Precambrian Evolutionary Genetics

  • J. Langridge
Conference paper
Part of the Dahlem Workshop Report book series (DAHLEM, volume 3)


The broad features of the evolution of Precambrian organisms and of the genetic systems responsible for this evolution are outlined. The hypothetical and actual life-forms considered are pre-organisms (nucleic acid molecules multiplying free in solution), proto-organisms (membrane-bound self-replicating entities), prokaryotes (bacteria and blue-green algae), and protists (early eukaryotes with little differentiation). In each group, the nature of the hereditary material, its acquisition of function, its increase in size and variety, and its means of change and recombination are discussed.


Recombination Mold Respiration Polysaccharide Polypeptide 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    Biebricher, C.K., and Orgel, L.E. 1973. An RNA that multi plies indefinitely with DNA-dependent RNA polymerase: selection from a random copolymer. Proc. Nat. Acad. Sci. USA 70: 934–938.PubMedCrossRefGoogle Scholar
  2. (2).
    Carr, N.G. 1973. The Biology of the Blue-Green Algae, eds N.G. Carr and B.A. Whitton, pp. 39–65. Blackwell: Oxford.Google Scholar
  3. (3).
    Harrington, W.F. 1979. On the origin of the contractile force in skeletal muscle. Proc. Nat. Acad. Sci. USA 76: 5066–5070.PubMedCrossRefGoogle Scholar
  4. (4).
    Iwamura, Y.; Sakai, M.; Mita, T.; and Matsumura, M. 1979. Unequal gene amplification and transcription in the macro- nucleus of Tetrahymena pyriformis. Biochemistry 18: 5289–5294.PubMedCrossRefGoogle Scholar
  5. (5).
    Jones, D., and Sneath, P.H.A. 1970. Genetic tranfer and bacterial taxonomy. Bacteriol. Rev. 34: 40–81.PubMedGoogle Scholar
  6. (6).
    Kiehn, E.D., and Holland, J.J. 1970. Size distribution of polypeptide chains in cells. Nature 226: 544–545.PubMedCrossRefGoogle Scholar
  7. (7).
    Kühn, A. 1971. Lectures in Developmental Physiology, pp. 112–118. New York: Springer-Verlag.Google Scholar
  8. (8).
    Margulis, L. 1970. Origin of Eukaryotic Cells. New Haven Yale University Press.Google Scholar
  9. (9).
    Moore, R.L., and Hirsch, P. 1972. Deoxyribonucleic acid base sequence homologies of some budding and prosthecate bacteria. J. Bacteriol. 110: 256–261.PubMedGoogle Scholar
  10. (10).
    Schopf, J.W.; Haugh, B.N.; Molnar, R.E.; and Satterthwaite, D.F. 1973. On the development of metaphytes and metazoans J. Paleontol. 47: 1–9.Google Scholar
  11. (11).
    Searcy, D.G.; Stein, D.B.; and Green, G.R. 1978. Phylogenetic affinities between eukaryotic cells and a thermophilic mycoplasma. BioSystems 10: 19–28.PubMedCrossRefGoogle Scholar
  12. (12).
    Singer, R.A., and Doolittle, W.F. 1975. Control of gene expression in blue-green algae. Nature 253: 650–651.PubMedCrossRefGoogle Scholar
  13. (13).
    Wallace, D.C., and Morowitz, H.J. 1973. Genome size and evolution. Chromosoma 40: 121–126.PubMedCrossRefGoogle Scholar

Copyright information

© Dr. S. Bernhard, Dahlem Konferenzen, Berlin 1982

Authors and Affiliations

  • J. Langridge
    • 1
  1. 1.Commonwealth Scientific and Industrial Research OrganizationCanberra CityAustralia

Personalised recommendations