34PubMedGoogle Scholar
  27. Bertaccini G, Zappia L, Molina E (1979) “In vitro” duodenal muscle in the pharmacological study of natural compounds. Scand J Gastroenterol [Suppl 54] 14:25Google Scholar
  28. Bitar KN, Zfass AM, Farrar JI, Makhlouf GM (1977) Isolated gastric muscle cells: demon- stration of the direct myogenic effect of cholecystokinin. Gastroenterology 72: A1030Google Scholar
  29. Bitar KN, Zfass AM, Makhlouf GM (1979) Isolated guinea pig gastric smooth muscle cells: interaction of acetylcholine (ACh) and the octapeptide of cholecystokinin ( CCK-OP ). Gastroenterology 76: A1100Google Scholar
  30. Bonomo E, Calabi W, Fantoni A, Seveso M (1972) Risultati preliminari sull’impiego della caeruleina nel trattamento dell’ileo paralitico post-operatorio e della stasi fecale cronica. Ann Med 16: 171Google Scholar
  31. Bortolotti M, Miglioli M, Lanfranchi GA, Barbara L (1970) L’azione della caeruleine sull’ attività elettrica e meccanica dello stomaco nell’uomo. Gastroenterologia 22: 147–179Google Scholar
  32. Bortolotti M, Sansone G, Sanavio C (1975) Effects of some gut hormones on gastric myoelectric and mechanical activity in man. Rend Gastroenterol 7: 135Google Scholar
  33. Cameron AJ, Phillips SF, Summerskill WHJ (1967) Effect of cholecystokinin on motility of human stomach and gallbladder muscle “in vitro.” Clin Res 15: 416–420Google Scholar
  34. Carpino Boeri A, Di Negro G (1976) Studio dell’attività terapeutica del ceruletide nell’ileo paralitico conclamato. Atti Accad Med Lomb 31: 1–5Google Scholar
  35. Castresana M, Lee KY, Chey WY, Yajima H (1978) Effects of motilin and octapeptide of cholecystokinin on antral and duodenal myoelectric activity in the interdigestive state and during inhibition by secretin and gastric inhibitory polypeptide. Digestion 17: 300–308PubMedGoogle Scholar
  36. Chey WY, Hitanant S, Hendricks J, Lorber SH (1970) Effect of secretin and cholecystokinin on gastric emptying and gastric secretion in man. Gastroenterology 58: 820–827PubMedGoogle Scholar
  37. Chey WY, Yoshimori M, Hendricks J, Kimani S (1972) Effects of C-terminal octapeptide of cholecystokinin ( CCK) on the motor activities of the antrum and pyloric sphincter in dogs. Gastroenterology 62: 733Google Scholar
  38. Chey WY, Gutierrez J, Yoshimori M, Hendricks J (1974) Gut hormones on gastrointestinal motor function. In: Chey WJ, Brooks FP (eds) Endocrinology of the gut. Slack, Thorofare, NJ; pp 194–211Google Scholar
  39. Chijikwa JB, Davison JS (1974) The action of gastrin-like polypeptides in the peristaltic reflex in guinea-pig intestine. J Physiol (Lond) 238: 68P-70 PGoogle Scholar
  40. Chowdhury AR, Lorber SH (1975) Effect of glucagon on cholecystokinin and prostigmininduced motor activity of the distal colon and rectum in humans. Gastroenterology 68: 875Google Scholar
  41. Corazziari E, Tonelli F, Pozzessere C, Dani S, Anzini F, Torsoli A (1976) The effects of graded doses of caerulein on human jejunal motor activity. Rend Gastroenterol 8: 190193Google Scholar
  42. Dahlgren S (1966) Cholecystokinin: pharmacology and clinical use. Acta Chir Scand [Suppl] 357: 256–260Google Scholar
  43. Dahlgren S (1967) The effect of cholecystokinin on duodenal motility. Acta Chir Scand 133: 403–405PubMedGoogle Scholar
  44. Dahlgren S, Thorén L (1967) Intestinal motility in low small bowel obstruction. Acta Chir Scand 133: 417–421PubMedGoogle Scholar
  45. Debas HT, Farooq O, Grossman MI (1975) Inhibition of gastric emptying is a physiological action of cholecystokinin. Gastroenterology 68: 1211–1217PubMedGoogle Scholar
  46. Del Tacca M, Soldani G, Crema A (1970) Experiments on the mechanism of action of caerulein at the level of the guinea-pig ileum and colon. Agents Actions 1: 176–182PubMedGoogle Scholar
  47. Del Tacca M, Pacini S, Amato G, Falaschi C, Crema A (1972) Action of caerulein on the isolated guinea pig stomach. Eur J Pharmacol 17: 171–174PubMedGoogle Scholar
  48. Del Tacca M, Soldani G, Crema A (1974) Effects of caerulein on the isolated human ileum. Rend Gastroenterol 6: 165–167Google Scholar
  49. Dent J, Dodds WJ, Hogan WJ, Arndorfer RC (1978 a) Pressor effect of cholecystokininoctapeptide on the opossum lower esophageal sphincter. Gastroenterology 74: A1025Google Scholar
  50. Dent J, Dodds WJ, Hogan WJ, Arndorfer RC ( 1978 b) CCK-OP: a useful agent for evaluating lower esophageal sphincter ( LES) denervation in human. Gastroenterology 74: A1025Google Scholar
  51. Desvigne C, Gelin ML, Vagne M, Roche M (1980) Effect of cholecystokinin and pentagastrin on motility and gastric secretion in the cat. Digestion 20: 265–276PubMedGoogle Scholar
  52. Dinoso V, Chey WY, Hendricks J, Lorber SH (1969) Intestinal mucosal hormones and motor function of the stomach in man, J Appl Physiol 26: 326–329PubMedGoogle Scholar
  53. Dinoso VP, Meshkinpour H, Lorber SH, Gutiérrez JG, Chey WY (1973) Motor responses of the sigmoid colon and rectum to exogenous cholecystokinin and secretin. Gastroenterology 65: 438–444PubMedGoogle Scholar
  54. Dockray GJ, Hutchison JB (1980) Cholecystokinin octapeptide in guinea-pig ileum myenteric plexus: localization and biological action. J Physiol (Lond) 300: 28–29Google Scholar
  55. Dockray GJ, Gregory RA, Tracy HJ (1980) Cholecystokinin octapeptide in dog vagus nerve: identification and accumulation on the cranial side of ligatures. J Physiol (Lond) 301: 50 PGoogle Scholar
  56. Dollinger HC, Berz R, Raptis S, Von Uexküll TH, Goebell H (1975) Effects of secretin and cholecystokinin on motor activity of human jejunum. Digestion 12: 9–16PubMedGoogle Scholar
