Skip to main content

Microbial Processes in the Sulfur Cycle Through Time

  • Conference paper
Mineral Deposits and the Evolution of the Biosphere

Part of the book series: Dahlem Workshop Report ((DAHLEM PHYSICAL,volume 3))

Abstract

Two microbial processes are involved in the sulfur cycle of the earth’s biosphere: anoxic dissimilatory sulfur oxidation by phototrophic bacteria and dissimilatory sulfate reduction by sulfate-reducing bacteria. In the presence of oxygen at chemoclines and redoxclines dissimilatory sulfur oxidation by chemolithotrophic bacteria (Thiobacillus, Beggiatoa, and others) occurs. In addition, dissimilatory sulfur reducing bacteria participate in the sulfur cycle. The processes of sulfur assimilation and of microbial liberation of sulfur compounds by decomposition of organic materials are of secondary geomicrobiological importance. Although functioning in opposite directions, the enzymatic equipment of the bacteria involved in dissimilatory sulfur transformations shows a surprising degree of uniformity. Possible phylogenetic relationships between the bacteria involved are discussed on the basis of recent findings in the field of chemotaxomony.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baas-Becking, L.G.M. 1925. Studies on the sulphur bacteria. Ann. Bot. 39: 613–650.

    CAS  Google Scholar 

  2. Biebl, H., and Pfennig, N. 1977. Growth of sulfate-reducing bacteria with sulfur as electron acceptor. Arch. Microbiol. 112: 115–117.

    Article  PubMed  CAS  Google Scholar 

  3. Biebl, H., and Pfennig, N. 1978. Growth yields of green sulfur bacteria in mixed cultures with sulfur and sulfate reducing bacteria. Arch. Microbiol. 117: 9–16.

    Article  CAS  Google Scholar 

  4. Bowen, T.J.; Happold, F.C.; and Taylor, B.F. 1966. Studies on adenosine-5’-phosphosulphate reductase from Thiobacillus denitrificans. Biochim. Biophys. Acta 118: 566–576.

    PubMed  CAS  Google Scholar 

  5. Brock, T.D. 1978. Thermophilic Microorganisms and Life at High Temperatures. New York: Springer Verlag.

    Google Scholar 

  6. Broda, E. 1975. The Evolution of the Bioenergetic Processes. Oxford: Pergamon Press.

    Google Scholar 

  7. Castenholz, R. W. 1976. The effect of sulfide on the blue-green algae of hot springs. I. New Zealand and Iceland. J. J. Phycol. 12: 54–68.

    Google Scholar 

  8. Castenholz, R.W. 1977. The effect of sulfide on the blue-green algae of hot springs. II. Yellowstone National Park. Microbial. Ecol. 3: 79–105.

    Google Scholar 

  9. Cohen, Y.; Krumbein, W.E.; and Shilo, M. 1977. Solar Lake (Sinai) 2. Distribution of photosynthetic microorganisms and primary production. Limnol. Oceanogr. 22: 609–620.

    Article  CAS  Google Scholar 

  10. Cohen, Y.; Paden, E.; and Shilo, M. 1975. Facultative anoxygenic photosynthesis in the cyanobacterium Oscilla- toria limnetica. J. Bact. 123: 855–861.

    PubMed  CAS  Google Scholar 

  11. Evans, M.C.W.; Buchanan, B.B.; and Arnon, D.I. 1966. A new ferredoxin-dependent carbon reduction cycle in a photo- synthetic bacterium. Proc. Natl. Acad. Sci. USA 55: 928–934.

    Article  PubMed  CAS  Google Scholar 

  12. Fenchel, T.M., and Riedl, R.J. 1970. The sulfide system: a new biotic community underneath the oxidized layer of marine sand bottoms. Mar. Biol. 7: 255–268.

