Advertisement

Injury

State of the Art Report
  • H. L. Weiner
  • B. G. W. Arnason
  • H. J. Bauer
  • K. M. A. Felgenhauer
  • B. N. Fields
  • W. U. Gerhard
  • B. Hille
  • R. T. Johnson
  • C. Mims
  • J. M. Ritchie
  • A. M. PappenheimerJr.
  • T. A. Sears
  • V. Ter Meulen
  • B. H. Waksman
Conference paper
Part of the Dahlem Workshop Reports Life Sciences Research Report book series (DAHLEM, volume 20)

Abstract

One of the main themes to emerge from the group’s discussion of injury was that of specificity. The specificity of injury to the nervous system in multiple sclerosis has not yet been defined in terms of specific immune or viral-related damage to either oligodendrocyte or myelin. Given a large body of evidence suggesting that multiple sclerosis is an autoimmune disease, the antigen against which the autoimmune response is directed is yet to be defined. Similarly, viral induced injury must also be understood in terms of mechanisms by which specificity of injury occurs. In some toxin models, excellent example of specificity of injury exist. (A. Pappenheimer, this volume).

Keywords

Multiple Sclerosis Sodium Channel Myelin Basic Protein Juvenile Rheumatoid Arthritis Diphtheria Toxin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    Antel, J.P., Arnason, B.G.W., and Medof, M.E. 1978 Suppressor cell function in multiple sclerosis: Correlation with clinical disease activity. Ann. Neurol 5: 338–342.CrossRefGoogle Scholar
  2. (2).
    Coyle, P., and Wolinsky, J.S. Characterization of immune complexes in progressive rubella panencephalitis. Ann. Neurology, in press.Google Scholar
  3. (3).
    Haase, A.T., Stowring, L., Narayan, O., Griffin, G., and Price, D. 1977. Slow persistent infection caused by visna virus: role of host restriction. Science 195: 175–177.PubMedCrossRefGoogle Scholar
  4. (4).
    Helenius, A., and Simons, K. 1980. Mechanisms of animal virus entry into cells. In The Molecular Basis of Microbial Pathogenicity, eds. H. Smith, J.J. Skehel, and M.J. Turner, pp. 41–54. Dahlem Konferenzen. Weinheim: Verlag Chemie.Google Scholar
  5. (5).
    Huddlestone, J.R., and Oldstone, M.B.A. 1979. T suppressor (TG) lymphocytes fluctuate in parallel with changes in the clinical course of patients with multiple sclerosis J. Immunol. 123: 1615–1618.PubMedGoogle Scholar
  6. (6).
    Mattson, D.H., Roos, R.P., and Arnason, B.G.W. 1980. Isoelectric focusing of IgG eluted from multiple sclerosis and subacute sclerosing panencephalitis brains. Nature 287: 335–337.PubMedCrossRefGoogle Scholar
  7. (7).
    Noronha, A., Richman, D.P., and Arnason, B.G.W. 1980. Detection of in vivo stimulated cerebrospinal fluid lymphocytes by flow cytometry in patients with multiple sclerosis. New Eng. J. Med. 303: 713–717.CrossRefGoogle Scholar
  8. (8).
    Rasminsky, M. 1978. Ectopic generation of impulses and cross-talk in spinal nerve roots of “dystrophic” mouse. Ann. Neurol. 3: 351–357.PubMedCrossRefGoogle Scholar
  9. (9).
    Reinherz, E.L., Weiner, H.L., Hauser, S.L., Cohen, J. A., Distaso, J.A., and Schlossman, S.F. 1980. Loss of suppressor T cells in active multiple sclerosis: analysis with monoclonal antibodies. New Eng. J. Med. 303: 125–129.CrossRefGoogle Scholar

Copyright information

© Dr. S. Bernhard, Dahlem Konferenzen, Berlin 1982

Authors and Affiliations

  • H. L. Weiner
  • B. G. W. Arnason
  • H. J. Bauer
  • K. M. A. Felgenhauer
  • B. N. Fields
  • W. U. Gerhard
  • B. Hille
  • R. T. Johnson
  • C. Mims
  • J. M. Ritchie
  • A. M. PappenheimerJr.
  • T. A. Sears
  • V. Ter Meulen
  • B. H. Waksman

There are no affiliations available

Personalised recommendations