Sedimentary Iron Deposits, Evaporites and Phosphorites State of the Art Report

  • A. Button
  • T. D. Brock
  • P. J. Cook
  • H. P. Eugster
  • A. M. Goodwin
  • H. L. James
  • L. Margulis
  • K. H. Nealson
  • J. O. Nriagu
  • A. F. Trendall
  • M. R. Walter
Part of the Dahlem Workshop Report book series (DAHLEM, volume 3)

Abstract

Iron formations, evaporites, and phosphorites are economically important chemical sedimentary rocks developed in basins which span a very large fraction of geologic time. Since they are chemical precipitates, they must reflect the character of the body of water from which they were formed. Our group attempted to determine whether evolutionary changes in the biosphere could be inferred from the stratigraphic record of these sediment types.

Keywords

Phosphorus Manganese Sedimentation Geochemistry Sponge 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    Barley, M.E.; Dunlop, J.S.R.; Glover, J.E.; and Groves, D.E. 1979. Sedimentary evidence for an Archean shallow-water volcanic-sedimentary facies, eastern Pilbara Block, Western Australia. Earth Planet. Sci. Lett. 43: 74–84.Google Scholar
  2. (2).
    Cloud, P.E. 1976. Beginnings of biospheric evolution and their biochemical consequences. Paleobiol. 2: 351–387.Google Scholar
  3. (3).
    Cook, P.J. 1976. Sedimentary phosphate deposits. In Handbook of Stratabound and Stratiform Ores, ed. K.H. Wolf, pp. 505–535. New York: Elsevier Press.Google Scholar
  4. (4).
    Cook, P.J., and McElhinny, M.W. 1979. A reevaluation of the spatial and temporal distribution of sedimentary phosphate deposits in the light of plate tectonics. Econ. Geol. 74: 315–330.CrossRefGoogle Scholar
  5. (5).
    Drever, J.I. 1974. Geochemical model for the origin of Precambrian banded iron formations. Geol. Soc. Am. Bull. 85: 1099–1106.CrossRefGoogle Scholar
  6. (6).
    Goodwin, A.; Monster, J.; and Thode, H.G. 1976. Carbon and sulfur isotope abundances in Archean iron formations and Early Precambrian life. Econ. Geol. 71: 870–891.CrossRefGoogle Scholar
  7. (7).
    Gulbrandsen, R.A. 1969. Physical and chemical factors in the formation of marine phosphorites. Econ. Geol. 64: 365–382.CrossRefGoogle Scholar
  8. (8).
    James, H.L. 1954. Sedimentary facies of iron formations. Econ. Geol. 49: 235–293.CrossRefGoogle Scholar
  9. (9).
    Kuztnetsov, S.I. 1970. The Microflora of Lakes and Its Geochemical Activity. Austin, TX: University of Texas Press.Google Scholar
  10. (10).
    Lundgren, D.G., and Dean, W. 1979. Biogeochemistry of iron. In Biogeochemical Cycling of Mineral Forming Elements, eds. P.A. Trudinger and D.J. Swaine, pp. 202–211. Amsterdam: Elsevier Press.Google Scholar
  11. (11).
    Perfil’ev, B.V.; Gabe, D.R.; Gal’perina, A.M.; Rabinovich, V.A.; Sapotniskii, A.A.; Sherman, E.E.; and Troshanov, E.P. 1965. Applied Capillary Microscopy. New York: Consultants Bureau.Google Scholar
  12. (12).
    Sheldon, R.P. 1964. Palaeolatitudinal and palaeogeographic distribution of phosphate. U.S. Geological Survey, Professional Paper No. 501-C: C106–C113.Google Scholar
  13. (13).
    Sheldon, R.P. 1981. Ancient marine phosphorites. Ann. Rev. Earth Planet. Sci. 9: in press.Google Scholar
  14. (14).
    Trendall, A.F. 1972. Revolution in earth history. J. Geol. Soc. Australia 29: 287–311.CrossRefGoogle Scholar

Source Book

  1. Economic Geology. 1973. Vol. 68, No. 7, Precambrian Iron- Formations of the World.Google Scholar

Copyright information

© Dr. S. Bernhard, Dahlem Konferenzen, Berlin 1982

Authors and Affiliations

  • A. Button
  • T. D. Brock
  • P. J. Cook
  • H. P. Eugster
  • A. M. Goodwin
  • H. L. James
  • L. Margulis
  • K. H. Nealson
  • J. O. Nriagu
  • A. F. Trendall
  • M. R. Walter

There are no affiliations available

Personalised recommendations