    Article  CAS  Google Scholar 

  13. Fox, G.E.; Stackebrandt, E.; Hespell, R.B.; Gibson, J.; Maniloff, J.; Dyer, T.A.; Wolfe, R.S.; Balch, W.E.; Tanner, R.S.; Magrum, L.J.; Zablen, L.B.; Blakemore, R.; Gupta, R.; Bonen, L.; Lewis, B.J.; Stahl, D.A.; Luehrsen K.R.; Chen, K.N.; and Woese, C.R. 1980. The phylogeny of prokaryotes. Science 209: 457–463.

    Article  PubMed  CAS  Google Scholar 

  14. Fukumori, Y., and Yamanaka, T. 1979. A high-potential nonheme iron protein (HiPIP)-linked, thiosulfate-oxidizing enzyme derived from Chromatium vinosum. Curr. Microbiol. 3: 117–120.

    Google Scholar 

  15. Garlick, S.; Oren, A.; and Padan, R. 1977. Occurrence of facultative anoxygenic photosynthesis among filamentous and unicellular cyanobacteria. J. Bact. 129: 623–629.

    Google Scholar 

  16. Gibson, J.; Stackebrandt, E.; Zablen, L.B.; Gupta, R.; and Woese, C.R. 1979. A phylogenetic analysis of the purple photosynthetic bacteria. Curr. Microbiol. 3: 59–64.

    Article  CAS  Google Scholar 

  17. Gottschalk, G. 1979. Bacterial Metabolism. New York/ Heidelberg/Berlin: Springer Verlag.

    Google Scholar 

  18. Imhoff, J.F.; Hashwa, F.; and Trüper, H.G. 1978. Isolation of extremely halophilic phototrophic bacteria from the alkaline Wadi Natrun, Egypt. Arch. Hydrobiol. 84: 381–388.

    Google Scholar 

  19. Imhoff, J.F.; Sahl, H.G.; Soliman, G.S.H.; and Trüper, H.G. 1979. The Wadi Natrun: chemical composition and microbial mass developments in alkaline brines of eutrophic desert lakes. Geomicrobiol. J. 1: 219–234.

    Article  CAS  Google Scholar 

  20. Hallberg, R.O. 1972. Sedimentary sulfide mineral formation — an energy circuit system approach. Mineral. Deposita (Berl.) 7: 189–201.

    Google Scholar 

  21. Jørgensen, B.B., and Cohen, Y. 1977. Solar lake (Sinai) 5. The sulfur cycle of benthic cyanobacterial mats. Limnol. Oceanogr. 22: 657–666.

    Google Scholar 

  22. Jørgensen, B.B., and Fenchel, T. 1974. The sulfur cycle of a marine sediment model system. Mar. Biol. 22: 189–201.

    Google Scholar 

  23. Jørgensen, B.B.; Revsbech, N.P.; Blackburn, T.H.; and Cohen, Y. 19 79. Diurnal cycle of oxygen and sulfide microgradients and microbial photosynthesis in a cyanobacterial mat sediment. Appl. Environ. Microbiol. 38; 46–58.

    Google Scholar 

  24. Kämpf, C., and Pfennig, N. 1980. Capacity of Chromatia- ceae for chemotrophic growth. Specific respiration rates of Thiocystis violacea and Chromatium vinosum. Arch. Microbiol J 27: 1 25–137.

    Google Scholar 

  25. Kandier, O., and Schleifer, K.H. 1980. Systematics of bacteria. Fortschr. der Botanik 42: 234–252.

    Google Scholar 

  26. Krumbein, W.E.; Buchholz, H.; Franke, P.; Giani, D.; Giele, C.; and Wonneberger, K. 1979. O2 and H2S coexistence in stromatolites. A model for the origin of mineralogical lamination in stromatolites and banded iron formations. Naturwissenschaften 66: 381–389.

    Google Scholar 

  27. Laanbroek, H.J.; Stal, L.J.; and Veldkamp. H. 1978. Utilization of hydrogen and formate by Campylobacter spec, under aerobic and anaerobic conditions. Arch. Microbiol. 119: 99–102.