  57. Eberhardt G, Dyrszka H (1980) The effect of cholecystokinin (CCK) on symptoms and motility in the irritable colon syndrome. Abstr XI th Int Congr Gastroenterol. Thieme, Stuttgart p 191Google Scholar
  58. Egberts E-H, Johnson AG (1977) The effect of cholecystokinin on human taenia coli. Digestion 15: 217–222PubMedGoogle Scholar
  59. Erspamer V (1970) Progress report: caerulein. Gut 11: 79–87PubMedGoogle Scholar
  60. Fara JW, Erde SM (1978) Comparison of in vivo and in vitro responses to sulfated and non-sulfated ceruletide. Eur J Pharmacol 47: 359–363PubMedGoogle Scholar
  61. Fara JW, Praissman M, Berkowitz M (1979) Interaction between gastrin, CCK, and secretin on canine antral smooth muscle in vitro. Am J Physiol 236: 39–44Google Scholar
  62. Faustini R, Beretta C, Cheli R, De Gresti A (1973) Some effects of caerulein on the motility of sheep forestomach and gall bladder. Pharmacol Res Commun 5: 383–387Google Scholar
  63. Faustini R, Ormas P, Galbiati A, Beretta C (1979) Tachykinins and forestomachs. 1 st Congr Eur Assoc Vet Pharmacol and Toxicol (EAVPT), Utrecht 25–28 SeptGoogle Scholar
  64. Fisher RS, Cohen S (1973) Phyloric sphincter dysfunction in patients with gastric ulcer. N Engl J Med 288: 273–276PubMedGoogle Scholar
  65. Fisher RS, Cohen S (1980) Effect of gut hormones on gastrointestinal sphincters. In: Jerzy Glass GB (ed) Gastrointestinal hormones. Raven, New York, pp 613–638Google Scholar
  66. Fisher RS, Lipshutz W, Cohen S (1973) The hormonal regulation of pyloric sphincter func-tion. J Clin Invest 52: 1289–1296PubMedGoogle Scholar
  67. Fisher RS, Di Marino AJ, Cohen S (1975) Mechanism of cholecystokinin inhibition of lower esophageal sphincter pressure. Am J Physiol 228: 1469–1473PubMedGoogle Scholar
  68. Fleckenstein P, Oigaard A (1977) Effects of cholecystokinin on the motility of the distal duodenum and the proximal jejunum in man. Scand J Gastroenterol 12: 375–378PubMedGoogle Scholar
  69. Fontaine J, Famaey JP, Seaman I, Reuse J (1978) Inhibition of caerulein and physalaemininduced contractions of guinea-pig isolated ileum by non-steroidal antiinflammatory drugs and various steroids and their reversal by prostaglandin F. Prostaglandins Med 1: 351–357PubMedGoogle Scholar
  70. Frigo GM, Lecchini S, Falaschi C, Del Tacca M, Crema A (1971) On the ability of caerulein to increase propulsive activity in the isolated small and large intestine. Naunyn Schmiedebergs Arch Pharmakol Exp Pathol 268: 44–58Google Scholar
  71. Fumoto T, Watanuki T (1975) Effect of ceruletide on post-operative intestinal peristalsis. Farmaco [Prat] 30: 579–584Google Scholar
  72. Gerner T (1979) Pressure responses to OP-CCK compared to CCK-PZ in the antrum and fundus of isolated guinea-pig stomachs. Scand J Gastroenterol 14: 73–77PubMedGoogle Scholar
  73. Gerner T, Haffner JFW (1977) The influence of graded distension and carbachol on the motor response to cholecystokinin in isolated guinea pig antrum and fundus. Scand J Gastroenterol 12: 745–757PubMedGoogle Scholar
  74. Gerner T, Haffner JFW (1978) Interactions of cholecystokinin ( CCK-PZ) and gastrin on motor activity of isolated guinea-pig antrum and fundus. Scand J Gastroenterol 13: 789–794Google Scholar
  75. Gerner T, Maehlumshagen P, Haffner JFW (1975) The effect of cholecystokinin on the in vitro motility of the guinea-pig stomach. Scand J Gastroenterol [Suppl 35] 10: 48–50Google Scholar
  76. Gerner T, Maehlumshagen P, Haffner JFW (1976) Pressure-responses to cholecystokinin in the fundus and antrum of isolated guinea-pig stomachs. Scand J Gastroenterol 11: 823–827PubMedGoogle Scholar
  77. Gerner T, Haffner JFW, Norstein J (1979) The effects of mepyramine and cimetidine on the motor responses to histamine, cholecystokinin, and gastrin in the fundus and antrum of isolated guinea-pig stomachs. Scand J Gastroenterol 14: 65–72PubMedGoogle Scholar
  78. Goyal RK, Rattan S (1978) Neurohumoral, hormonal, and drug receptors for the lower esophageal sphincter. Gastroenterology 74: 598–619PubMedGoogle Scholar
  79. Grossi F, Del Duca T, Spada S, Grassi M (1970) Influenze della caeruleina sulla motilità gastrointestinale nell’uomo. Clin Ter 54: 321–327PubMedGoogle Scholar
  80. Grossman MI (1970) Proposal: use the term cholecystokinin in place of cholecystokininpancreozymin. Gastroenterology 58: 128PubMedGoogle Scholar
  81. Gutiérrez JG, Chey WY, Dinoso VP (1974) Actions of cholecystokinin and secretin on the motor activity of the small intestine in man. Gastroenterology 67: 35–41PubMedGoogle Scholar
  82. Haas W, Rueff FL (1978) Caerulein in der Therapie der postoperativen Darmatonie und des Ileus. Therapiewoche 28: 8939–8944Google Scholar
  83. Harper AA, Raper HS (1943) Pancreozymin, a stimulant of the secretion of pancreatic enzymes in extracts of the small intestine. J Physiol (Lond) 102: 115–125Google Scholar
  84. Hartung H, Waldmann D (1978) Clinical experiences with ceruletide-continuous intravenous drip in the treatment of the paralytic ileus. Scand J Gastroenterol [Suppl 49] 13: 81Google Scholar
  85. Harvey RF, Read AE (1973) Effect of cholecystokinin on colonic motility and symptoms in patients with the irritable-bowel syndrome. Lancet 1: 1–3PubMedGoogle Scholar
  86. Hedner P (1970) Effect of the C-terminal octapeptide of cholecystokinin on guinea-pig ileum and gall-bladder in vitro. Acta Physiol Scand 78: 232–235PubMedGoogle Scholar
  87. Hedner P, Rorsman G (1968) Structure essential for the effect of cholecystokinin on the guinea pig small intestine. Acta Physiol Scand 74: 58–68PubMedGoogle Scholar
  88. Hedner P, Rorsman G (1972) Acceleration of the barium meal through the small intestine by the C-terminal octapeptide of cholecystokinin. Am J Roentgenol 116: 245–248Google Scholar
  89. Hedner P, Persson H, Rorsman G (1967) Effect of cholecystokinin on small intestine. Acta Physiol Scand 70: 250–254PubMedGoogle Scholar
  90. Holdstock DJ, Misiewicz JJ (1970) Factors controlling colonic motility: colonic pressures and transit after meals in patients with total gastrectomy, pernicious anemia or duodenal ulcer. Gut 11: 100–110PubMedGoogle Scholar
  91. Holzer P, Lembeck F (1979) Effect of neuropeptides on the efficiency of the peristaltic reflex. Naunyn Schmiedebergs Arch Pharmacol 307: 257–264PubMedGoogle Scholar
  92. Horn JM (1977) The effect of caerulein on the postoperative intestinal atony (Abstr). In: Speranza V, Basso N, Lezoche E (eds) Int symp gastrointestinal horm and pathol of the dig system, Rome, June 13–15. Arti Grafiche Tris, Rome, pp 69–70 Peptides: Gastrointestinal Hormones 67Google Scholar
  93. Horn J, Merkle P, Hümpfner K (1976) Die Beeinflussung der postoperativen Darmatonie durch Caerulein. Chirurg 47: 233–235PubMedGoogle Scholar
  94. Horn J, Altunbay S, Herfarth C (1978) Ceruletide in the treatment of postoperative intestinal atonia. Scand J Gastroenterol [Suppl 49] 13: 91Google Scholar
  95. Ihàsz M, Koiss I, Németh EP, Folly G, Papp M (1976) Action of caerulein, glucagon or prostaglandin E1 on the motility of intestinal villi. Pfluegers Arch 364: 301–304Google Scholar
  96. Isenberg JI, Csendes A (1972) Effect of octapeptide of cholecystokinin on canine pyloric pressure. Am J Physiol 222: 428–431PubMedGoogle Scholar
  97. Ivy AC (1947) Motor disfunction of biliary tract. Am J Roentgenol 57: 1–11Google Scholar
  98. Ivy AC, Oldberg E (1928) A hormone mechanism for gall bladder contraction and evacuation. Am J Physiol 86: 599–613Google Scholar
  99. Johnson LP, Brown JC, Magee DF (1966) Effect of secretin and cholecystokinin-pancreozymin extracts on gastric motility in man. Gut 7: 52–57PubMedGoogle Scholar
  100. Jorpes JE, Mutt V (eds) (1973) Secretin, cholecystokinin, pancreozymin, and gastrin. In: Handbook of experimental pharmacology, vol XXXIV. Springer, Berlin Heidelberg New YorkGoogle Scholar
  101. Jorpes E, Mutt V, Toczko K (1964) Further purification of cholecystokinin and pancreozymin. Acta Chem Scand 18: 2408–2410Google Scholar
  102. Kapila L, Haberkorn S, Nixon HH (1975) Chronic adynamic bowel simulating Hirschsprung’s disease. J Pediatr Surg 10: 885–892PubMedGoogle Scholar
  103. Kobayashi K, Mitani E, Yamada H (1978) The effects of cholecystokinin caerulein and endogenous cholecystokinin on the movement of the papillary region. Jpn J Gastroenterol 75: 481–491Google Scholar
  104. Labò G, Bortolotti M (1976) Effect of gut hormones on myoelectric and manometric activity of the duodenum in man. Rend Gastroenterol 8: 64Google Scholar
  105. Labò G, Barbara L, Lanfranchi GA, Bortolotti M, Miglioli M (1972) Modification of the electrical activity of the human intestine after serotonin and caerulein. Dig Dis Sci 17: 363–373Google Scholar
  106. Lanfranchi GA, Bortolotti M, Miglioli M, Baldi F (1973) Azione della caeruleina sulla motilità del colon. Minerva Dietol Gastroenterol 19: 78–86Google Scholar
  107. Lecchini S, Gonella J (1973) Modification by caerulein of action potential activity in circular smooth muscle of isolated small intestine. J Pharm Pharmacol 25: 261–262PubMedGoogle Scholar
  108. Lecchini S, D’Angelo L, Tonini M, Perucca E, Gatti G, Teggia Droghi M (1976) Effects of some autonomic drugs on the electrical activity of intestinal circular muscle. Boll Soc Ital Biol Sper 52: 1158–1161PubMedGoogle Scholar
  109. Lee KY, Hendricks J, Chey WY (1974) Effects of gut hormones on motility of the antrum and duodenum in dogs. Gastroenterology 66: A729Google Scholar
  110. Levant JA, Kun L, Jachna J, Sturdevant RAL, Isenberg JI (1974) The effects of graded doses of C-terminal octapeptide of cholecystokinin on small intestinal transit time in man. Am J Dig Dis 19: 207–209PubMedGoogle Scholar
  111. Liedberg G (1969) The effect of vagotomy on gall bladder and duodenal pressures during rest and stimulation with cholecystokinin. Acta Chir Scand 135: 695–700PubMedGoogle Scholar
  112. Lin TM (1972) Gastrointestinal actions of the C-terminal tripeptide of gastrin. Gastroenter-ology 63: 922–923Google Scholar
  113. London R, Cohen S, Snape W Jr (1980) The action and role of cholecystokinin on distal colonic function. Gastroenterology 78: 1210Google Scholar
  114. Lorber SH (1980) Small bowel transit time. Am J Roentgenol 135: 648–649Google Scholar
  115. Mantovani P, Bertaccini G (1971) Action of caerulein and related substances on gastro-in- testinal motility of the anaesthetized dog. Arch Int Pharmacodyn Ther 193: 362–371PubMedGoogle Scholar
  116. Matuchansky C, Huet PM, Mary JY, Rambaud JC, Bernier JJ (1972) Effects of cholecystokinin and metoclopramide on jejunal movements of water and electrolytes and on transit time of luminal fluid in man. Eur J Clin Invest 2: 169–175Google Scholar
  117. Meshkinpour H, Dinoso VP, Lorber SH (1974) Effect of intraduodenal administration of essential amino acids and sodium oleate on motor activity of the sigmoid colon. Gastroenterology 66: 373–377PubMedGoogle Scholar
  118. Monod E (1964) Action entéro-kinétique de la cécékine. Arch Mal Appar Dig 53: 607–608PubMedGoogle Scholar
  119. Montecucchi P, Falconieri Erspamer G, Visser J (1977) Occurrence of Asti’, Leu5-cerulein in the skin of the African frog Hylambates maculatus. Experientia 33: 1138–1139PubMedGoogle Scholar
  120. Montero VF, Laganga AM, Garcia EA (1980) Usefulness of caerulein in the treatment of post-operative intestinal atony. J Intern Med Res 8: 98–104Google Scholar
  121. Morgan KG, Schmalz PF, GoVL W, Szerszewski JH (1978) Electrical and mechanical effects of molecular variants of CCK on antral smooth muscle. Am J Physiol 235: E324–E329PubMedGoogle Scholar
  122. Morin G, Besançon F, Grall A, Jouve R, Garat JP, Debray C (1966) La cholécystokinine appliquée au radiodiagnostique de l’intestine grêle: nouvelle technique de radiocinématographie complète en quelques minutes, avec 62 observations. Entret Bichat Radiol 247–250Google Scholar
  123. Mukhopadhyay AK, Thor PJ, Copeland EM, Johnson LR, Weisbrodt NW (1977) Effect of cholecystokinin on myoelectric activity of small bowel of the dog. Am J Physiol 232: E44–E47PubMedGoogle Scholar
  124. Munk JF, Hoare M, Johnson AG (1978) Hormonal influence of pyloric diameter and antral motility in man. Gut 19: A435Google Scholar
  125. Mutt V (1979) Chemistry of the cholecystokinins In• Rehefeld JF, Amdrup E (eds) Gastrins and the vagus. Academic Press, London New York San Francisco, pp 57–71Google Scholar
  126. Mutt V, Jorpes JE (1968) Structure of porcine cholecystokinin-pancreozymin. 1. Cleavage with thrombin and with trypsin. Eur J Biochem 6: 156–162Google Scholar
  127. Nakamura N, Koyama Y, Kojima T, Takahira H (1973) Effects of caerulein on intestinal tract and gall-bladder. Jpn J Pharmacol 23: 107–120PubMedGoogle Scholar
  128. Nakayama S (1973) The effects of secretin and cholecystokinin on the sphincter muscles. In: Fujita T (ed) Gastro-entero-pancreatic endocrine system-a cell-biological approach. Igaku Shoin, Tokyo, pp 145–154Google Scholar
  129. Nakayama S, Neya T, Tsuchiya K, Takeda M, Yamasato T, Watanabe K (1972) Effects of caerulein on the movements of the gastrointestinal tract and the biliary system. Pharmacometrics 6: 1163–1173Google Scholar
  130. Naveiro MC (1978) Efectos de la ceruleina sobre la motilidad intestinal y el ileo paralitico (Abstr). In: 6th World Congr Gastroenterol, Madrid, June 5–9, p 200Google Scholar
  131. Nebel OT, Castell DO (1973) Inhibition of the lower esophageal sphincter by fat; a mechanism for fatty food intolerance. Gut 14: 270–274PubMedGoogle Scholar
  132. Neidhardt B, Hartwich G, Schneider MU, König HI (1980) Ceruletid (caerulein) treatment in cytostatic atonic gut and paralytic ileus. Dtsch Med Wochenschr 105: 1220–1221PubMedGoogle Scholar
  133. Nisticò G, Califano G (1969) Inhibitory activity of physalaemin on rat oesophageal motility in vivo. Arch Int Pharmacodyn Ther 181:414–423PubMedGoogle Scholar
  134. Novak D (1975) Beschleunigung der Dünndarmpassage mit Caerulein. Dtsch Med Wochenschr 100: 2488–2491PubMedGoogle Scholar
  135. Novak D (1977) Significance of caerulein in the roentgenology of small intestine. In: Speranza V, Basso N, Lezoche E (eds) Int Symp Gastrointestinal Horm and Pathol of the Dig System, Rome, June 13–15. Arti Grafiche Tris, Rome, p A66Google Scholar
  136. Öigàard A, Dorph S, Christensen KC, Christiansen L (1975) The effect of cholecystokinin on electrical spike potentials and intraluminal pressure variations in the human small intestine. Scand J Gastroenterol 10: 257–262PubMedGoogle Scholar
  137. Ohkawa H, Watanabe M (1977) Effects of gastrointestinal hormones on the electrical and mechanical activities of the cat small intestine. Jpn J Physiol 27: 71–79PubMedGoogle Scholar
  138. Orlandini I, Impicciatore M, Bertaccini G (1972) Diagnostica radiologica dell’apparato digerente sotto controllo farmacologico. In: Abstracts of the 25th Congr S.I.R.M.N., Montecatini Terme. Soc Ital Radiol Med, Acquapendente, pp 1–101Google Scholar
  139. Osnes M (1975) The effect of secretin and cholecystokinin on the duodenal motility in man. Scand J Gastroenterol [Suppl 35] 10: 22–26Google Scholar
  140. Pandolfo N, Bortolotti M, Nebiacolombo G, Sansone G, Mattioli F (1977) Action of caerulein on lower oesophageal sphincter pressure. In: Speranza V, Basso N, Lezoche E (eds) Symp Gastrointestinal Horm and Pathol of the Dig System. Rome, June 13–15. Arti Grafiche Tris, RomeGoogle Scholar
  141. Pandolfo N, Mortola GP, Parodi E, Moresco L (1978) L’impiego della ceruleina nel trattamento dell’ileo paralitico post-operatorio. Riforma Med 93: 149–152Google Scholar
  142. Parker JG, Beneventano TC (1970) Acceleration of small bowel contrast study by cholecystokinin. Gastroenterology 58: 679–684PubMedGoogle Scholar
  143. Pearce EAN, Wingate DL, Wünsch E (1978) The effects of gastrointestinal hormones and feeding on the basic electric rhythm of the stomach and duodenum of the conscious dog. J Physiol (Lond) 276: 41P-42 PGoogle Scholar
  144. Persson GGA, Ekman M (1972) Effect of morphine, cholecystokinin, and sympathomimetics on the sphincter of Oddi and intraluminal pressure in cat duodenum. Scand J Gastroenterol 7: 345–351PubMedGoogle Scholar
  145. Piccinelli D, Ricciotti F, Catalani A, Sale P (1973) The action of caerulein on gastro-intestinal propulsion in mice. Naunyn Schmiedebergs Arch Pharmakol Exp Pathol 279: 7582Google Scholar
  146. Pozzessere C, Corazziari E, Dani S, Anzini F, Torsoli A (1979) Basal and caerulein stimulated motor activity of sigmoid colon in chronic constipation. Ital J Gastroenterol 11: 107–109Google Scholar
  147. Ramirez M, Farrar JT (1970) The effect of secretin and colecystokinin-pancreozymin on the intraluminal pressure of the jejunum in the unanesthetized dog. Am J Dig Dis 15: 539–544PubMedGoogle Scholar
  148. Ramorino ML, Ammaturo MV, Anzini F (1970) Effects of caerulein on small and large bowel motility in man. Rend Gastroenterol 2: 172–175Google Scholar
  149. Rapela RO, Gutstein D, Naveiro JJ, Morel J (1976) Acción de la ceruleina sobre la motilidad intestinal. Rev Argent Chir 30: 14–16Google Scholar
  150. Rehfeldt JF, Larsson LI (1979) The predominating molecular form of gastrin and cholecystokinin in the gut is a small peptide corresponding to their COOH-terminal tetrapeptide amide. Acta Physiol Scand 105: 117–119Google Scholar
  151. Resin H, Stern DH, Sturdevant RAL, Isenberg JI (1973) Effect of the C-terminal octapeptide of cholecystokinin on lower esophageal sphincter pressure in man. Gastroenterology 64: 946–949PubMedGoogle Scholar
  152. Robbins AH, Wetzner SM, Landy MD (1980) Ceruletide-assisted examination of the small bowel. Am J Roentgenol 134: 343–347Google Scholar
  153. Sargent EN (1980) Efficacy and tolerance study of ceruletide for roentgenography of the gastrointestinal tract (Abstr) XI th Int Congr Gastroenterol. Thieme, Stuttgart, p 376Google Scholar
  154. Sargent EN, Halls JM, Colletti P, Wieler M (1980) Efficacy and tolerance of ceruletide in radiography of the small intestine. Radiology 136: 57–60PubMedGoogle Scholar
  155. Sarles JC, Bidart JM, Devaux MA, Echinard C, Castagnini A (1976) Action of cholecys-tokinin and caerulein on the rabbit sphincter of Oddi. Digestion 14: 415–423PubMedGoogle Scholar
  156. Scarpignato C, Zimbaro G, Vitulo F, Bertaccini G (1980) Caerulein delays gastric emptying of solids in man. Arch Int Pharmacodyn Ther 249: 98–105Google Scholar
  157. Schang JC, Kelly KA (1980) Inhibition of canine interdigestive proximal gastric motility by cholecystokinin-octapeptide ( CCK-OP ). Gastroenterology 78: 1253Google Scholar
  158. Schuurkes JAJ, Charbon GA (1978) Motility and hemodynamics of the canine gastrointestinal tract. Stimulation by pentagastrin, cholecystokinin, and vasopressin. Arch Int Pharmacodyn Ther 236: 214–227Google Scholar
  159. Scott LD, Summers RW (1976) Correlation of contractions and transit in rat small intestine. Am J Physiol 230: 132–137PubMedGoogle Scholar
  160. Sommoggy St v, Theisinger W, Fraunhofer B (1980) Medikamentöse Beeinflussung der postoperativen Darmatonie (Abstr). XI th Int Congr Gastroent, Hamburg, June 8–13. Thieme, Stuttgart, pH 5. 8Google Scholar
  161. Snape WJ Jr, Cohen S (1978) Stimulation of the isolated cat colon with gastrin or octapeptide of cholecystokinin. Scand J Gastroenterol [Suppl 49] 13: 169Google Scholar
  162. Snape WJ, Cohen S (1976) Effect of bethanechol, gastrin I or cholecystokinin on myoelectrical activity. Am J Physiol 236: E458–E463Google Scholar
  163. Snape WJ Jr, Carlson GM, Cohen S (1977) Human colonic myoelectric activity in response to prostigmin and the gastrointestinal hormones. Am J Dig Dis 22: 881–887PubMedGoogle Scholar
  164. Sterz P, Guth P, Sturdevant R (1974) Gastric emptying in man: delay by octapeptide of cholecystokinin and L-tryptophan. Clin Res 22: A174Google Scholar
  165. Stewart JJ, Bass P (1976) Effect of intravenous C-terminal octapeptide of cholecystokinin and intraduodenal ricinoleic acid on contractile activity of the dog intestine. Proc Soc Exp Biol Med 152: 213–217PubMedGoogle Scholar
  166. Strunz UT, Grossman MI (1978) Effect of intragastric pressure on gastric emptying and secretion. Am J Physiol 235: E552–E555PubMedGoogle Scholar
  167. Sturdevant RAL, Kun T (1974) Interaction of pentagastrin and the octapeptide of cholecystokinin on the human lower oesophageal sphincter. Gut 15: 700–702PubMedGoogle Scholar
  168. Szekely A, Major T, Romvari H (1975) Röntgenkymographische Untersuchung der die Magenperistaltik steigernden Wirkung von intravenös gegebenem Caerulein. Fortschr Roentgenstr 122: 167–169Google Scholar
  169. Thoren L (1967) Intestinal motility in low small bowel obstruction. Acta Chir Scand 133: 417–421PubMedGoogle Scholar
  170. Torsoli A, Ramorino ML, Colagrande C, Demaio G (1961) Experiments with cholecystokinin. Acta Radiol (Stockh) 55: 193–206Google Scholar
  171. Uggeri F, Santamaria A (1977) Ceruletide and intestinal atony: preliminary results. In: Speranza V, Basso N, Lezoche E (eds) Int Symp Gastrointestinal Horm and Pathol of the Dig System, Rome, June 13–15. Arti Grafiche Tris, Rome, p A176Google Scholar
  172. Valenzuela JE, Grossman MI (1975) Effect of pentagastrin and caerulein on intragastric pressure in the dog. Gastroenterology 69: 1383–1384PubMedGoogle Scholar
  173. Vizi SE, Bertaccini G, Impicciatore M, Knoll J (1973) Evidence that acetylcholine released by gastrin and related polypeptides contributes to their effect on gastrointestinal motility. Gastroenterology 64: 268–277PubMedGoogle Scholar
  174. Vizi ES, Bertaccini G, Impicciatore M, Mantovani P, Zsèli J, Knoll J (1974) Structure-activity relationship of some analogues of gastrin and cholecystokinin on intestinal smooth muscle of the guinea-pig. Naunyn Schmiedebergs Arch Pharmakol Exp Pathol 284: 233–243Google Scholar
  175. Waller SL, Carvalhinhos A, Misiewicz JJ, Russell RI (1973) Effect of cholecystokinin on colonic motility. Lancet 1: 264PubMedGoogle Scholar
  176. Weiss SM, Hughes SR, Paskin DL, Lipshutz WH (1976) Effects of drugs and hormones on human colon muscle. Clin Res 24: A293Google Scholar
  177. Wilson RC (1975) Mechanism of secretin inhibition of rumen motility. Dissertation Abstr Int B35 4081Google Scholar
  178. Wingate DL, Pearce EA, Hutton M, Dand A, Thompson HH, Wünsch E (1978) Quantitative comparison of the effects of cholecystokinin, secretin, and pentagastrin on gastrointestinal myoelectric activity in the conscious fasted dog. Gut 19: 593–601PubMedGoogle Scholar
  179. Yamagishi T, Debas HT (1978) Cholecystokinin inhibits gastric emptying by acting on both proximal stomach and pylorus. Am J Physiol 234: E375–E378PubMedGoogle Scholar
  180. Zetler G (1979a) Enkephalins as antagonists of cholecystokinin-like peptides. Naunyn Schmiedebergs Arch Pharmakol Exp Pathol [Suppl] 307:R51Google Scholar
  181. Zetler G (1979b) Antagonism of cholecystokinin-like peptides by opioid peptides, morphine or tetrodotoxin. Eur J Pharmacol 60:67–77PubMedGoogle Scholar
  182. Zséli J, Török TL, Vizi ES, Knoll J (1979) Effect of prostaglandin Ei and indomethacin on responses of longitudinal muscle of guinea-pig ileum to cholecystokinin. Eur J Pharmacol 56: 139–144PubMedGoogle Scholar

Reference

  1. Anuras S, Cooke AR (1978) Effects of some gastrointestinal hormones on two muscle layers of duodenum. Am J Physiol 234: E60–E63PubMedGoogle Scholar
  2. Baur S, Grant B, Spaulding RK (1979) Effect of hormonal and neuronal agents on adenylate cyclase from smooth muscle of the gastric antrum. Biochem Biophys Acta 584: 365–374PubMedGoogle Scholar
  3. Bayliss WM, Starling EH (1902) The mechanism of pancreatic secretion. J Physiol (Lond) 28: 325–353Google Scholar
  4. Behar J, Field S, Marin C (1979) Effect of glucagon, secretin, and vasoactive intestinal polypeptide on the feline lower esophageal sphincter: mechanism of action. Gastroenterology 77: 1001–1007PubMedGoogle Scholar
  5. Bertaccini G, Impicciatore M, De Caro G (1973) Action of caerulein and related substances on the pyloric sphincter of the anaesthetized rat. Eur J Pharmacol 22: 320–324PubMedGoogle Scholar
  6. Bitar KN, Zfass AM, Bodanszky M, Mackhlouf GM (1977) Activity of C-terminal partial sequences of secretin. Clin Res 25: 307AGoogle Scholar
  7. Bodanszky M, Ondetti MA, Levine SD et al. (1966) Synthesis of a heptacosapeptide amide with the hormonal activity of secretin. Chem Ind (Lond) 42: 1757–1758Google Scholar
  8. Bodanszky A, Ondetti MA, Mutt V, Bodanszky M (1969) Synthesis of secretin. IV. Secondary structure in a miniature protein. J Am Chem Soc 91: 944–949Google Scholar
  9. Bortolotti M, Sanavio C, Sansone G, Labò G (1975) Modifications in human gastric motility induced by secretin and by glucagon. Rend Gastroenterol 7: 240Google Scholar
  10. Brown FC, Siegel SR, Castell DO, Johnson LF, Said SI (1978) Effects of vasoactive intestinal polypeptide (VIP) on the lower esophageal sphincter in awake baboons: comparison with glucagon and secretin. Scand J Gastroenterol [Suppl 49] 13: 32Google Scholar
  11. Cameron AJ, Phillips SF, Summerskill WHJ (1970) Comparison of effects of gastrin, cholecystokinin-pancreozymin, secretin, and glucagon on human stomach muscle in vitro. Gastroenterology 59: 539–545PubMedGoogle Scholar
  12. Castresana M, Lee KY, Chey WY, Yajima H (1978) Effects of motilin and octapeptide of cholecystokinin on antral and duodenal myoelectric activity in the interdigestive state and during inhibition by secretin and gastric inhibitory polypeptide. Digestion 17: 300–308PubMedGoogle Scholar
  13. Chey WY, Lorber SH, Kusakcioglu O, Hendricks J (1967) Effect of secretin and pancreozymin-cholecystokinin on motor function of stomach and duodenum. Fed Proc 26: 383, A710Google Scholar
  14. Chey WY, Kosay S, Hendricks J, Lorber SH (1969) Effect of secretin on the motor activity of the stomach and Heidenhain pouch in dogs. Am J Physiol 217: 848–852PubMedGoogle Scholar
  15. Chey WY, Hitanant S, Hendricks J, Lorber SH (1970) Effect of secretin and cholecystokinin on gastric emptying and gastric secretion in man. Gastroenterology 58: 820–827PubMedGoogle Scholar
  16. Chey WY, Gutiérrez J, Yoshimori M, Hendricks J (1974) Gut hormones on gastrointestinal motor function. In: Chey WY, Brooks FP (eds) Endocrinology of the gut. Slack, Thorofare NJ, pp 194–211Google Scholar
  17. Chowdhury AR, Lorber SH (1977) Effects of glucagon and secretin on food-or morphine-induced motor activity of the distal colon, rectum, and anal sphincter. Am J Dig Dis 22: 775–780PubMedGoogle Scholar
  18. Christiansen J, Borgeskov S (1974) The effect of glucagon and the combined effect of glucagon and secretin on lower esophageal sphincter pressure in man. Scand J Gastroenterol 9: 615–618PubMedGoogle Scholar
  19. Chvasta TE, Cooke AR (1973) Secretin-gastric emptying and motor activity: natural versus synthetic secretin. Proc Soc Exp Biol Med 142: 137–142PubMedGoogle Scholar
  20. Cohen S, Lipshutz WH (1971) Hormonal regulation of human lower esophageal sphincter competence: interaction of gastrin and secretin. J Clin Invest 50: 449–454PubMedGoogle Scholar
  21. Corazziari E (1976) Mechanical activity of the second portion of human duodenum. Rend Gastroenterol 8: 64Google Scholar
  22. Di Magno EP, Hendricks JC, Dozois RR, Go VLW (1978) Effects of secretin on the canine duodenal (D) pancreatic duct (PD) and pancreatic sphincter yield (SY) pressures (P) and duodenal motor activity fronts ( AF ). Gastroenterology 74: A1026Google Scholar
  23. Dinoso V Jr, Chey WY, Hendricks J, Lorber SH (1969) Intestinal mucosal hormones and motor function of the stomach in man. J Appl Physiol 26: 326–329PubMedGoogle Scholar
  24. Dinoso VP, Meshkinpour H, Lorber SH, Gutiérrez JG, Chey WY (1973) Motor responses of the sigmoid colon and rectum to exogenous cholecystokinin and secretin. Gastroenterology 65: 438–444PubMedGoogle Scholar
  25. Dinoso VP, Murthy SNS, Clearfield HR, Chey WY (1976) The effects of exogenous secretin on food-stimulated motor activity of the distal colon-correlation with plasma gastrin and secretin. Gastroenterology 70: A878Google Scholar
  26. Dollinger HC, Berz R, Raptis S, Uexküll T Von, Goebell H (1975) Effects of secretin and cholecystokinin on motor activity of human jejunum. Digestion 12: 9–16PubMedGoogle Scholar
  27. Fara JW, Praissman M, Berkowitz JM (1979) Interaction between gastrin, CCK, and se-cretin on canine antral smooth muscle in vitro. Am J Physiol 236: E39–E44PubMedGoogle Scholar
  28. Fasth S, Filipsson S, Hultén L, Martinson J (1972) The effect of the gastrointestinal hormones on small intestinal motility and blood flow. Experientia 29: 982–984Google Scholar
  29. Fisher RS, Cohen S (1973) Pyloric-sphincter dysfunction in patients with gastric ulcer. N Engl J Med 288: 273–276PubMedGoogle Scholar
  30. Fisher RS, Cohen S (1980) Effect of gut hormones on gastrointestinal sphincters. In: Jerzy Glass GB (ed) Comprehensive endocrinology. Gastrointestinal hormones. Raven, New York, pp 613–638Google Scholar
  31. Fisher RS, Lipshutz W, Cohen S (1973) The hormonal regulation of pyloric sphincter function. J Clin Invest 52: 1289–1296PubMedGoogle Scholar
  32. Gerner T, Haffner JFW (1978) The inhibitory effect of secretin and glucagon on pressure response to cholecystokinin-pancreozymin in isolated guinea-pig stomach. Scand J Gastroenterol 13: 537–544PubMedGoogle Scholar
  33. Grossman MI (1969) Structure of secretin. Gastroenterology 57: 610–611Google Scholar
  34. Gutiérrez JG, Chey WY, Dinoso VP (1974a) Actions of cholecystokinin and secretin on the motor activity of the small intestine in man. Gastroenterology 67: 35–41Google Scholar
  35. Gutiérrez JG, Chey WY, Shah A, Holzwasser G (1974b) Use of secretin in hypotonic duo-denography. Radiology 113: 563–566Google Scholar
  36. Hermon-Taylor JH, Code CF (1970) Effect of secretin on small bowel myoelectric activity of conscious healthy dogs. Am J Dig Dis 15: 545–550PubMedGoogle Scholar
  37. Itoh Z, Honda R, Hiwatashi K, Takahashi I (1978) Hormonal control of the lower esophageal sphincter in man and dog: reevaluation of the present manometric method for diagnosis of GE reflux. In: Grossman M, Speranza V, Basso N, Lezoche E (eds) Gastrointestinal hormones and pathology of the digestive system. Plenum, New York London, pp 121–131Google Scholar
  38. Johnson LP, Brown JC, Magee DF (1966) Effect of secretin and cholecystokinin-pancreozymin extracts on gastric motility in man. Gut 7: 52–57PubMedGoogle Scholar
  39. Jorpes E, Mutt V (1961) On the biological activity and amino acid composition of secretin. Acta Chem Scand 15: 1790–1791Google Scholar
  40. Kelly KA, Woodward ER, Code CF (1969) Effect of secretin and cholecystokinin on canine gastric electrical activity. Proc Soc Exp Biol Med 130: 1060–1063PubMedGoogle Scholar
  41. König W, Bickel M, Wissmann H, Uhmann R, Geiger R (1979) Secretin analogues. In: Rosselin G, Fromageot P, Bonfils S (eds) Hormone receptors in digestion and nutrition. Elsevier/North Holland, Amsterdam Oxford New York, pp 137–143Google Scholar
  42. Kowalewski K, Kolodej A (1977) Effect of secretin on myoelectrical and mechanical activity of the isolated canine stomach perfused ex vivo. Pharmacology 15: 73–83Google Scholar
  43. Kwong NK, Brown BH, Whittaker GE, Duthie HL (1972) Effect of gastrin I, secretin and cholecystokinin-pancreozymin on the electrical activity, motor activity, and acid output of the stomach in man. Scand J Gastroenterol 7: 161–170PubMedGoogle Scholar
  44. Labò G, Bortolotti M (1976) Effect of gut hormones on myoelectric and manometric activity of the duodenum in man. Rend Gastroenterol 8: 64Google Scholar
  45. Lipshutz WH (1976) Physiology of the gastro-oesophageal junction and hiatus hernia. In: Bouchier ID (ed) Recent advances in gastroenterology, vol 3. Churchill Livingstone, Edinburgh London, pp 1–26Google Scholar
  46. Lipshutz W, Cohen S (1972) Interaction of gastrin I and secretin on gastrointestinal circular muscle. Am J Physiol 222: 775–781PubMedGoogle Scholar
  47. Mantovani P, Bertaccini G (1971) Action of caerulein and related substances on gastroin- testinal motility of the anaesthetized dog. Arch Int Pharmacodyn Ther 193: 363–371Google Scholar
  48. Meves M, Beger HG, Hüthwohl B (1975) The effect of some gastrointestinal hormones on gastric evacuation in man. In: Vantrappen G (ed) Fifth International Symposium on Gastrointestinal Motility. Typoff, Herentals, pp 327–332Google Scholar
  49. Mukhopadhyay AK, Johnson LR, Copeland EM, Weisbrodt NW (1975) Effect of secretin on electrical activity of small intestine. Am J Physiol 229: 484–488PubMedGoogle Scholar
  50. Nakayama S (1973) The effects of secretin and cholecystokinin on the sphincter muscles. In: Fujita T (ed) Gastro-entero-pancreatic endocrine system — a cell-biological approach. Igaku Shoin, Tokyo, pp 145–154Google Scholar
  51. Nemeth EP, Ihasz M, Folly G, Papp M (1973) The action of secretin, trypsin, and histamine on the motility of canine intestinal villi. Am J Gastroenterol 60: 607–615PubMedGoogle Scholar
  52. Ohkawa H, Watanabe M (1977a) Effects of gastrointestinal hormones on the electrical and mechanical activity of the cat stomach. Tohoku J Exp Med 122: 287–298Google Scholar
  53. Ohkawa H, Watanabe M (1977b) Effects of gastrointestinal hormones on the electrical and mechanical activities of the cat small intestine. Jpn J Physiol 27: 71–79Google Scholar
  54. Osnes M (1975) The effect of secretin and cholecystokinin on the duodenal motility in man. Scand J Gastroenterol [Suppl 35] 10: 22–26Google Scholar
  55. Pearce EAN, Wingate DL, Wünsch E (1978) The effects of gastrointestinal hormones and feeding in the basic electric rhythm of the stomach and duodenum of the conscious dog. J Physiol (Lond) 276: 41P-42 PGoogle Scholar
  56. Phaosawasdi K, Boden G, Kolts B, Fisher RS (to be published) Hormonal effects on pyloric sphincter pressure: are they of physiological importance? Clin ResGoogle Scholar
  57. Siegel SR, Brown FC, Castell DO, Johnson LF, Said SI (1979) Effects of vasoactive intestinal polypeptide ( VIP) on lower esophageal sphincter in awake baboons. Dig Dis Sci 24: 345–349Google Scholar
  58. Snape WJ Jr, Carlson GM, Cohen S (1977) Human colonic myoelectric activity in response to prostigmin and the gastrointestinal hormones. Am J Dig Dis 22: 881–887PubMedGoogle Scholar
  59. Strunz U (1979) Hormonal control of gastric emptying. Acta Hepatogastroenterol (Stuttg) 26: 334–341Google Scholar
  60. Sugawara K, Isaza J, Curt J, Woodward ER (1969) Effect of secretin and cholecystokinin on gastric motility. Am J Physiol 217: 1633–1638PubMedGoogle Scholar
  61. Vagne M, André C (1971) The effect of secretin on gastric emptying in man. Gastroenterology 60: 421–424PubMedGoogle Scholar
  62. Vagne M, Stening GF, Brooks FP, Grossman MI (1968) Synthetic secretin: comparison with natural secretin for potency and spectrum of physiological actions. Gastroenterology 55: 260–267PubMedGoogle Scholar
  63. Valenzuela JE (1976) Effect of intestinal hormones and peptides on intragastric pressure in dogs. Gastroenterology 71: 766–769PubMedGoogle Scholar
  64. Walker DG, Stewart JJ, Bass P (1972) The effect of secretin on the fed pattern of gastric and duodenal contractile activity. Surg Gynecol Obstet 134: 807–809PubMedGoogle Scholar
  65. Waterfall WE, Brown BH, Duthie HL, Whittaker GE (1972) The effects of humoral agents on the myoelectrical activity of the terminal ileum. Gut 13: 528–534PubMedGoogle Scholar
  66. Wilson RC (1975) Mechanism of secretin inhibition of rumen motility. PhD dissertation Abstr Int B 35, Nr. 8, 4081Google Scholar
  67. Wingate DL, Pearce EA, Hutton M, Dand A, Thompson HH, Wünsch E (1978) Quantitative comparison of the effects of cholecystokinin, secretin, and pentagastrin on gastrointestinal myoelectric activity in the conscious fasted dog. Gut 19: 593–601PubMedGoogle Scholar

Reference

  1. Barbezat GO, Grossman MI (1971) Intestinal secretion: stimulation by peptides. Science 174: 422–424PubMedGoogle Scholar
  2. Brown JC (1977) GIP: gastric inhibitory polypeptide or glucose-dependent insulinotropic polypeptide? Metab Ther 6: 1–2Google Scholar
  3. Brown JC, Dryburgh JR (1971) A gastric inhibitory polypeptide. II. The complete amino-acid sequence. Can J Biochem 49: 867–872Google Scholar
  4. Brown JC, Pederson RA, Jorpes JE, Mutt V (1969) Preparation of highly active enterogastrone. Can J Physiol Pharmacol 47: 113–114PubMedGoogle Scholar
  5. Brown JC, Mutt V, Pederson RA (1970) Further purification of a polipeptide demonstrating enterogastrone activity. J Physiol (Lond) 209: 57–64Google Scholar
  6. Castresana M, Lee KY, Chey WY, Yajima H (1978) Effect of motilin and octapeptide of cholecystokinin on antral and duodenal myoelectric activity in the interdigestive state and during inhibition by secretin and gastric inhibitory polypeptide. Digestion 17: 300–308PubMedGoogle Scholar
  7. Debas HT, Grossman MI (1975) Inhibition of gastric emptying is a physiological action of cholecystokinin. Gastroenterology 68: 1211–1217PubMedGoogle Scholar
  8. Lin TS (1980) Effects of insulin and glucagon on secretory and motor function of the gastrointestinal tract. In: Jerzy Glass GB (ed) Gastrointestinal hormones. Raven, New York, pp. 639–691Google Scholar
  9. Mayle JE, Wolfe MM, Caldwell JH, O’Dorisio TM, Cataland S, Thomas FB (1978) Gastric emptying and serum inhibitory polypeptide ( GIP) after oral glucose. Gastroenterology 74: 1063Google Scholar
  10. Pederson RA (1971) The isolation and physiological actions of gastric inhibitory polypeptide. PhD dissertation, University of British Columbia, VancouverGoogle Scholar
  11. Sillin LF, Condon RE, Schulte WJ, Woods JH, Bass P, Go VWL (1978) The relationship between gastric inhibitory peptide and right colon electromechanical activity after feding (Abstr). In: Duthie HL (ed) Gastrointestinal motility in health and disease. MTP Press, Lancaster, pp 361–362Google Scholar
  12. Sinar DR, D’Dorisio TM, Mazzaferri EL, Mekhjian HS, Caldwell JH, Thomas FB (1978) Effect of gastric inhibitory polypeptide on lower esophageal sphincter pressure in cats. Gastroenterology 75: 263–267PubMedGoogle Scholar
  13. Valenzuela JE (1976) Effect of intestinal hormones and peptides on intragastric pressure in dogs. Gastroenterology 71: 766–769PubMedGoogle Scholar
  14. Yajima H, Ogawa H, Kubota M et al. (1975) Synthesis of the tritracontapeptide corresponding to entire aminoacid sequence of gastric inhibitory polypeptide. J Am Chem Soc 97: 5593–5594PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1982

Authors and Affiliations

  • G. Bertaccini

There are no affiliations available

Personalised recommendations