    Google Scholar 

  28. Laishley, E.J., and Krouse, H.R. 1978. Stable isotope fractionation by Clostridium pasteurianum. 2. Can. J. Microbiol. 24: 716–724.

    Article  PubMed  CAS  Google Scholar 

  29. Lauterborn, R. 1915. Die sapropelische Lebewelt. Ein Beitrag zur Biologie des Faulschlamms natürlicher Gewässer. Verh. Naturhist. Med. Ver. Heidelberg, N.F. 13: 395–481.

    Google Scholar 

  30. Lewin, R.A. 1977. Prochloron, type genus of the Pro- chlorophyta. Phycologia 16: 217.

    Article  Google Scholar 

  31. Parkin, T.B., and Brock, T.D. 1980. Photosynthetic bacterial production in lakes: The effects of light intensity. Limnol. Oceanogr. 25: 711–718.

    Google Scholar 

  32. Peck, H.D. 1966/67. Some evolutionary aspects of in-organic sulfur metabolism. Lectures on theoretical and applied aspects of modern microbiology, University of Maryland, College Park, MD.

    Google Scholar 

  33. Peck, H.D.; Deacon, T.E.; and Davidson, I.T. 1965. Studies on adenosine 5’-phosphosulfate reductase from Desulfovibrio desulfuricans and Thiobacillus thioparus. Biochim. Biophys. Acta 96: 429–446.

    Google Scholar 

  34. Peschek, G.A. 1978. Reduced sulfur and nitrogen compounds and molecular hydrogen as electron donors for anaerobic C02 photoreduction in Anacystis nidulans. Arch Microbiol. 119: 313–322.

    Google Scholar 

  35. Pfennig, N. 1978. General physiology and ecology of photo- synthetic bacteria, In The Photosynthetic Bacteria, eds. R.K. Clayton and W.R. Sistrom, pp. 3–18. New York and London: Plenum Press.

    Google Scholar 

  36. Pfennig, N., and Biebl, H. 1976. Desulfuromonas acetoxidans gen. nov. and sp. nov., a new anaerobic, sulfur-reducing, acetate-oxidizing bacterium. Arch. Microbiol. 110: 3–12.

    Google Scholar 

  37. Pfennig, N., and Trüper, H.G. 1977. The Rhodospirillales (phototrophic or photosynthetic bacteria). In CRC Handbook of Microbiology, eds. A.I. Laskin and H.A. Lechevalier, 2nd ed., vol. 1, pp. 119–130. Cleveland/OH: CRC Press.

    Google Scholar 

  38. Pierson, B.K., and Castenholz, R.W. 1974. A phototrophic gliding filamentous bacterium of hot springs, Chloroflexus aurantiacus, gen. and sp. nov. Arch. Microbiol. 100: 5–24.

    Google Scholar 

  39. Postgate, J.R. 1979. The Sulphate-reducing Bacteria. Cambridge: University Press.

    Google Scholar 

  40. Pringsheim, E.G. 1963. Farblose Algen. Stuttgart: Fischer-Verlag.

    Google Scholar 

  41. Roy, A.B., and Trudinger, P.A. 1970. The biochemistry of inorganic compounds of sulphur. Cambridge: University Press

    Google Scholar 

  42. Schedel, M., and Trüper, H.G. 1979. Purification of Thiobacillus denitrificans siroheme sulfite reductase and inves-tigation of some molecular and catalytic properties. Biochim. Biophys. Acta 568: 454–467.

    Google Scholar 

  43. Schedel, M. and Trüper, H.G. 1980. Anaerobic oxidation of thiosulfate and elemental sulfur in Thiobacillus denitrificans. Arch. Microbiol. 124: 205–210.

    Google Scholar 

  44. Schedel, M.; Vanselow, M.; Trüper, H.G. 1979. Siroheme sulfite reductase isolated from Chromatium vinosum. Purification and investigation of some of its molecular and catalytic properties. Arch. Microbiol. 121: 29–36.

    Google Scholar 

  45. Schidlowski, M. 1979. Antiquity and evolutionary status of bacterial sulfate reduction: sulfur isotope evidence. Origin of Life 9: 299–31 1.

    Article  Google Scholar 

  46. Schidlowski, M.; Appel, P.W.U.; Eichmann, R.; and Junge, C.E 1979. Carbon isotope geochemistry of the 3.7 x 109 yr-old Isua sediment, West Greenland: implication for the archaean carbon and oxygen cycles. Geochim. Cosmochim. Acta 43: 189–199.

    Google Scholar 

  47. Schiff, J.A. 1980. Pathways of assimilatory sulphate reduction in plants and microorganisms. In. Sulphur in Biology, Ciba Foundation Symposium 72 (new series), pp. 49–69. Amsterdam: Excerpta Medica.

    Google Scholar 

  48. Siegel, L.M. 1975. Biochemistry of the sulfur cycle. In Metabolic Pathways, Metabolism of sulfur compounds, ed. D.M. Greenberg, 3rd ed., vol. 6, pp. 217 - 286. New York/San Francisco/London: Academic Press.

    Google Scholar 

  49. Stackebrandt, E., and Woese, C.R. 1979. Primärstruktur der ribosomalen 16s RNS — ein Marker der Evolution der Prokary- onten. Forum Mikrobiologie 2: 183–190.

    Google Scholar 

  50. Steward, W.D.P., and Pearson, H.W. 1970. Effects of aerobic and anaerobic conditions on growth and metabolisms of blue-green algae. Proc. R. Soc. Lond. B. 175: 293–311.

    Google Scholar 

  51. Suzuki, I. 1965. Incorporation of atmospheric oxygen-18 into thiosulfate by the sulfur-oxidizing enzyme of Thiobacillus thiooxidans. Biochim. Biophys. Acta 110: 97–101.

    Google Scholar 

  52. Trüper, H.G. 1978. Sulfur metabolism. In The Photosynthetic Bacteria, eds. R.K. Clayton and W.R. Sistrom, pp. 677–690. New York and London: Plenum Press.

    Google Scholar 

  53. Trüper, H.G. 1981. Photolithotrophic sulfur oxidation. In Metabolism of inorganic nitrogen and sulfur compounds, eds. H. Bothe and A. Trebst. Heidelberg: Springer Verlag, in press.

    Google Scholar 

  54. Tuttle, J.H., and Jannasch, H.W. 1973. Sulfide and thio- sulfate-oxidizing bacteria in anoxic marine basins. Mar. Biol. 20: 64–70.

    Google Scholar 

  55. Widdel, F. 1980. Anaerober Abbau von Fettsäuren and Benzoesäure durch neu isolierte Arten Sulfat-reduzierender Bakterien. Doctoral Thesis, Univeristy of Göttingen, F.R. Germany.

    Google Scholar 

  56. Woese, C.R., and Fox, G.E. 1977. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl. Acad. Sei. USA 74: 5088–5090.

    Google Scholar 

  57. Woese, C.R.; Magrum, L.J.; and Fox, G.E. 1978. Archae- bacteria. J. Mol. Evol. 11: 245–252.

    Google Scholar 

  58. Wolfe, R.S., and Pfennig, N. 1977. Reduction of sulfur by spirillum 5175 and syntrophism with Chlorobium. Appl. Environ. Microbiol. 33: 427–433.

    Google Scholar 

  59. Zehnder, A.J.B., and Brock, T.D. 1979. Methane formation and methane oxidation by methanogenic bacteria. J. Bact. 137: 420–432.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

H. D. Holland M. Schidlowski

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Dr. S. Bernhard, Dahlem Konferenzen, Berlin

About this paper

Cite this paper

Trüper, H.G. (1982). Microbial Processes in the Sulfur Cycle Through Time. In: Holland, H.D., Schidlowski, M. (eds) Mineral Deposits and the Evolution of the Biosphere. Dahlem Workshop Report, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68463-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68463-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68465-4

  • Online ISBN: 978-3-642-68463-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics