Skip to main content

Nervous Control of Intestinal Motility

  • Chapter

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 59 / 1))

Abstract

The most important functions of the intestinal musculature are to transport the contents through the long tubular digestive tract and to ensure their adequate mixing and exposure to absorptive surfaces. The behaviour of the muscle associated with these functions is complex and highly adaptable to ensure the efficient utilisation of nutrients, even though feeding habits and diet may vary. The movements of the muscle depend on three primary factors: the intrinsic properties of the musculature itself, which undergoes rhythmic changes in excitability that vary along the intestine; the influence of circulating hormones; and the influence of nerves. The systems of nerves associated with the intestine are remarkable. Within the wall of the intestine is a complex network of intrinsic neurones, the enteric nervous system, which has connections with the muscle, mucosal cells and blood vessels of the gut wall, as well as with sympathetic ganglia and the central nervous system. Langley, in his book on the autonomic nervous system (1921), had already realised the relative autonomy of the enteric nervous system, and classified it as one of the three divisions of the autonomic nervous system, the others being the sympathetic and parasympathetic divisions. It is at first surprising that the total number of enteric neurones is similar to the total number of neurones in the spinal cord, but the enteric nervous system, like the spinal cord, controls an extensive system of muscle with a varied repertoire of movements. The enteric nervous system is also involved in the modulation of secretion, intestinal blood flow and probably absorption. Like the spinal cord, the enteric ganglia are reflex centres, receiving sensory information, integrating this information and influences from other centers and providing an output to effectors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbadessa S, Digregorio I, Gravante G (1969) Analyse de quelques caractéristiques des reflexes intrinséques intestinaux. Arch Int Physiol Biochim 11:1SI-796.

    Google Scholar 

  • Abrahamsson H (1973) Studies on the inhibitory nervous control of gastric motility. Acta Physiol Scand [Suppl] 390.

    Google Scholar 

  • Abrahamsson H, Glise H, Glise K (1979) Reflex suppression of gastric motility during la-parotomy and gastroduodenal nociceptive stimul. Scand J Gastroenterol 14:101–106.

    PubMed  CAS  Google Scholar 

  • Adler HF, Atkinson AJ, Ivy ACA (1941) A study of the motility of the human colon. An explanat. of dysynergia of the colon, or of the “unstable colon”. Am J Dig Dis 8:197–202.

    Google Scholar 

  • Aizawa I, Hiwatashi K, Takahashi I, Itoh Z (1978) Control of motor activity in the lower oesophageal sphincter by motilin. In: Duthie HL (ed) Gastrointestinal motility in health and man. MTP Press, Lancaster, pp 101–109.

    Google Scholar 

  • Akubue PI (1966) A periarterial nerve-circular muscle preparation from the caecum of the guinea-pig. J Pharm Pharmacol 18:390–395.

    PubMed  CAS  Google Scholar 

  • Alvarez WC (1925) Reverse peristalsis in the bowel, a precursor of vomiting. JAMA 85:1051–1054.

    Google Scholar 

  • Alvarez WC (1940) An introduction to gastro-enterology, 3 rd edn. Hoeber, New York London.

    Google Scholar 

  • Alvarez WC, Bennett MF (1931) Inquiries into the structure and function of the myenteric plexus. I. Differences in the reaction of the muscle and nerves of the bowel to constant and interupted currents. Am J Physiol 99:179–198.

    Google Scholar 

  • Alvarez WC, Hosoi K (1930) Conduction in different parts of the small intestine. Am J Physiol 94:448–458.

    Google Scholar 

  • Alvarez WC, Mahoney LJ (1922) (a) Action currents in stomach and intestine. Am J Physiol 58:476–493.

    CAS  Google Scholar 

  • Alvarez WC, Zimmermann A (1927) The absence of inhibition ahead of peristaltic rushes. Am J Physiol 83:52–59.

    Google Scholar 

  • Ambache N (1951) Unmasking, after cholinergic paralysis by botulinium toxin, of a reversed action of nicotine on the mammalian intestine, revealing the probable presence of local inhibitory ganglion cells in the enteric plexuses. Br J Pharmacol 6:51–67.

    CAS  Google Scholar 

  • Ambache N (1955) The use of limitations of atropine for pharmacological studies on autonomic effectors. Pharmacol Rev 7:467–494.

    PubMed  CAS  Google Scholar 

  • Ambache N, Freeman MA (1968) Atropine-resistant longitudinal muscle spasms due to excitation of non-cholinergic neurones in the Auerbach’s plexus. J Physiol 199:705–727.

    PubMed  CAS  Google Scholar 

  • Ambache N, Verney J, Zar M (1970) Evidence for the release of two atropine-resistant spas-mogens from Auerbach’s plexus. J Physiol (Lond) 207:761–782.

    CAS  Google Scholar 

  • Anuras S, Christensen J, Cooke AR (1977) A comparison of intrinsic nerve supplies of two muscular layers of duodenum. Am J Physiol 223:E28–31.

    Google Scholar 

  • Anuras S, Faulk DL, Christensen J (1979) Effect of some autonomic drugs on duodenal smooth muscle. Am J Physiol 236:E33–38.

    PubMed  CAS  Google Scholar 

  • Archer L, Benson MJ, Green WJ, Hardy RJ, Thompson DG, Wingate DL (1979) Radiotele-metric measurement of normal human small bowel motor activity during prolonged fasting. J Physiol (Lond) 296:53P.

    Google Scholar 

  • Armstrong HIO, Milton GW, Smith AWM (1956) Electropotential changes of the small intestine. J Physiol (Lond) 131:147–153.

    CAS  Google Scholar 

  • Auer J, Krueger H (1947) Experimental study of antiperistaltic and peristaltic motor and inhibitory phenomena. Am J Physiol 148:350–357.

    PubMed  CAS  Google Scholar 

  • Baldwin MV, Thomas JE (1975) The intestinal intrinsic mucosal reflex; a possible mechanism of propulsive motility. In: Friedman MHF (ed) Functions of the stomach and intestine. University Park Press, Baltimore, pp 75–91.

    Google Scholar 

  • Balfour TW, Hardcastle JD (1975) The myoelectrical activity of the canine ileo-caecal region. The response of feeding and gastrointestinal hormones. In: Vantrappen G (ed) Proceedings of the Fifth International Symposium on Gastrointestinal Motility. Typoff, Herentals.

    Google Scholar 

  • Balfour TW, Hardcastle JD (1978) The identification of an electrically silent zone at the ileo-caecocolic junction. In: Duthie HL (ed) Gastrointestinal motility in health and disease. MTP Press, Lancaster, pp 407–408.

    Google Scholar 

  • Bárány F, Jacobson B (1964) Endoradiosonde study of propulsion and pressure activity induced by test meals, prostigmine and diphenoxylate in the small intestine. Gut 5:90–95.

    PubMed  Google Scholar 

  • Barclay AE (1936) The digestive tract; a radiological study of its anatomy, physiology and pathology. Cambridge University Press, Cambridge, pp 395.

    Google Scholar 

  • Barcroft J, Robinson CJ (1929) A study of some factors influencing intestinal movement. J Physiol (Lond) 67:211–220.

    CAS  Google Scholar 

  • Barcroft J, Steggerda FR (1932) Observations of the proximal portion of the exteriorized colon. J Physiol (Lond) 76:460–471.

    CAS  Google Scholar 

  • Barlett V, Stewart RR, Nakatsu K (1979) Evidence for two adenine derivative receptors in rat ileum which are not involved in the nonadrenergic, noncholinergic response. Can J Physiol Pharmacol 57:1130–1137.

    Google Scholar 

  • Bartho L, Szolcsanyi J (1978) The site of action of capsaicin on the guinea-pig isolated ileum. Naunyn-Schmiedeberg Arch Pharmacol 305:75–81.

    CAS  Google Scholar 

  • Bass P (1968) In vivo electrical activity of the small bowel. In: Code CF (ed) Alimentary canal American Physiological Society, Washington, DC (Handbook of physiology, vol IV, sect 6, pp 2051-2074.

    Google Scholar 

  • Bass P, Wiley JN (1965) Electric and extraluminal contractile-force activity of the duodenum of the dog. Am J Dig Dis 10:183–200.

    PubMed  CAS  Google Scholar 

  • Bass P, Code CF, Lambert EH (1961) Motor and electric activity of the duodenum. Am J Physiol 201:287–291.

    PubMed  CAS  Google Scholar 

  • Baur M (1928) Die Peristaltik des isolierten Meerschweinchendünndarms im Filmversuch. Arch Exp Pathol Pharmakol 133:69–83.

    Google Scholar 

  • Bayliss WM, Starling EH (1899) The movements and innervation of the small intestine. J Physiol (Lond) 24:99–143.

    CAS  Google Scholar 

  • Bayliss WM, Starling EH (1900) The movements and innervation of the large intestine. J Physiol (Lond) 26:107–118.

    CAS  Google Scholar 

  • Bayliss WM, Starling EH (1901) The movements and innervation of the small intestine. J Physiol (Lond) 26:125–138.

    CAS  Google Scholar 

  • Beani L, Bianchi C, Crema A (1969) The effect of catecholamines and sympathetic stimulation on the release of acetylcholine from the guinea-pig colon. Br J Pharmacol 36:1–17.

    PubMed  CAS  Google Scholar 

  • Beani L, Bianchi C, Crema A (1971) Vagal non-adrenergic inhibition of guinea-pig stomach. J Physiol (Lond) 217:259–279.

    CAS  Google Scholar 

  • Benelli G, Santini V (1974) Analisi dell’azione di alcune sostanze sulle terminazioni sensitive viscerali. Boll Chim Farm 113:291–298.

    PubMed  CAS  Google Scholar 

  • Bennett A, Eley KG (1976) Intestinal pH and propulsion: an explanation of diarrhoea in lactase deficiency and laxation by lactulose. J Pharm Pharmacol 28:192–195.

    PubMed  CAS  Google Scholar 

  • Bennett A, Fleshier B (1969) A hyoscine-resistant excitatory nerve pathway in guinea-pig colon. J Physiol (Lond) 203:62–63P.

    Google Scholar 

  • Bennett A, Stockley HL (1975) The intrinsic innervation of the human alimentary tract and its relation to function. Gut 16:443–453.

    PubMed  CAS  Google Scholar 

  • Bennett MR (1972) Autonomic Neuromuscular Transmission. Cambridge University Press, Cambridge.

    Google Scholar 

  • Bennett MR (1966 a) A model of the membrane of the smooth muscle cells of the guinea-pig taenia coli during transmission from inhibitory and excitatory nerves. Nature 211:1149–1152.

    PubMed  CAS  Google Scholar 

  • Bennett MR (1966 b) Rebound excitation of the smooth muscle cells of the guinea-pig taenia coli after stimulation of intramural inhibitory nerves. J Physiol (Lond) 185:124–131.

    CAS  Google Scholar 

  • Bennett MR, Burnstock G (1968) Electrophysiology of the innervation of intestinal smooth muscle. In: Code CF (ed) Alimentary canal. American Physiological Society, Washington, DC (Handbook of physiology, vol IV, sect 6, pp 1709–1732).

    Google Scholar 

  • Bennett MR, Burnstock G, Holman ME (1966) Transmission from intramural inhibitory nerves to the smooth muscle of the guinea-pig taenia coli. J Physiol (Lond) 182:541–558.

    CAS  Google Scholar 

  • Bentley GA (1962) Studies on sympathetic mechanisms in isolated intestinal and vas de-ferens preparations. Br J Pharmacol Chemother 19:85–98.

    PubMed  CAS  Google Scholar 

  • Bessou P, Perl ER (1966) A movement receptor of the small intestine. J Physiol (Lond) 18:404–426.

    Google Scholar 

  • Bianchi C, Beani L, Frigo GM, Crema A (1968) Further evidence for the presence of non-adrenergic inhibitory structures in the guinea-pig colon. Eur J Pharmacol 4:51–61.

    PubMed  CAS  Google Scholar 

  • Biber B, Fara J (1973) Intestinal motility increased by tetrodotoxin, lidocaine, and procaine. Experientia 29:551–552.

    PubMed  CAS  Google Scholar 

  • Blair EL, Harper AA, Kidd C, Scratcherd T (1959) Post activation potentiation of gastric and intestinal contractions in response to stimulation of the vagus nerves. J Physiol (Lond) 148:437–449.

    CAS  Google Scholar 

  • Boehm S (1979 a) Die spatische Obstipation und ihre Beziehungen zur Antiperistaltik. Dtsch Arch Klin Med 102:431–450.

    Google Scholar 

  • Bolton TB (1979 a) Cholinergic mechanisms in smooth muscle. Br Med Bull 35:275–283.

    PubMed  CAS  Google Scholar 

  • Bolton TB (1979 b) Mechanisms of action of transmitter and other substances on smooth muscle. Physiol Rev 59:606–718.

    PubMed  CAS  Google Scholar 

  • Borgstrom S, Arborelius M Jr (1975) Influence of a fatty acid on duodenal motility. Scand J Gastroenterol 10:599–601.

    PubMed  CAS  Google Scholar 

  • Bortoff A (1961) Slow potential variations of small intestine. Am J Physiol 201:203–208.

    Google Scholar 

  • Bortoff A (1969) Medical intelligence: current concepts — intestinal motility. N Engl J Med 280:1335–1337.

    PubMed  CAS  Google Scholar 

  • Bortoff A (1972) Digestion-motility. Ann Rev Physiol Toxicol 34:261–290.

    CAS  Google Scholar 

  • Bortoff A (1976) Myogenic control of intestinal motility. Physiol Rev 56:418–434.

    PubMed  CAS  Google Scholar 

  • Bortoff A, Sacco J (1974) Myogenic control of intestinal peristalsis. In: Daniel EE (ed) Proceedings of the 4 th International Symposium on Gastrointestinal Motility. Mitchell, Vancouver, pp 53–60.

    Google Scholar 

  • Bortoff A, Sachs F (1970) Electronic spread of slow waves in circular muscle of small intestine. Am J Physiol 218:576–581.

    PubMed  CAS  Google Scholar 

  • Boyd G, Gillespie JS, Mackenna BR (1962) Origin of the cholinergic response of the rabbit intestine to stimulation of its extrinsic sympathetic nerves after exposure to sympathetic blocking agents. Br J Pharmacol 19:258–270.

    CAS  Google Scholar 

  • Bozler E (1939) Electrophysiological studies on the motility of the gastrointestinal tract. Am J Physiol 127:301–307.

    Google Scholar 

  • Bozler E (1948) Conduction, automaticity, and tonus of visceral muscle. Experientia 4:213–218.

    Google Scholar 

  • Bozler E (1949a) Myenteric reflex. Am J Physiol 157:329–337.

    PubMed  CAS  Google Scholar 

  • Bozler E (1949b) Reflex peristalsis of the intestine. Am J Physiol 157:338–342.

    PubMed  CAS  Google Scholar 

  • Brading A, Bülbring E, Tomita T (1969) The effect of sodium and calcium on the action potential of the smooth muscle of the guinea-pig taenia coli. J Physiol (Lond) 200:637–654.

    CAS  Google Scholar 

  • Brown GL, Gray JAB (1948) Some effects of nicotine-like substances and their relation to sensory nerve endings. J Physiol (Lond) 107:306–317.

    CAS  Google Scholar 

  • Brown HS, Posey EL, Gambill EE (1948) Studies on the effect of tetra ethylammonium chloride on gastric motor and secretory function in patients with duodenal ulcer. Gas-troenterology 10:837–847.

    CAS  Google Scholar 

  • Bucknell A (1965) Effects of direct and indirect stimulation on isolated colon. J Physiol (Lond) 177:58–59P.

    Google Scholar 

  • Bueno L, Ruckebusch M (1976) Insulin and jejunal electrical activity in dogs and sheep. Am J Physiol 230:1538–1544.

    PubMed  CAS  Google Scholar 

  • Bueno L, Ruckebusch Y (1978) Migrating myoelectrical complexes: disruption, enhancement and disorganization. In: Duthie HL (ed) Gastrointestinal motility in health and disease. MTP Press, Lancaster, pp 83–90.

    Google Scholar 

  • Bueno L, Fioramonti J, Ruckebusch Y (1975) Rate of flow of digesta and electrical activity of the small intestine in dogs and sheep. J Physiol (Lond) 249:69–85.

    CAS  Google Scholar 

  • Bueno L, Praddaude F, Ruckebusch Y (1979) Propagation of electrical spiking activity along the small intestine: intrinsic versus extrinsic neural influences. J Physiol (Lond) 292:15–26

    CAS  Google Scholar 

  • Bülbring E, Crema A (1959) The action of 5-Hydroxytryptamine, 5-hydroxytryptophan and reserpine on intestinal peristalsis in anaesthetized guinea-pigs. J Physiol (Lond) 146:29–53

    Google Scholar 

  • Bülbring E, Lin RCY (1958) The effect of intraluminal application of 5-hydroxytryptamine and 5-hydroxytryptophan on peristalsis; the local production of 5-HT and its release in relation to intraluminal pressure and propulsive activity. J Physiol (Lond) 140:381–407

    Google Scholar 

  • Bülbring E, Tomita T (1967) Properties of the inhibitory potential of smooth muscle as observed in the response to field stimulation of the guinea-pig taenia coli. J Physiol (Lond) 189:299–315

    Google Scholar 

  • Bülbring E, Tomita T (1969) Suppression of spontaneous spike generation by catechol-amines in the smooth muscle of the guinea-pig taenia-coli. Proc Soc Lond (Biol) 172:103–119

    Google Scholar 

  • Bülbring E, Tomita T (1970) Effects of Ca removal on the smooth muscle of the guinea-pig taenia coli. J Physiol (Lond) 210:217–232

    Google Scholar 

  • Bülbring E, Lin RCY, Schofield G (1958) An investigation of the peristaltic reflex in relation to anatomical observations. Q J Exp Physiol 43:26–37.

    Google Scholar 

  • Bunch WL (1898) On the origin, course and cell connections of the viscero-motor nerves of the small intestine. J Physiol (Lond) 22:357–378.

    CAS  Google Scholar 

  • Bunker CE, Johnson LP, Nelson TS (1967) Chronic in situ studies of the electrical activity of the small intestine. Arch Surg 95:259–268.

    PubMed  CAS  Google Scholar 

  • Burleigh DE, Damello A, Parks AG (1979) Réponses of isolated human internal anal sphincter to drugs and electrical field stimulation. Gastroenterology 77:484–490.

    PubMed  CAS  Google Scholar 

  • Burn JH (1968) The development of the adrenergic fibre. Br J Pharmacol Chemother 32:575–582.

    PubMed  CAS  Google Scholar 

  • Burns TW, Sinar DR, Gilmore CJ (1979) A comparison of the migrating action potential complex of cholera and the peristaltic rush of normal small intestine. Gastroenterology 76:1109.

    Google Scholar 

  • Burnstock G (1970) Structure of smooth muscle and its innervation. In: Bülbring E, Brading A, Jones A, Tomita T (eds) Smooth muscle. Arnold, London, pp 1–69.

    Google Scholar 

  • Burnstock G (1972) Purinergic nerves. Pharmacol Rev 24:509–581.

    PubMed  CAS  Google Scholar 

  • Burnstock G, Campbell G, Bennett M, Holman ME (1964) Innervation of the guinea-pig taenia coli: Are there intrinsic inhibitory nerves which are distinct from sympathetic nerves? Int J Neuropharmacol 3:163–166.

    PubMed  CAS  Google Scholar 

  • Burnstock G, Campbell G, Rand MJ (1966) The inhibitory innervation of the taenia of the guinea-pig caecum. J Physiol (Lond) 182:504–526.

    CAS  Google Scholar 

  • Burnstock G, Satchell DG, Smyths A (1972) A comparison of the excitatory and inhibitory effects of non-adrenergic, non-cholinergic nerve stimulation and exogenously applied ATP on a variety of smooth muscle preparations from different vertebrate species. Br J Pharmacol 46:234–242

    PubMed  CAS  Google Scholar 

  • Bywater RAR, Taylor GS (1979) Atropine-resistant junction potentials in the guinea-pig small intestine. Proc Aust Physiol Pharmacol Soc 10:233P.

    Google Scholar 

  • Campbell G (1966 a) Nerve-mediated excitation of the taenia of the guinea-pic caecum. J Physiol (Lond) 185:148–159.

    CAS  Google Scholar 

  • Campbell G (1966 b) The inhibitory nerve fibres in the vagal supply to the guinea-pig stomach. J Physiol (Lond) 185:600–612.

    CAS  Google Scholar 

  • Campbell G (1970) Autonomie nervous supply to effector tissues. In: Bülbring E, Brading A, Jones A, Tomita T (eds) Smooth muscle. Arnold, London, pp 451–495.

    Google Scholar 

  • Campbell G, Burnstock G (1968) Comparative physiology of gastrointestinal motility. In: Code CF (ed) Alimentary canal American Physiological Society, Washington, DC (Handbook of physiology, vol IV, sect 6, pp 2213–2266).

    Google Scholar 

  • Cannon WB (1902) Movements of the intestine studied by the means of roentgen rays. Am J Physiol 6:251–277.

    Google Scholar 

  • Cannon WB (1907) The acid control of the pylorus. Am J Physiol 20:283–322.

    Google Scholar 

  • Cannon WB (1911) The mechanical factors of digestion. In: Hill L, Bulloch W (eds) International medical monographs. Longmans & Green, New York.

    Google Scholar 

  • Cannon WB (1912) Peristalsis, segmentation and the myenteric reflex. Am J. Physiol 30:114–128.

    Google Scholar 

  • Cantor MO, Reynolds RP (1957) Gastrointestinal obstruction. Williams & Wilkins, Baltimore.

    Google Scholar 

  • Caprilli R, Onori L (1972) Origin, transmission and ionic dependence of colonie electrical slow waves. Scand J Gastroenterol 7:65–74.

    PubMed  CAS  Google Scholar 

  • Carlson AJ (1930) The extrinsic nervous control of the large bowel. JAMA 94:78–79.

    Google Scholar 

  • Carlson GM, Bedi BS, Code CF (1972) Mechanism of propagation of intestinal interdiges-tive myoelectric complex. Am J Physiol 222:1027–1030.

    PubMed  CAS  Google Scholar 

  • Carlson GM, Mathias JR, Bertiger G (1977) Nervous control of the response of the gut to meals. In: Brooks FP, Evers PW (eds) Nerves and the gut. Slack, pp 261-271.

    Google Scholar 

  • Case JT (1914) X-ray observations on colonic peristalsis and antiperistalsis with special reference to the function of the ileocolic valve. Med Rec 85:415–426.

    Google Scholar 

  • Cash JT (1886) Contribution to the intestinal rest and movement. Proc R Soc Lond 41:212–231.

    Google Scholar 

  • Castleton KB (1934) An experimental study of the movements of the small intestine. Am J Physiol 107:641–646.

    Google Scholar 

  • Catchpole BN, Duthie HL (1978) Postoperative gastrointestinal complexes. In: Duthie HL (ed) Gastrointestinal motility in health and disease. MTP Press, Lancaster, pp 33–41.

    Google Scholar 

  • Chapman WP, Stanbury JB, Jones CM (1948) The effect of tetraethylammonium on the small bowel of man. J Clin Invest 27:34–38.

    Google Scholar 

  • Chapman WP, Wyman SM, Moro LO, Gillis MA, Jones CM (1953) Barium studies of the comparative action of banthine, tincture of belladonna and placebos on the motility of the gastrointestinal tract in man. Gastroenterology 23:234–243.

    PubMed  CAS  Google Scholar 

  • Chapman WP, Wyman SM, Gagnon JO, Benson JA, Jones CM, Sexton C (1955 a) Comparative effects of pamine, bathine, and placebos on gastrointestinal motility. I. Radio-graphic studies in eight adults. Subjects tested when fasting and after three weeks administration of agents. Gastroenterology 28:500–509.

    PubMed  CAS  Google Scholar 

  • Chapman WP, Wyman SM, Gagnon JO, Jones CM, Sexton C (1955 b) Comparative effects of pamine, banthine, and placebos on gastrointestinal motility. II. Radiographic studies in eight adult subjects tested when fasting and following the administration of a standard meal. Gastroenterology 28:510–518.

    PubMed  CAS  Google Scholar 

  • Chey WY, Lee KY, Tai HH (1978) Endogenous plasma motilin concentration and interdigestive myoelectric activity in the canine duodenum. In: Bloom SR (ed) Gut hormones. Churchill Livingstone, London Edinburgh, pp 355–358.

    Google Scholar 

  • Chowdhury AR, Dinoso VP, Lorber SH (1976) Characterisation of a hyperactive segment at a rectosigmoid junction. Gastroenterology 71:584–588.

    PubMed  CAS  Google Scholar 

  • Christensen J (1978) Colonic motility. In: Duthie HL (ed) Gastrointestinal motility in health and disease. MTP Press, Lancaster, pp 267–377.

    Google Scholar 

  • Christensen J, Hauser RL (1971) Longitudinal axial coupling of slow waves in proximal cat colon. Am J Physiol 221:246–250.

    PubMed  CAS  Google Scholar 

  • Christensen J, Schedl HP, Clifton JA (1966) The small intestinal basic electrical rhythm (slow wave) frequency gradient in normal men and in patients with a variety of diseases. Gastroenterology 50:309–315.

    PubMed  CAS  Google Scholar 

  • Christensen J, Caprilli R, Lund CF (1969) Electric slow waves in circular muscle of cat colon. Am J Physiol 217:771–776.

    PubMed  CAS  Google Scholar 

  • Christensen J, Anuras S, Hauser RL (1974) Migrating spike burst and electrical slow waves in the cat colon: effect of sectioning. Gastroenterology 66:240–247.

    PubMed  CAS  Google Scholar 

  • Chul HY, Chey WY, Lee KL (1980) Studies on plasma motilin concentration and interdigestive motility of the duodenum in humans. Gastroenterology 79:62–66.

    Google Scholar 

  • Clarke GD, Davison JS (1978) Mucosal receptors in the gastric antrum and small intestine of the rat with afferent fibres in the cervical vagus. J Physiol (Lond) 284:55–67.

    CAS  Google Scholar 

  • Coccagna G, Moschen R, Vela A, Cirignotta F, Gallassi R, Lugaresi E (1977) Studio po-ligrafico di alcune funzioni vegetative durante il sonno nell uomo. Riv Neurol 47:491–506.

    PubMed  CAS  Google Scholar 

  • Code CF, Marlett JA (1975) The interdigestive myoelectric complex of the stomach and small bowel of dogs. J Physiol (Lond) 246:289–309.

    CAS  Google Scholar 

  • Code CF, Schlegel J (1974) The gastrointestinal interdigestive housekeeper: motor correlates of the interdigestive myoelectric complex of the dog. In: Daniel EE (ed) Proceedings of the 4 th International Symposium on Gastrointestinal Motility. Mitchell, Vancouver, pp 631–634.

    Google Scholar 

  • Code CF, Rogers AG, Schlegel J, Hightower NC, Bargen JA (1957) Motility patterns in the terminal ileum; studies on two patients with ulcerative colitis and ilea stomas. Gastroenterology 32:651–665.

    PubMed  CAS  Google Scholar 

  • Code CF, Szurszewski JH, Kelley KA, Smith IB (1968) A concept of control of gastrointestinal motility. In: Code CF (ed) Alimentary canal. American Physiological Society, Washington, DC (Handbook of physiology, vol IV, sect 6, pp 2881–2896)

    Google Scholar 

  • Cohen S, Harris LD, Hsu FY (1968) Manometric characteristics of the human ileocecal junctional zone. Gastroenterology 54:72–75.

    PubMed  CAS  Google Scholar 

  • Conklin JL, Christensen J (1975) Local specialization at ileocecal junction of the cat and opossum. Am J Physiol 228:1075–1081.

    PubMed  CAS  Google Scholar 

  • Connell AM (1961) The motility of the small intestine. Postgrad Med J 37:703–716.

    PubMed  CAS  Google Scholar 

  • Connell AM (1968) Motor action of the large bowel. In: Code CF (ed) Alimentary canal. American Physiological Society, Washington, DC (Handbook of physiology, vol IV, sect 6, pp 2075–2091).

    Google Scholar 

  • Connell AM, Logan CJH (1967) The role of gastrin in gastroileocolic responses. Am J Dig Dis 12:227–284.

    Google Scholar 

  • Connell AM, McKelvey STD (1970) The influence of vagotomy on the colon. Proc R Soc Med 63:7.

    PubMed  Google Scholar 

  • Connell AM, Smith CL (1974) The effect of dietary fibre on transit time. In: Daniel EE (ed) Proceedings of the 4 th International Symposium on Gastrointestinal Motility. Mitchell, Vancouver, pp 365–368.

    Google Scholar 

  • Connell AM, Frankel H, Guttmann L (1963) The motility of the pelvic colon following complete lesions of the spinal cord. Paraplegia 1:98–115.

    PubMed  CAS  Google Scholar 

  • Connell AM, Avery Jones F, Rowlands EN (1965) The motility of the pelvic colon IV — abdominal pain associated with colonic hypermotility after meals. Gut 6:105–112.

    PubMed  CAS  Google Scholar 

  • Connor C, Prosser CL (1974) Comparison of ionic effects on longitudinal and circular muscle of cat jejunum. Am J Physiol 226:1212–1218.

    PubMed  CAS  Google Scholar 

  • Connor JA, Kreulen D, Prosser CL, Weigel R (1977) Interaction between longitudinal and circular muscle in intestine in cat. J Physiol (Lond) 273:665–689.

    CAS  Google Scholar 

  • Costa M, Furness JB (1972) Slow contraction of the guinea-pig proximal colon in response to the stimulation of an identified type of nerve. Br J Pharmacol 45:151P-152P.

    PubMed  CAS  Google Scholar 

  • Costa M, Furness JB (1974) The innervation of the internal anal sphincter of the guinea-pig. In: Daniel EE (ed) Proceedings of the 4 th International Symposium on Gastrointestinal Motility. Mitchell, Vancouver, pp 681–689.

    Google Scholar 

  • Costa M, Furness JB (1976) The peristaltic reflex: an analysis of the nerve pathways and their pharmacology. Naunyn-Schmiedeberg Arch Pharmacol 294:47–60.

    CAS  Google Scholar 

  • Costa M, Furness JB (1979) On the possibility that an indoleamine is a neurotransmitter in the gastrointestinal tract. Biochem Pharmacol 28:: 565–571.

    PubMed  CAS  Google Scholar 

  • Costa M, Furness JB, Dawson K (1975) Potentiation by cocaine of relaxations of the guinea-pig colon caused by noradrenaline and by stimulation of adrenergic nerves. Aust J Exp Biol Med Sci 53:223–232.

    PubMed  CAS  Google Scholar 

  • Costa M, Furness JB, Llewellyn-Smith IJ, Davies B, Oliver J (1980 a) An immunohisto-chemical study of the projections of somatostatin containing neurons in the guinea-pig intestine. Neuroscience 5:841–852.

    PubMed  CAS  Google Scholar 

  • Costa M, Furness JB, Llewellyn-Smith IJ, Cuello C (1980 b) Projections of substance P neurons within the guinea-pig small intestine. Neuroscience 6:411–424.

    Google Scholar 

  • Courtade D, Guyon JF (1897) Influence motrice du grand sympathique et du nerf érecteur sacre sur les gros intestin. Arch Physiol 9:880–890.

    Google Scholar 

  • Couturier D, Roze C, Couturier-Turbin MH, Debray C (1969) Electromyography of the colon situ. An experimental study in man and in the rabbit. Gastroenterology 56:317–322.

    CAS  Google Scholar 

  • Couturier D, Roze C, Debray C (1970) Activité motrice du duodénum chez l’homme: corrélation avec la contraction antrale et avec l’activité électrique. J Physiol (Paris) 62:387–405.

    CAS  Google Scholar 

  • Cowie DM, Lashmet FH (1928) Studies on the function of the intestinal musculature. II. Longitudinal muscle of the rabbit. Am J Physiol 88:369–389.

    Google Scholar 

  • Creed KE (1979) Functional diversity of smooth muscle. Br Med Bull 35:243–247.

    PubMed  CAS  Google Scholar 

  • Crema A (1970) On the polarity of the peristaltic reflex in the colon. In: Bülbring E, Brading AF, Jones AW, Tomita T (eds) Smooth muscle. Arnold, London, pp 542–548.

    Google Scholar 

  • Crema T, Tacca MD, Frigo GM, Lecchini S (1968) Presence of a nonadrenergic inhibitory system in the human colon. J Br Soc Gastroenterol 9:633–637.

    CAS  Google Scholar 

  • Crema A, Frigo GM, Lecchini S (1970) A pharmacological analysis of the peristaltic reflex in the isolated colon of the guinea-pig or cat. Br J Pharmacol 39:334–345.

    PubMed  CAS  Google Scholar 

  • Crowcroft PJ, Holman ME, Szurszewski JH (1971) Excitatory input from the distal colon to the inferior mesenteric ganglion in the guinea-pig. J Physiol (Lond) 219:443–461.

    CAS  Google Scholar 

  • Currie GC, Henderson VE (1926) A study of the movements of the large intestine in the guinea-pig. Am J Physiol 78:287–298.

    Google Scholar 

  • Dahlgren S, Selking O (1972) Motility of the human digestive tract under resting conditions and after ingestion of food. A study with endoradiosondes. Ups J Med Sci 77:167–174.

    PubMed  CAS  Google Scholar 

  • Dale HH (1906) On some physiological actions of ergot. J Physiol (Lond) 34:163–206.

    Google Scholar 

  • Daniel EE (1968) The electrical activity of the alimentary tract. Am J Dig Dis 13:297–319.

    PubMed  CAS  Google Scholar 

  • Daniel EE (1975) Electrophysiology of the colon. Gut 16:298–306.

    PubMed  CAS  Google Scholar 

  • Daniel EE (1977) Nerves and motor activity of the gut: In: Brooks FP, Evers PW (eds) Nerves and the gut. Slack, pp 154-199.

    Google Scholar 

  • Daniel EE, Chapman KM (1963) Electrical activity of the gastrointestinal tract as an indication of mechanical activity. Am J Dig Dis 8:54–103.

    PubMed  CAS  Google Scholar 

  • Daniel EE, Sarna S (1978) The generation and conduction of activity in smooth muscle. Ann Rev Pharmacol Toxicol 18:145–166.

    CAS  Google Scholar 

  • Daniel EE, Honour AJ, Bagoch A (1960) Electrical activity of the longitudinal muscle of dog small intestine studied in vitro using microelectrodes. Am J Physiol 198:113–118.

    PubMed  CAS  Google Scholar 

  • Davenport HW (1977) Physiology of the digestive tract, 4 th edn Year Book Medical Publishers, Chicago.

    Google Scholar 

  • Davidson M, Sleisenger MH, Almy TP, Levine SZ (1956) Studies of distal colonic motility in children. Pediatrics 17:807–819.

    PubMed  CAS  Google Scholar 

  • Davison JS, Pearson GT (1979) The role of intrinsic, non-adrenergic, non-cholinergic, inhibitory nerves in the regulation of distensibility of the guinea-pig colon. Pfluegers Arch 381:73–77.

    Google Scholar 

  • Day MD, Rand MJ (1961) Effect of guanethidine in revealing cholinergic sympathetic fibres. Br J Pharmacol 17:245–260.

    CAS  Google Scholar 

  • Day M, Vane JP (1963) An analysis of the direct and indirect actions of drugs on the isolated guinea-pig ileum. Br J Pharmacol 20:150–170.

    CAS  Google Scholar 

  • Day MD, Warren PR (1968) A pharmacological analysis of the responses to transmural stimulation in isolated intestinal preparations. Br J Pharmacol Chemother 32:227–240.

    PubMed  CAS  Google Scholar 

  • De Groat WC, Krier J (1976) An electrophysiological study of the sacral parasympathetic pathway to the colon of the cat. J Physiol (Lond) 260:425–445.

    Google Scholar 

  • De Groat WC, Krier J (1978) The sacral parasympathetic reflex pathway regulating colonic motility and defecation in the cat. J Physiol (Lond) 276:481–500.

    Google Scholar 

  • De Groat WC, Krier J (1979) The central control of the lumbar sympathetic pathway to the large intestine of the cat. J Physiol (Lond) 289:449–468.

    Google Scholar 

  • Deller DJ, Wangel AG (1965) Intestinal motility in man. I. A study combining the use of intraluminal pressure recording and cineradiography. Gastroenterology 48:45–57.

    PubMed  CAS  Google Scholar 

  • Del Tacca M, Lecchini S, Frigo GM, Crema A, Benzi G (1968) Antagonism of atropine towards endogenous and exogenous acetylcholine before and after sympathetic system blockade in the isolated distal guinea-pig colon. Eur J Pharmacol 4:188–197

    PubMed  Google Scholar 

  • Denny-Brown D, Robertson EG (1935) An investigation of the nervous control of defaeca-tion. Brain 58:256–310.

    Google Scholar 

  • Derblom H, Johansson H, Nylander G (1966) A simple method of recording certain gastrointestinal motility functions in the rat. Acta Chir Scand 132:154–165.

    Google Scholar 

  • De Wever I, Eeckhout C, Vantrappen G, Hellemans J (1978) Disruptive effect of test meals on interdigestive motor complex in dogs. Am J Physiol 235:E661–665.

    PubMed  Google Scholar 

  • De Weveer I, Eeckhout C, Vantrappen G, Hellmans J (1979) How does oil disrupt the in-terdigestive myoelectric complex? Gastroenterology 76:1120.

    Google Scholar 

  • Diamant NE, Bortoff A (1969) Nature of the intestinal slow wave frequency gradient. Am J Physiol 216:301–307.

    PubMed  CAS  Google Scholar 

  • Diamant NE, Hall K, Mui H, El-Sharkawy TY (1979 a) Vagal control of the feeding motor pattern in the lower esophageal sphincter, stomach and small intestine in dog. In: Christensen J (ed) Gastrointestinal motility. 7 th Int Symp Gastrointest Motility. Raven, New York, pp 365–370.

    Google Scholar 

  • Diamant NE, Mui H, El-Sharkawy TY, Hall K (1979 b) The vagus controls the lower esophageal sphincter and gastric components of the migrating motor complex in the dog. Gas-troenterology 76:1122.

    Google Scholar 

  • Diament ML, Kosterlitz HW, McKenzie J (1961) Role of the mucous membrane in the peristaltic reflex in the isolated ileum of the guinea-pig. Nature 190:1205–1206.

    PubMed  CAS  Google Scholar 

  • Dickinson VA (1978) Maintenance of anal continence: a review of pelvic floor physiology. Gut 19:1163–1174.

    PubMed  CAS  Google Scholar 

  • Dodds DC, Ould CL, Dailey ME (1948) The effect of tetraethylammonium chloride on gastric motility in man. Gastroenterology 10:1007–1009.

    PubMed  CAS  Google Scholar 

  • Douglas DM (1941) The activity of the duodenum. J Physiol (Lond) 107:472–478.

    Google Scholar 

  • Douglas DM, Mann FC (1939 a) An experimental study of the rhythmic contractions in the small intestine of the dog. Am J Dig Dis 6:318–322.

    Google Scholar 

  • Douglas DM, Mann FC (1939 b) The activity of the lower part of the ileum of the dog in relation to the ingestion of food. Am J Dig Dis 6:434–439.

    Google Scholar 

  • Douglas DM, Mann FC (1940) The gastro-ileac reflex further experimental studies. Am J Dig Dis 7:53–57.

    Google Scholar 

  • Dubois A (1977) Études physiopathologiques du l’ileus postoperatoire. Acta Chir Belg 76:141–166.

    PubMed  CAS  Google Scholar 

  • Duthie HL, Brown BH, Robertson-Dunn B, Kwong NK, Whittaker GE, Waterfall W (1972) Electrical activity in the gastroduodenal area — slow waves in the proximal duodenum. A comparison of man and dog. Am J Dig Dis 17:344–351.

    PubMed  CAS  Google Scholar 

  • Eeckhout C, De Wever I, Hellemans J, Vantrappen G (1978 a) The effect of different test meals on their interdigestive myoelectrical complex (MMC) in dogs. In: Duthie HL (ed) Gastrointestinal motility in health and disease. MTP Press, Lancaster, pp 43–45.

    Google Scholar 

  • Eeckhout C, De Wever I, Peeters T, Hellemans J, Vantrappen G (1978 b) Role of gastrin and insulin in the postprandial disruption of migrating complex in dogs. Am J Physiol 235:E666–669.

    PubMed  CAS  Google Scholar 

  • Eeckhout C, De Wever I, Vantrappen G (1979) Effect of glucose perfusion on the migrating complex of a Thiry-Vella loop. In: Christensen J (ed) Gastrointestinal motility. 7 th International Symposium on Gastrointestinal motility. Raven, New York, pp 289–293.

    Google Scholar 

  • Elliott TR (1904) On the innervation of the ileo-colic sphincter. J Physiol (Lond) 31:157–168.

    CAS  Google Scholar 

  • Elliott TR, Barclay-Smith E (1904) Antiperistalsis and other muscular activities of the colon. J Physiol (Lond) 31:272–304.

    CAS  Google Scholar 

  • El Quazzani T, Mei N (1979) Vagal thermoreceptors in the gastrointestinal area. Their role in the regulation of the digestive motility. Exp Brain Res 34:419–434

    Google Scholar 

  • El-Sharkawy TY (1978) Electrophysiological control of motility in canine colon. In: Duthie HL (ed) Gastrointestinal motility in health and disease. MTP Press, Lancaster, pp 387–369.

    Google Scholar 

  • Falconer JD, Smith AN, Eastwood MA (1978) Effects of bile salts and prostaglandins on the colonic motility in the rabbit. In: Duthie HL (ed) Gastrointestinal motility in health and disease. MTP Press, Lancaster, pp 607–615.

    Google Scholar 

  • Fasth S, Hultén L, Johnson JB, Nordgren S, Zeitlin IJ (1978) Mobilization of colonic kal-likrein following pelvic nerve stimulation in the atropinized cat. J Physiol (Lond) 285:471–478.

    CAS  Google Scholar 

  • Fasth S, Hultén L, Nordgren S (1980) Evidence for a dual pelvic nerve influence on large bowel motility in the cat. J Physiol (Lond) 298:159–169.

    CAS  Google Scholar 

  • Finch P, Catchpole B (1979) The relationship of sleep stage to the migrating gastrointestinal complex of man. In: Christensen J (ed) Gastrointestinal motility. 7 th International Symposium on Gastrointestinal Motility. Raven, New York.

    Google Scholar 

  • Finkleman B (1930) On the nature of inhibition in the intestine. J Physiol (Lond) 70:145–157.

    CAS  Google Scholar 

  • Fleckenstein P, Krough F, Oigaard A (1978) The interdigestive myoelectrical complex and other migrating electrical phenomena in the human small intestine. In: Duthie HL (ed) Gastrointestinal motility in health and disease. MTP Press, Lancaster, pp 19–27.

    Google Scholar 

  • Fleisch A (1928) Der Verkürzungsreflex des Darmes. Pfluegers Arch 220:512–523.

    CAS  Google Scholar 

  • Fleisch A, Wyss WH (1923) Zur Kenntnis der visceralen Tiefensensibilität. Pfluegers Arch 200:290–312.

    Google Scholar 

  • Fontaine J, Van Neuten JM, Janssen PAJ (1973) Analysis of the peristaltic reflex in vitro: effects of some antagonists. Arch Int Pharmacodyn Ther 203:396–398.

    PubMed  CAS  Google Scholar 

  • Foulk WT, Code CF, Morlock CG, Bargen JA (1954) A study of the motility patterns and the basic rhythm in the duodenum and upper part of the jejunum of human beings. Gas-troenterology 26:601–611.

    CAS  Google Scholar 

  • Fox JET, Daniel EE, Collins SM, Lewis TD, Track NS (1979) Motilin release, differences between man and dog and relationship to migrating motor complexes. Gastroenterolo-gy 76:1134.

    Google Scholar 

  • Franco R, Costa M, Furness JB (1979 a) Evidence for the release of endogenous substance P from intestinal nerves. Naunyn-Schmiedeberg Arch Pharmacol 306:185–201.

    Google Scholar 

  • Franco R, Costa M, Furness JB (1979 b) Evidence that axons containing substance P in the guinea-pig ileum are of intrinsic origin. Naunyn-Schmiedeberg Arch Pharmacol 307:57–63.

    CAS  Google Scholar 

  • Franco R, Costa M, Furness JB (1979 c) The presence of a cholinergic excitatory input to substance P neurons in the intestine. Proc Aust Physiol Pharmacol Soc 10:255P

    Google Scholar 

  • Frankl-Hochwart L von, Frölich A (1900) Über Tonus und Innervation der Sphinkteren des Anus. Arch Ges Physiol 81:420–482.

    Google Scholar 

  • Frenckner B, Ihre T (1976) Influence of autonomic nerves on the internal anal sphincter in man. Gut 17:306–312.

    PubMed  CAS  Google Scholar 

  • Friedman MHF (1975) The entero-enteric reflexes. In: Friedman MHF (ed) Functions of the stomach and intestine. University Park Press, Baltimore, pp 57–73.

    Google Scholar 

  • Frigo GM, Lecchini S (1970) An improved method for studying the peristaltic reflex in the isolated colon. Br J Pharmacol 39:346–456.

    PubMed  CAS  Google Scholar 

  • Frigo GM, Torsoli A, Lecchini S, Falaschi CF, Crema A (1972) Recent advances in the pharmacology of peristalsis. Arch Int Pharmacol Ther [Suppl] 196:9–23

    Google Scholar 

  • Fülgraff G, Schmidt L (1963) Die Wirkung elektrischer Reizung sympathischer und parasympathischer Nerven auf das proximale und distale Colon und ihre pharmacologische Beeinflußbarkeit. Naunyn-Schmiedebergs Arch Exp Phatol Pharmakol 245:106–107

    Google Scholar 

  • Fülgraff G, Schmidt L, Azokwu P (1964) Über die atropinresistente neuro-muskulare Übertragung am Pelvicus-Colon-Präparat der Katze. Arch Int Pharmacodyn Ther 149:537–551.

    Google Scholar 

  • Fujita T, Kobayashi S (1974) The cells and hormones of the GEP endocrine system — The current of studies. In: Fujita T (ed) Gastro-entero-pancreatic endocrine system. A cell biological approach, 1st edn. Williams & Wilkins, Baltimore, pp 1–16.

    Google Scholar 

  • Fukuda H (1966) Mechanism underlying the augmentation of the intestinal motility produced by the stimulation of the splanchnic nerve. J Physiol Soc Jpn. 28:45–52.

    CAS  Google Scholar 

  • Fukuda H (1968 a) On the relationship of the inhibitory neurone concerned with the intestinal intrinsic reflex with vagal inhibition. J Physiol Soc Jpn 30:702–709.

    CAS  Google Scholar 

  • Fukuda H (1968 b) On the inhibitory efferent neurone concerned with the intestinal intrinsic reflexes. J Physiol Soc Jpn 30:697–701.

    CAS  Google Scholar 

  • Furness JB (1969 a) An electrophysiological study of the smooth muscle of the colon. J Physiol (Lond) 205:549–562.

    CAS  Google Scholar 

  • Furness JB (1969 b) The presence of inhibitory nerves in the colon after sympathetic dener-vation. Eur J Pharmacol 6:349–352.

    PubMed  CAS  Google Scholar 

  • Furness JB (1970) An examination of nerve-mediated, hyoscine-resistant excitation of the guinea-pig colon. J Physiol (Lond) 207:803–821.

    CAS  Google Scholar 

  • Furness JB (1971) Secondary excitation of intestinal smooth muscle. Br J Pharmacol 41:213–226.

    PubMed  CAS  Google Scholar 

  • Furness JB, Costa M (1973) The nervous release and the action of substances which affect intestinal muscle through neither adrenoreceptors nor cholinoreceptors. Philos Trans Soc Lond [Biol] 265:123–133.

    CAS  Google Scholar 

  • Furness JB, Costa M (1974 a) The adrenergic innervation of the gastrointestinal tract. Ergeb Physiol 69:1–51.

    CAS  Google Scholar 

  • Furness JB, Costa M (1974 b) Adynamic ileus, its pathogenesis and treatment. Med Biol 52:82–89.

    PubMed  CAS  Google Scholar 

  • Furness JB, Costa M (1976) Ascending and descending enteric reflexes in the isolated small intestine of the guinea-pig. Proc Physiol Pharmacol Soc 7:172P.

    Google Scholar 

  • Furness JB, Costa M (1977) The participation of enteric inhibitory nerves in accommodation of the intestine to distension. Clin Exp Pharmacol Physiol 4:37–41.

    PubMed  CAS  Google Scholar 

  • Furness JB, Costa M (1979) Projections of intestinal neurons showing immunoreactivity for vasoactive intestinal polypeptide are consistent with these neurons being the enteric inhibitory neurons. Neurosci Lett 15:199–204.

    PubMed  CAS  Google Scholar 

  • Furness JB, Costa M (1980) Types of nerve in the enteric nervous system. Neuroscience 5:1–20.

    PubMed  CAS  Google Scholar 

  • Furness JB, Costa M, Franco R, Llewellyn-Smith IJ (1980) Neuronal peptides in the intestine: distribution and possible functions. Adv Biochem Psychopharmacol 21:601–617.

    Google Scholar 

  • Gabella G (1979 a) Smooth muscle cell junctions and structural aspects of contraction. Br Med Bull 35:213–218.

    PubMed  CAS  Google Scholar 

  • Gabella G (1979 b) Innervation of the gastrointestinal tract. Int Rev Cytol 59:129–193.

    PubMed  CAS  Google Scholar 

  • Galapeaux EA, Templeton RD (1937) The influence of filling the stomach on colon motility in the dog. Am J Physiol 119:312–313

    Google Scholar 

  • Garcia-Rodrigues M, Menéndez-Cepero F, Sainz-Guevara F, Reyes Diaz JM (1971) Bio-phasic response of the transmurally stimulation rat duodenum. Can J Physiol Pharmacol 49:370–372.

    Google Scholar 

  • Gardette B, Gonella J (1974) Étude électromyographique in vivo de la commande nerveuse orthosympathique du côlon chez le chat. J Physiol (Paris) 68:671–692.

    CAS  Google Scholar 

  • Garrett JR, Howard JR (1972) Effects of rectal distension on the internal anal sphincter of cats. J Physiol (Lond) 222:85P.

    CAS  Google Scholar 

  • Garrett JR, Howard ER, Jones W (1974) The internal anal sphincter in the cat: A study of nervous mechanisms affecting tone and reflex ability. J Physiol (Lond) 243:153–166.

    CAS  Google Scholar 

  • Garry RC (1933) The nervous control of the caudal region of the large bowel in the cat. J Physiol (Lond) 77:422–431.

    CAS  Google Scholar 

  • Garry RC (1934) The movement of the large intestine. Physiol Rev 14:103–132.

    Google Scholar 

  • Garry RC, Gillespie JS (1955) The responses of the musculature of the colon of the rabbit to stimualtion, in vitro, of the parasympathetic and the sympathetic outflows. J Physiol (Lond) 128:557–576.

    CAS  Google Scholar 

  • Gernandt B, Zotterman Y (1946) Intestinal pain; an electrophysiological investigation on mesenteric nerves. Acta Physiol Scand 12:56–72.

    Google Scholar 

  • Gershon MD, Thompson EB (1973) The maturation of neuromuscular function in a multiple innervated structure: Development of the longitudinal smooth muscle of the foetal mammalian gut and its cholinergic excitatory, adrenergic inhibitory and non-choliner-gic inhibitory innervation. J Physiol (Lond) 234:257–277.

    CAS  Google Scholar 

  • Gillespie JS (1962) Spontaneous mechanical and electrical activity of stretched and un-stretched intestinal smooth muscle cells and their response to sympathetic-nerve stimulation. J Physiol (Lond) 162:54–75.

    CAS  Google Scholar 

  • Gillespie JS (1968) Electrical activity in the colon. In: Code CF (ed) alimentary canal. American Physiological Society, Washington, DC (Handbook of physiology, vol IV, sect 6, pp 2093–2120).

    Google Scholar 

  • Gillespie JS, Khoyi MA (1977) The site and receptors responsible for the inhibition by sympathetic nerves of intestinal smooth muscle and its parasympathetic motor nerves. J Physiol (Lond) 267:767–789.

    CAS  Google Scholar 

  • Gillespie JS, Mackenna BR (1961) The inhibitory action of the sympathetic nerves on the smooth muscle of the rabbit gut, its reversal by reserpine and restoration by catechol-amines. J Physiol (Lond) 156:17–34.

    CAS  Google Scholar 

  • Ginzier KH (1959) Are mucosal nerve fibres essential for the peristaltic reflex? Nature 184:1235–1236.

    Google Scholar 

  • Golden R (1945) Radiologic examination of the small intestine. Lippincott, Philadelphia.

    Google Scholar 

  • Goldenberg MM, Burns RH (1971) Atropine-resistant spasm of the dog colon induced by intermittent pelvic nerve stimulation. Life Sci 10:591–600.

    CAS  Google Scholar 

  • Golenhofen K (1976) Spontaneous activity and functional classification of mammalian smooth muscle. In: Bülbring E, Shuba MF (eds) Physiology of smooth muscle. Raven, New York, pp 91–97.

    Google Scholar 

  • Gonella J (1964) Étude de l’activité électrique des fibres musculaires longitudinales du duodénum in vivo. Action de la stimulation des nerfs vagues. C R Soc Biol (Paris) 158:2409–2413.

    CAS  Google Scholar 

  • Gonella J (1970) Étude de l’activité électrique de la couche musculaire longitudinale du duodénum de lapin. J Physiol (Paris) 62:447–476.

    CAS  Google Scholar 

  • Gonella J (1971) Étude électromyographique des contractions segmentaires et péristaltiques du duodénum de lapin. Pfluegers Arch 322:217–234.

    CAS  Google Scholar 

  • Gonella J (1978) La motricité digestive et sa regulation nerveuse. J Physiol (Paris) 74:131–140.

    CAS  Google Scholar 

  • Gonella J, Lecchini S (1971) Inhibition de l’activité électrique de la couche circulaire du duodénum de lapin, in vitro, par stimulation des fibres sympathiques périarterielles du mésentère. C R Acad Sci [D] (Paris) 273:214–217.

    CAS  Google Scholar 

  • Gonella J, Vienot J (1972) Action des ganglioplégiques sur la propagation du péristaltisme duodénal. J Physiol (Paris) 64:623–630.

    CAS  Google Scholar 

  • Gowers WR (1877) The autonomic action of the sphincter ani. Proc R Soc Lond 26:77–84.

    Google Scholar 

  • Grafe P, Wood JD, Mayer CJ (1979) Fast excitatory postsynaptic potentials in AH (Type 2) neurons of guinea-pig my enteric plexus. Brain Res 163:349–352.

    PubMed  CAS  Google Scholar 

  • Gray WC, Hendershot C, Whitrock RM, Seevers MH (1955) Influence of parasympathetic nerves and their relation to the action of atropine in the ileum and colon of the dog. Am J Physiol 181:679–687.

    PubMed  CAS  Google Scholar 

  • Gregory JE (1950) Some factors influencing the passage of fluid through intestinal loops in dogs. J Physiol (Lond) 111:119–137.

    CAS  Google Scholar 

  • Gregory JE, Bentley GA (1968) The peristaltic reflex in the isolated guinea-pig ileum during drug-induced spasm of the longitudinal muscle. Aust J Exp Biol Med Sci 46:1–16.

    PubMed  CAS  Google Scholar 

  • Gregory RA (1946) Changes in intestinal tone and motility associated with nausea and vomiting. J Physiol (Lond) 105:58–65.

    CAS  Google Scholar 

  • Gregory RA (1947) The nervous pathways of intestinal reflexes associated with nausea and vomiting. J Physiol (Lond) 106:95–103.

    Google Scholar 

  • Grindlay JH, Mann FC (1941) effect of liquid and solid meals on intestinal activity. Am J Dig Dis 8:324–327.

    CAS  Google Scholar 

  • Grivel ML, Ruckebusch Y (1972) The propagation of segmental contractions along the small intestine. J Physiol (Lond) 227:611–625.

    CAS  Google Scholar 

  • Gulati OD, Panchal DI (1978) Some observations on the development of adrenergic innervation in rabbit intestine. Br J Pharmacol 64:247–251.

    PubMed  CAS  Google Scholar 

  • Gustavsson S (1978) Propulsion and mixing of small bowel contents. Acta Univ Ups 296.

    Google Scholar 

  • Haladay DA, Volk H, Mandell J (1958) Electrical activity of the small intestine with special reference to the origin of rythmicity. Am J Physiol 195:505–515.

    Google Scholar 

  • Halls J (1965) Bowel content shift during normal defection. Proc R Soc Med 58:859–860.

    PubMed  CAS  Google Scholar 

  • Hardcastle J, Hardcastle PT, Sanford PA (1978) Effect of actively transported hexoses on afferent nerve discharges from rat small intestine. J Physiol (Lond) 285:71–84.

    CAS  Google Scholar 

  • Hardcastle JD, Mann CV (1968) Study of large bowel peristalsis. Gut 9:512–520.

    PubMed  CAS  Google Scholar 

  • Hardcastle JD, Mann CV (1970) Physical factors in the stimulation of colonie peristalsis. Gut 11:41–46.

    PubMed  CAS  Google Scholar 

  • Harper AA, Kidd C, Scratcherd T (1959) Vago-vagal reflex effects on gastric and pancreatic secretion and gastrointestinal motility. J Physiol (Lond) 148:417–436.

    CAS  Google Scholar 

  • Harvey RF (1975) Hormonal control of gastrointestinal motility. Dig Dis 20:523–539.

    CAS  Google Scholar 

  • Harvey RF, Read AE (1973) Effect of oral magnesium sulphate on colonie motility in patients with the irritable bowel syndrome. Gut 14:983–987.

    PubMed  CAS  Google Scholar 

  • Hawkins CF, Hardy TL (1950) On the nature of haustration of the colon. J Fac Radiol (Lond) 2:95–98.

    Google Scholar 

  • Hellemans J, Vantrappen G, Janssens J, Peeters T (1978) Effect of feeding and of gastrin on the interdigestive myoelectrical complex in man. In: Duthie HL (ed) Gastrointestinal motility in health and disease. MPT Press, Lancaster, pp 29–30.

    Google Scholar 

  • Henderson VE (1928) The mechanism of intestinal peristalsis. Am J Physiol 86:82–98.

    Google Scholar 

  • Herman H, Morin G (1934) Mise en évidence d’un réflexe inhibiteur intestino-intestinal. C R Soc Biol (Paris) 115:529–531.

    Google Scholar 

  • Hertz AF (1913) The ileo-caecal sphincter. J Physiol (Lond) 47:54–56.

    CAS  Google Scholar 

  • Hertz AF, Newton A (1913) The normal movements of the colon in man. J Physiol (Lond) 47:57–65.

    CAS  Google Scholar 

  • Hiatt RB, Goodman I, Sandier M, Cheskin H (1976) The effects of coherin on the basic electrical rhythm of the dog ileum in vivo. Am J Dig Dis 22:108–112.

    Google Scholar 

  • Hill JR, Kelley ML, Schlegel JF (1960) Pressure profile of the rectum and anus of healthy persons. Dis Colon Rectum 3:203–209.

    PubMed  CAS  Google Scholar 

  • Hinrichsen J, Ivy AC (1931) Studies on the ileo-cecal sphincter of the dog. Am J Physiol 96:494–507.

    Google Scholar 

  • Hirst GDS (1979) Mechanisms of peristalsis. Br Med Bull 35:263–268.

    PubMed  CAS  Google Scholar 

  • Hirst GDS, McKirdy HC (1974) Presynaptic inhibition at mammalian peripheral synapse. Nature 250:430–431.

    PubMed  CAS  Google Scholar 

  • Hirst GDS, Holman ME, Spence I (1974) Two types of neurones of the myenteric plexus of duodenum in the guinea-pig. J Physiol (Lond) 236:303–326.

    CAS  Google Scholar 

  • Hirst GDS, Holman ME, McKirdy HC (1975) Two dsescending nerve pathways activated by distension of guinea-pig small intestine. J Physiol (Lond) 244:133–127.

    Google Scholar 

  • Holaday DA, Volk H, Mandell J (1958) Electrical activity of the small intestine with special reference to the origin of rhythmicity. Am J Physiol 195:505–515.

    PubMed  CAS  Google Scholar 

  • Holdstock DJ, Misiewicz JJ (1970) Factors controlling colonie motility: colonic pressures and transit after meals in patients with total gastrectomy, pernicious anaemia of duodenal ulcer. J Br Soc Gastroenterol 11:100–110.

    CAS  Google Scholar 

  • Holdstock DJ, Misiewicz JJ, Smith T, Rowlands EN (1970) Propulsion (mass movements) in the human colon and its relationship to meals and somatic activity. Gut 11:91–99.

    PubMed  CAS  Google Scholar 

  • Holman ME (1968) An introduction to electro-physiology of visceral smooth muscle. In: Code CF (ed) Alimentary canal. American Physiological Society, Washington, DC (Handbook of physiology, vol IV, sect 6, pp 1665–1708).

    Google Scholar 

  • Holman ME (1975) Excitation of nerves. In: Daniel EE, Paton DM (eds) Methods in pharmacology, vol 3, chap 14. Plenum, New York, pp 299–311.

    Google Scholar 

  • Holman ME, Hughes J (1965) Inhibition of intestinal smooth muscle. Aust J Exp Biol Med Sci 43:277–290.

    PubMed  CAS  Google Scholar 

  • Holt JF, Lyons RH, Neligh RB, Moe GK, Hodges FJ (1947) X-ray signs of altered alimentary function following autonomie blockade with tetraethylammonium. Radiology 49:603–610.

    PubMed  CAS  Google Scholar 

  • Holzknecht G (1909) Die normale Peristaltic des Kolon. MMW 56:2401–2403.

    Google Scholar 

  • Howard ER, Nixon HH (1968) Internal anal sphincter. Arch Dis Child 43:569–578.

    PubMed  CAS  Google Scholar 

  • Hukuhara T, Fukuda H (1965) The motility of the isolated guinea-pig small intestine. Jpn J Physiol 15:125–139.

    Google Scholar 

  • Hukuhara T, Fukuda H (1968) The electrical activity of guinea-pig small intestine with special reference to the slow wave. Jpn J Physiol 18:71–86.

    PubMed  CAS  Google Scholar 

  • Hukuhara T, Miyake T (1959) The intrinsic reflexes in the colon. Jpn J Physiol 9:49–55.

    PubMed  CAS  Google Scholar 

  • Hukuhara T, Neya T (1968) The movements of the colon of rats and guinea-pig. Jpn J Physiol 18:551–562.

    PubMed  CAS  Google Scholar 

  • Hukuhara T, Kinose S, Masuda K (1936) Beiträge zur Physiologie der Bewegung des Duodenums. Arch Ges Physiol 238:124–134.

    Google Scholar 

  • Hukuhara T, Yamagami M, Nakayama S (1958) On the intestinal intrinsic reflexes. Jpn J Physiol 8:9–20.

    PubMed  CAS  Google Scholar 

  • Hukuhara T, Nakayama S, Nanba R (1960) Locality of receptors concerned with the intes-tino-intestinal extrinsic and intestinal muscular intrinsic reflexes. Jpn J Physiol 10:414–419.

    PubMed  CAS  Google Scholar 

  • Hukuhara T, Nakayama S, Namba R (1961) The role of the intrinsic mucosal reflex in the fluid transport through the denervated colonie loop. Jpn J Physiol 11:71–79.

    PubMed  CAS  Google Scholar 

  • Hukuhara T, Neya T, Tsuchiya K (1969) The effect of the intrinsic mucosal reflex upon the propagation of intestinal contractions. Jpn J Physiol 19:824–833

    PubMed  CAS  Google Scholar 

  • Hultén L (1969) Extrinsic nervous control of colonie motility and blood flow. Acta Physiol Scand [Suppl] 335.

    Google Scholar 

  • Hunt JN, Knox MT (1968) Regulation of gastric emptying. In: Code CF (ed) Alimentary canal. American Physiological Society, Washington, DC (Handbook of physiology, vol IV, sect 6, pp 1911–1936.

    Google Scholar 

  • Hurst AF (1919) Constipation and allied disorders, 2 nd edn., Froude, London

    Google Scholar 

  • Iantsev AV (1979) Interrelationship of afferent impulses and the activity of smooth muscles of the small intestine. Fiziol Zh SSSR 65:741–746.

    PubMed  CAS  Google Scholar 

  • Iggo A (1957) Gastro-intestinal tension receptors with unmyelinated afferent fibres in the vagus of the cat. Q J Exp Physiol 42:130–142.

    CAS  Google Scholar 

  • Iggo A (1966) Physiology of visceral afferent systems. Acta Neuroveg (Wien) 28:121–134.

    Google Scholar 

  • Ihre T (1974) Studies on anal function in continent and incontinent patients. Scand J Gas-troenterol 9:1–80.

    Google Scholar 

  • Ingelfinger FJ, Abbott WO (1940) Incubation studies in the human small intestine. XX. The diagnostic significance of motor disturbances. Am J Dig Dis 7:468.

    Google Scholar 

  • Irving JT, McSwiney BA, Suffolk SF (1937) Afferent fibres from the stomach and small intestines. J Physiol (Lond) 89:407–420.

    CAS  Google Scholar 

  • Itina LV, Sergeev VA (1978) Autonomic nerve firing and small intestinal motoricity following introduction of a sucrose solution into the lumen. Fiziol Zh SSSR 64:1027–1034.

    PubMed  CAS  Google Scholar 

  • Ito Y, Kuriyama H (1973) Membrane properties and inhibitory innervation of the circular muscle cells of guinea-pig caecum. J Physiol (Lond) 231:455–470.

    CAS  Google Scholar 

  • Itoh Z, Aizawa I, Takeuchi S, Couch EF (1975) Hunger contractions and motilin. In: Van-trappen G (ed) Proceedings of the 5 th International Symposium on Gastrointestinal Motility. Typoff, Herentals, pp 48–55.

    Google Scholar 

  • Itoh Z, Honda R, Aizawa I, Takeuchi S, Hiwatashi K, Copuch EF (1978 a) Interdigestive motor activity of the lower esophageal sphincter in the conscious dog. Am J Dig Dis 23:239–247.

    PubMed  CAS  Google Scholar 

  • Itoh Z, Takayanagi R, Takeuchi S, Isshiki S (1978 b) Interdigestive motor activity of Heidenhain pouches in relation to main stomach in conscious dogs. Am J Physiol 234:E333–338.

    PubMed  CAS  Google Scholar 

  • Itoh Z, Honda R, Takeuchi S, Aizawa I (1979) Regular and irregular control of interdiges-tive contractions by motilin and intraduodenal pH. In: Christensen J (ed) 7 th International Symposium on Gastrointestinal Motility. Raven, New York, pp 279–286.

    Google Scholar 

  • Ivy AC, McIlvain GB (1923) The excitation of gastric secretion by application of substances to the duodenal and jejunal mucosa. Am J Physiol 67:124–140.

    Google Scholar 

  • Jansson G (1969) Extrinsic nervous control of gastric motility. Acta Physiol Scand [Suppl] 326.

    Google Scholar 

  • Jarrett RJ, Gazet JC (1966) Studies in vivo of the ileocaeco-colic sphincter in the cat and dog. Gut 7:271–275.

    PubMed  CAS  Google Scholar 

  • Johansson C Ekelund K (1975) Jejunal fluid flows and intestinal transit times in relation to the gastric emptying of different meals. In: 5 th International Symposium on Gastrointestinal Motility (Leuven).

    Google Scholar 

  • Johnson L (1972) Propulsive motility and intraluminal pressure variations in isolated homologously perfused small intestine. Acta Chir Scand 138:834–843.

    PubMed  CAS  Google Scholar 

  • Jordan AC (1914) The peristalsis of the large intestine. Arch Roentg Ray 18:328–339

    Google Scholar 

  • Julé Y (1974) Étude in vitro de l’activité électromyographique du côlon proximal et distal du lapin. J Physiol (Paris) 68:305–329

    Google Scholar 

  • Julé Y (1975) Modification de l’activité électrique du côlon proximal de lapin in vivo, par stimulation des nerfs vagues et splanchniques. J Physiol (Paris) 70:5–26

    Google Scholar 

  • Julé Y (1980) Nerve-mediated descending inhibition in the proximal colon of the rabbit. J Physiol (Lond) 309:487–498

    Google Scholar 

  • Julé Y, Gonella J (1972) Modifications de l’activité électrique du côlon terminal de lapin par stimulation des fibres nerveuses pelviennes et sympathiques. J Physiol (Paris) 64:599–621

    Google Scholar 

  • Julé Y, Szurszewski JH (1979) Occurrence of spontaneous oscillatory neurons in the cat inferior mesenteric ganglia: relationship to ileus? Gastroenterology 76:1163.

    Google Scholar 

  • Kajirsuka T (1979) Phasic and tonic contraction of rabbit intestinal muscle. Jpn J Physiol 29:159–177.

    Google Scholar 

  • Kelly KA (1977) Neural control of gastric electric and motor activity. In: Brooks FP, Evers PW (eds) Nerves and the gut. Slack, pp 223-231.

    Google Scholar 

  • Kelley ML Jr, De Weese JA (1969) Effects of eating and intraluminal filling on the ileocolonic junctional zone pressures. Am J Physiol 216:1491–1495.

    PubMed  Google Scholar 

  • Kelley ML Jr, Gordon EA, De Weese JA (1965) Pressure studies of the ileocolonic junction-al zone of dogs. Am J Physiol 209:333–339.

    PubMed  Google Scholar 

  • Kelley ML, Gordon EA, De Weese JA (1966) Pressure responses of canine ileocolonic junc-tional zone to intestinal distension. Am J Physiol 211:614–618.

    PubMed  Google Scholar 

  • Ken Kure K, Ichiko K-I, Ishikawa K (1931) On the spinal parasympathetic physiological significance of the spinal parasympathetic system in relation to the digestive tract. J Exp Physiol 21:1–19.

    Google Scholar 

  • Kerremans R (1968) Electrical activity and motility of the internal anal sphincter. An in vivo electrophysiological study in man. Acta Gastroenterol Belg 31:465–482.

    PubMed  CAS  Google Scholar 

  • Kewender J, Pahlin PE, Storm B (1970) The effect of periarterial nerve stimulation on the jejunal and ileal motility in cat. Acta Physiol Scand 80:353–359.

    Google Scholar 

  • Khan IH, Bedi BS (1972) Effect of vagotomy and pyloroplasty on the interdigestive myoelectrical complex of the stomach. Gut 13:841–842.

    PubMed  CAS  Google Scholar 

  • King CE, Glass LC, Townsend SE (1947) The circular components of the muscularis mu-cosae of the small intestine of the dog. Am J Physiol 148:667–674.

    PubMed  CAS  Google Scholar 

  • Kingma YJ, Durdle N, Bowes KL, Kocylovski M, Szmidt J (1979) Size of electrical oscillating regions in the canine colon. In: Christensen J (ed) Gastrointestinal motility. 7 th International Symposium on Gastrointestinal Motility. Raven, New York, pp 425–431.

    Google Scholar 

  • Klee P (1912) Der Einfluß der Vagusreizung auf den Ablauf der Verdauungsbewegungen. Pfluegers Arch 145:557–594.

    Google Scholar 

  • Klinge FW (1951) Behaviour of isolated intestinal segments without one or both plexuses. Am J Physiol 164:284–293.

    PubMed  CAS  Google Scholar 

  • Kobayashi M, Nagai T, Prosser CL (1966) Electrical interaction between muscle layers of cat intestine. Am J Physiol 211:1281–1291.

    PubMed  CAS  Google Scholar 

  • Kock NG, Kewenter J, Sundin T (1972) Studies on the defecation reflex in man. Scand J Gastroenterol 7:689–693.

    PubMed  CAS  Google Scholar 

  • Kocylowski M, Bowes KL, Kingma YJ (1979) Electrical and mechanical activity in the ex vivo perfused total canine colon. Gastroenterology 77:1021–1026.

    PubMed  CAS  Google Scholar 

  • Kosterlitz HW (1967) Intrinsic intestinal reflexes. Am J Dig Dis 12:245.

    PubMed  CAS  Google Scholar 

  • Kosterlitz HW (1968) Intrinsic and extrinsic nervous control of motility of the stomach and the intestines. In: Code CF (ed) Alimentary canal. American Physiological Society, Washington, DC (Handbook of physiology, vol IV, sect 6, pp 2147–2172).

    Google Scholar 

  • Kosterlitz HW, Lees GM (1964) Pharmacological analysis of intrinsic intestinal reflexes. Pharmacol Rev 16:301–339.

    PubMed  CAS  Google Scholar 

  • Kosterlitz HW, Lydon RJ (1968) Spontaneous electrical activity and nerve mediated inhibition in the innervated longitudinal muscle strip of the guinea-pig ileum. J Physiol (Lond) 200:126–128.

    Google Scholar 

  • Kosterlitz HW, Lydon RJ (1971) Impulse transmission in the myenteric plexus — longitudinal muscle preparations of the guinea-pig ileum. Br J Pharmacol 43:74–85.

    PubMed  CAS  Google Scholar 

  • Kosterlitz HW, Watt AJ (1975) The peristaltic reflex. In: Daniel EE, Paton DM (eds) Methods in pharmacology, vol 3, chap 21. Plenum, New York, pp 391–401.

    Google Scholar 

  • Kosterlitz HW, Pirie VW, Robinson JA (1956) The mechanism of the peristaltic reflex in the isolated guinea-pig ileum. J Physiol (Lond) 133:681–694.

    CAS  Google Scholar 

  • Kottegoda SR (1969) An analysis of possible nervous mechanisms involved in the peristaltic reflex. J Physiol (Lond) 200:687–712.

    CAS  Google Scholar 

  • Kottegoda SR (1970) Peristalsis of the small intestine. In: Bülbring E, Brading AF, Jones AW, Tomita T (eds) Smooth muscle. Arnold, London, pp 525–541.

    Google Scholar 

  • Krantis A, Costa M, Furness JB, Orbach J (1980) Gamma-aminobutyric acid stimulates intrinsic inhibitory and excitatory nerves in the guinea-pig intestine. Eur J Pharmacol 67:461–468.

    PubMed  CAS  Google Scholar 

  • Krishnan BT (1932) Studies of the function of the intestinal musculature. 1. The normal movements of the small intestine and the relations between the action of the longitudinal and circular muscle fibres in those movements. Q J Exp Physiol 22:37–63.

    Google Scholar 

  • Kuntz A (1953) The autonomic nervous system, 3rd edn. Lea & Febiger, Philadelphia.

    Google Scholar 

  • Kuriyama H, Tomita T (1970) Action potential in smooth muscle of guinea-pig taenia coli and ureter studied by double sucrose-gap method. J Gen Physiol 55:147–162.

    PubMed  CAS  Google Scholar 

  • Kuriyama H, Osa T, Toida N (1967) Nervous factors influencing the membrane activity of intestinal smooth muscle. J Physiol (Lond) 191:257–270.

    CAS  Google Scholar 

  • Kuru M, Sugihara (1955) Contributions to the knowledge of Bulbar Autonomic Centres. II. Relationship of the vagal nuclei to the gastro-jejunal motility. Jpn J Physiol 5:21–36.

    PubMed  CAS  Google Scholar 

  • Kyforeva O (1948) Duodenal function in man. Motor and secretory function of the duodenum and their relation in healthy subjects. Klin Med (Mosk) 26:45

    Google Scholar 

  • Lagerlöf HO, Johansson C, Ekelund K (1974) Studies of gastrointestinal interactions. VI. Intestinal flow, mean transit time and mixing after composite meals in man. Scand J Gastroenterol 9:261–270.

    PubMed  Google Scholar 

  • Lang RJ (1979) Temperature and inhibitory junctional transmission in guinea-pig ileum. Br J Pharmacol 66:355–357.

    PubMed  CAS  Google Scholar 

  • Langley JN (1898) On inhibitory fibers in the vagus for the end of the esophagus and the stomach. J Physiol (Lond) 23:407–414.

    CAS  Google Scholar 

  • Langley JN (1911) The effect of various poisons upon the response to nervous stimuli chiefly in relation to the bladder. J Physiol (Lond) 43:125–181.

    CAS  Google Scholar 

  • Langley JN (1921) The autonomic nervous system. Cambridge.

    Google Scholar 

  • Langley JN, Anderson HK (1895) On the innervation of the pelvic and adjoining viscera. J Physiol (Lond) 18:67–105.

    CAS  Google Scholar 

  • Langley JN, Dickinson WL (1889) On the local paralysis of the peripheral ganglia and on the connexion of different classes of nerve fibres with them. Proc R Soc 46:423–431.

    Google Scholar 

  • Langley JN, Magnus R (1905/1906) Some observations of the movements of the intestine before and after degenerative section of the mesenteric nerves. J Physiol (Lond) 33:34–51.

    CAS  Google Scholar 

  • Larson LM, Bargen JA (1933) Physiology of the colon. Arch Surg 27:1–50.

    Google Scholar 

  • Lee CY (1960) The effect of stimulation of extrinsic nerves on peristalsis and on the release of 5-hydroxytryptamine in the large intestine of the guinea-pig and of the rabbit. J Physiol (Lond) 152:405–418.

    CAS  Google Scholar 

  • Lee KY, Chey WY, Tai HH, Yajima H (1978) Radioimmunoassay of motilin, validation and studies on the relationship between plasma motilin and interdigestive myoelectric activity of the duodenum in dog. Am J Dig Dis 23:788–795.

    Google Scholar 

  • Leek BF (1972) Abdominal visceral receptors. In: Neil E (ed) Enteroceptors. Springer, Berlin Heidelberg New York (Handbook of sensory physiology, vol III/1, pp 113–160).

    Google Scholar 

  • Leek BF (1977) Abdominal and pelvic visceral receptors. Br Med Bull 33:163–168

    PubMed  CAS  Google Scholar 

  • Legros et Onimus (1869) Recherchers experimentales sur les movements de l’intestin. J Anat Physiol (Paris) 6:37–66.

    Google Scholar 

  • Lewis TD, Collins SM, Fox J-AE, Daniel ED (1979) Initiation of duodenal acid-induced motor complexes. Gastroenterology 77:1217–1224.

    PubMed  CAS  Google Scholar 

  • Lipkin M, Almy TP, Bell BM (1962) Pressure volume characteristics of the human colon. J Clin Invest 41:1831–1839.

    PubMed  CAS  Google Scholar 

  • Liu J, Prosser CL, Job DD (1969) Ionic dependence of slow waves and spikes in intestinal muscle. Am J Physiol 217:1542–1547

    PubMed  CAS  Google Scholar 

  • Llewellyn-Smith IJ, Wilson AJ, Furness JB, Costa M, Rush RA Ultrastructural identification of noradrenergic axons and their distribution within the enteric plexuses of the guinea-pig small intestine. Neurocytol 10:331-352.

    Google Scholar 

  • Lord MG, Hutton M, Wingate DL (1979) Patterns of slow wave and spike activity in the colon of the conscious dog. In: Christensen J (ed) Gastrointestinal motility. 7 th International Symposium on Gastrointestinal Motility. Raven, New York.

    Google Scholar 

  • Lüderitz C (1889) Experimentelle Untersuchungen über die Entstehung der Darmperistal-tik. Virchows Arch [Pathol Anat] 118:19–36.

    Google Scholar 

  • Lundberg JM, Dahlstrom A, Larsson I, Patterson G, Alderman H, Kewenter J (1978) Efferent innervation of the small intestine by adrenergic neurons from the cervical sympathetic and stellate ganglia, studied by retrograde transport of peroxidase. Acta Physiol Scand 104:33–42.

    PubMed  CAS  Google Scholar 

  • Lux GU, Strunz U, Domschke J, Femppel J, Rosch W, Domschke W (1978) Motilin and interdigestive myoelectric and motor activity of small intestine in man: lack of causal relationship. Scand J Gastroenterol [Suppl 49] 13:118.

    Google Scholar 

  • Lux G, Femppel J, Lederer P, Rösch W, Domschke W (1979 a) Increased duodenal alkali load associated with the interdigestive myoelectric complex. Acta Hepatogastroenterol 26:166–169.

    CAS  Google Scholar 

  • Lux G, Lederer P, Femppel J, Rosch W, Domschke W (1979 b) Spontaneous and 13-NLE-motilin-induced interdigestive motor activity of esophagus, stomach and small intestine in man. In: Christensen J (ed) Gastrointestinal motility. 7 th International Symposium on Gastrointestinal Motility. Raven, New York, pp 269–277.

    Google Scholar 

  • Lyman H (1913) The receptive relaxation of the colon. Am J Physiol 32:61–64

    Google Scholar 

  • MacEwen W (1904) The function on the caecum and appendix. Lancet 82:995–1000.

    Google Scholar 

  • Mackenna BR, McKirdy HC (1972) Peristalsis in the rabbit distal colon. J Physiol (Lond) 220:33–54.

    CAS  Google Scholar 

  • Maddison S, Horrell RI (1979) Hypothalamic unit responses to alimentary perfusions in the anesthetised rat. Brain Res Bull 4:259–266.

    PubMed  CAS  Google Scholar 

  • Mall F (1896) A study of the intestinal contraction. Johns Hopkins Hosp Rep 1:37–75.

    Google Scholar 

  • Marik F, Code CF (1975) Control of the interdigestive myoelectric activity in dogs by the vagus nerve and pentagastrin. Gastroenterology 69:387–395.

    PubMed  CAS  Google Scholar 

  • Martelli H, Devroede G, Arhan P, Duguoy C (1978) Mechanisms of idiopathic constipation: outlet obstruction. Gastroenterology 75:623–631.

    PubMed  CAS  Google Scholar 

  • Martinson J (1965) Studies on the efferent vagal control of the stomach. Acta Physiol Scand [Suppl 255] 65.

    Google Scholar 

  • Martinson J (1975) Nervous control of gastroduodenal motility and emptying. Scand J Gas-troenterol [Suppl] 10:31–44.

    Google Scholar 

  • Martinson J, Muren A (1963) Excitatory and inhibitory effects of vagus stimulation on gastric motility in the cat. Acta Physiol Scand 57:309–316.

    Google Scholar 

  • Marzio L, Lanfranchi GA, Trento L, Campieri M, Brignola C (1979) Rectoanal inhibitory reflex pattern in normal subjects and patients with idiopatic constipation. Ital J Gastro-enterol 11:142.

    Google Scholar 

  • Mashima H, Yoshida T, Handa M (1966) Contraction and relaxation of the guinea-pig’s taenia coli in relation to spike discharges. Jpn J Physiol 16:304–315.

    PubMed  CAS  Google Scholar 

  • Mathur PD, Grindlay JH, Mann FC (1948) Observations on duodenal motility in dogs with special reference to activity during vomiting. Gastroenterology 10:866–879.

    PubMed  CAS  Google Scholar 

  • Matsuo Y, Seki A (1978) The coordination of gastrointestinal hormones and the autonomic nerves. Am J Gastroenterol 69:21–50.

    PubMed  CAS  Google Scholar 

  • Mayer CJ, Wood JD (1975) Properties of mechanosensitive neurons within Auerbach’s plexus of the small intestine of the cat. Pfluegers Arch 357:35–49

    CAS  Google Scholar 

  • McCoy EJ, Baker RD (1968) Effects of feeding on electrical activity of dog’s small intestine. Am J Physiol 214:1291–1295

    PubMed  CAS  Google Scholar 

  • McCoy EJ, Baker RD (1969) Intestinal slow waves: Decrease in propagation velocity along the upper small intestine. Am J Dig Dis 14:9–13

    PubMed  CAS  Google Scholar 

  • McFadden GDS, Loughride JS, Milroy TH (1935) The nerve control of the distal colon. Q J Exp Physiol 25:315–327

    Google Scholar 

  • McKirdy HC (1972) Functional relationship of longitudinal andd circular layers of the muscularis externa of the rabbit large intestine. J Physiol (Lond) 227:839–853

    CAS  Google Scholar 

  • McLaren JW, Ardran GM, Sutcliffe J (1950) Radiographic studies of duodenum and jejunum in man. J Fac Radiol Lond 2:148–164.

    Google Scholar 

  • Mei N (1970) Mécanorécepteurs vagaux digestifs chez le chat. Exp Brain Res 11:502–514.

    PubMed  CAS  Google Scholar 

  • Mei N (1978) Vagal glucoreceptors in the small intestine of the cat. J Physiol (Lond) 282:485–506.

    CAS  Google Scholar 

  • Meltzer SJ, Auer J (1907) Peristaltic rush. Am J Physiol 20:259–281.

    Google Scholar 

  • Mendel C, Pousse A, Schang JC, Dauchel J, Grenier JF (1978) Longitudinal contractions in the jejunum of fasting dogs. In: Duthie HL (ed) Gastrointestinal motility in health and disease. MTP Press, Lancaster, pp 61–69.

    Google Scholar 

  • Mendeloff AI (1968) Defecation. In: Code CF (ed) American Physiological Society, Washington, DC (Handbook of physiology, vol IV, sect 6, pp 2140–2146).

    Google Scholar 

  • Mescham I, Quigley JP (1938) Spontaneous motility of the pyloric sphincter and adjacent regions of the gut in the unanaesthetized dog. Am J Physiol 121:350–357.

    Google Scholar 

  • Meshkinpour H, Dinoso VP, Lorber SH (1974) Effect of intraduodenal administration of essential amino acids and sodium oleate on motor activity of the sigmoid colon. Gastro-enterology 66:373–377.

    CAS  Google Scholar 

  • Meunier PO, Marechall JM, De Beaujeu MJ (1979) Rectoanal pressures and rectal sensitivity studies in chronic childhood constipation. Gastroenterology 77:330–336.

    PubMed  CAS  Google Scholar 

  • Meunier P, Mollard P (1977) Control of the internal anal sphincter (monometric study with human subjects). Pfluegers Arch 370:233–239.

    CAS  Google Scholar 

  • Mir SS, Mason R, Ormsbee HS III (1977) An inhibitory innervation at the gastroduodenal junction in anaesthetized dogs. Gastroenterology 73:432–434.

    PubMed  CAS  Google Scholar 

  • Mir SS, Mason GR, Ormsbee HS (1978) Vagal influence on duodenal motor activity. Am J Surg 135:97–101.

    PubMed  CAS  Google Scholar 

  • Misiewicz JJ (1975) Colonic motility. Gut 16:311–314.

    PubMed  CAS  Google Scholar 

  • Misiewicz JJ, Waller SL, Eisner M (1966) Motor responses of human gastrointestinal tract to 5-hydroxytryptamine in vivo and in vitro. Gut 7:208–216.

    PubMed  CAS  Google Scholar 

  • Mitchell GAG (1953) Anatomy of the autonomic nervous system. Livingstone, Edinburgh.

    Google Scholar 

  • Mitznegg P, Bloom SR, Domschke W, Domschke S, Wunsch E, Demling L (1976) Release of motilin after duodenal acidification. Lancet 1:888–889.

    PubMed  CAS  Google Scholar 

  • Monges H, Salducci J, Naudy B (1974) Electrical activity of the gastrointestinal tract in dog during vomiting. In: Daniel EE (ed) Proceedings of the 4 th International Symposium on Gastrointestinal Motility. Mitchell, Vancouver, pp 479–488.

    Google Scholar 

  • Monges H, Salducci J, Nauudy B, Ranieri F, Gonella J, Bouvier M (1979) The electrical activity of the internal anal sphincter: a comparative study in man and in cat. In: Christensen J (ed) Gastrointestinal motility. 7 th International Symposium on Gastrointestinal Motility. Raven, New York.

    Google Scholar 

  • Morgan KG, Go VLW, Szurszewski JH (1979) Motilin increases the influence of excitatory myenteric plexus neurons on gastric smooth muscle in vitro. In: Christensen J (ed) Gastrointestinal motility. 7 th International Symposium on Gastrointestinal Motility. Raven, New York.

    Google Scholar 

  • Mukhopadhyay AK, Thor PJ, Copeland EM, Johnson LR, Weisbrodt NW (1977) Effect of cholecystokinin on myoelectric activity of small bowel of dog. Am J Physiol 232:E44–47.

    PubMed  CAS  Google Scholar 

  • Mulinos MG (1927) Gastrointestinal motor réponse to vagus stimulation after nicotine. Proc Soc Exp Biol Med 25:49–53.

    Google Scholar 

  • Munro AF (1953) Effect of autonomic drugs on the responses of isolated preparations from the guinea-pig intestine to electrical stimulation. J Physiol (Lond) 120:41–52.

    CAS  Google Scholar 

  • Nakayama S (1962) Movements of the small intestine in transport of intraluminal contents. Jpn J Physiol 12:522–533.

    Google Scholar 

  • Nakayama S (1965) Effects of stimulation of the vagus nerve on the movements of the small intestine. Jpn J Physiol 15:243–252.

    Google Scholar 

  • Nakayama S, Nanba R (1961) Electrophysiological studies on the intestinal intrinsic reflex. Jpn J Physiol 11:499–505.

    PubMed  CAS  Google Scholar 

  • Nakayama S, Neya T, Yamasato T, Takaki M, Mizutani M (1979) Activity of the spinal defecation centre in the guinea-pig. Ital J Gastroenterol 11:168–173.

    Google Scholar 

  • Newman M, Thienes CH (1933) On the sympathetic innervation of guinea-pig intestine. Am J Physiol 104:113–116.

    Google Scholar 

  • Ng KKF (1966) The effect of some anticholinesterases on the response of the taenia to sympathetic nerve stimulation. J Physiol (Lond) 182:233–243.

    CAS  Google Scholar 

  • Ninomiya I, Irishawa H, Woolley G (1974) Intestinal mechanoreceptor reflex effects on sympathetic nerve activity to intestine and kidney. Am J Physiol 227:584–591.

    Google Scholar 

  • Nishi S, North RA (1973a) Intracellular recording from the myenteric plexus of the guinea-pig ileum. J Physiol (Lond) 231:471–491.

    CAS  Google Scholar 

  • Nishi S, North RA (1973 b) Presynaptic action of noradrenaline in the myenteric plexus. J Physiol (Lond) 231:29–30P.

    Google Scholar 

  • North RA, Williams JT (1977) Extracellular recording from the guinea-pig myenteric plexus and the action of morphine. Eur J Pharmacol 45:23–33.

    PubMed  CAS  Google Scholar 

  • Nothnagel H (1882) Zur chemischen Reizung der glatten Muskeln; zugleich als Beitrag zur Physiologie des Darms. Arch Pathol Anat Physiol Klin Med 88.

    Google Scholar 

  • Öhrn P-G, Rentzhog L (1976) Effect of adrenergic blockade on gastrointestinal propulsion after laparotomy. Acta Chir Scand [Suppl] 461:53–64

    Google Scholar 

  • Öhrn P-G, Rentzhog L, Winkstrom S (1976) Effects of sympathoadrenal activity and pharmacological treatment on gastrointestinal propulsion in the early postoperative period. Acta Chir Scand [Suppl] 461:65–76.

    Google Scholar 

  • Ohga A, Nakazato Y, Saito K (1970) Considerations of the efferent nervous mechanism of the vago-vagal reflex relaxation of the stomach in the dog. Jpn J Pharmacol 20:116–130.

    PubMed  CAS  Google Scholar 

  • Ohkawa H, Prosser CL (1972 a) Electrical activity in myenteric and submucous plexus of cat intestine. Am J Physiol 222:1412–1419.

    PubMed  CAS  Google Scholar 

  • Ohkawa H, Prosser CL (1972 b) Functions of neurons in enteric plexuses of cat intestine. Am J Physiol 222:1420–1426.

    PubMed  CAS  Google Scholar 

  • Ohya S (1969) On the responses of colon motility to stimulation of dog’s lumbar cord. Jpn J Smooth Muscle Res 5:100–107.

    Google Scholar 

  • Ormsbee HS III, Mir SS (1978) The role of the cholinergic nervous system in the gastrointestinal response to motilin in vivo. In: Duthie HL (ed) Gastrointestinal motility in health and disease. MTP Press, Lancaster, pp 113–122.

    Google Scholar 

  • Ormsbee HS, Eisenstat TE, Mason GR (1976) Vagal stimulation of canine duodenal motor activity. Surg Forum 27:392–394.

    PubMed  Google Scholar 

  • Ormsbee HS, Telford GL, Mason GR (1979) Required neural involvement in control of canine migrating motor complex. Am J Physiol 237:E451–E456.

    PubMed  Google Scholar 

  • Pahlin PE, Kewenter J (1975) Reflexogenic contraction of the ileocecal sphincter in the cat following small or large intestinal distension. Acta Physiol Scand 95:126–132.

    PubMed  CAS  Google Scholar 

  • Pahlin PE, Kewenter J (1976 a) Sympathetic nervous control of cat ileocecal sphincter. Am J Physiol 231:296–305.

    PubMed  CAS  Google Scholar 

  • Pahlin PE, Kewenter J (1976 b) The vagal control of the ileo-cecal sphincter in the cat. Acta Physiol Scand 96:433–442.

    PubMed  CAS  Google Scholar 

  • Paintal AS (1957) Responses from mucosal mechanoreceptors in the small intestine of the cat. J Physiol (Lond) 139:353–368.

    CAS  Google Scholar 

  • Paintal AS (1963) Vagal afferent fibres. Ergeb Physiol 52:74–156.

    PubMed  CAS  Google Scholar 

  • Paintal AS (1973) Vagal sensory receptors and their reflex effects. Physiol Rev 53:159–227.

    PubMed  CAS  Google Scholar 

  • Papasova M, Velkova V, Atanassova E (1979) Character of the gastric and duodenal electrical activity after blocking of the adrenoreactive structures. Acta Physiol Pharmacol Bulg 5:3–10.

    PubMed  CAS  Google Scholar 

  • Parkkulainen KV (1962) Simple low small bowel obstruction. Acta Chir Scand [Suppl] 290:1–97.

    Google Scholar 

  • Pascaud XB, Genton MJH, Bass P (1978) Gastroduodenal contractile activity in fed and fasted unrestrained rats. In: Duthie HL (ed) Gastrointestinal motility in health and disease. MTP Press, Lancaster, pp 637–645.

    Google Scholar 

  • Paton WDM (1955) The response of the guinea-pig ileum to electrical stimulation by coaxial electrodes. J Physiol (Lond) 127:40P-41P.

    Google Scholar 

  • Paton WDM, Vane JR (1963) An analysis of the responses of the isolated stomach to electrical stimulation and to drugs. J Physiol (Lond) 165:10–46.

    CAS  Google Scholar 

  • Paton WDM, Zar A (1968) The origin of acetylcholine released from guinea-pig intestine and longitudinal muscle strips. J Physiol (Lond) 194:13–33.

    CAS  Google Scholar 

  • Pearce EA, Wingate DL (1979) The role of the myenteric plexuses? Gastroenterology 76:1215.

    Google Scholar 

  • Pearcy JF, Van Liere EJ (1926) Studies on the visceral nervous system. XVII. Reflexes from the colon. Reflexes to the stomach. Am J Physiol 78:64–73.

    Google Scholar 

  • Peeters TL, Vantrappen G, Janssens J (1979) Fluctuations of motilin and gastrin levels in relation to the interdigestive motility complex in man. In: Christensen J (ed) Gastrointestinal motility. 7 th International Symposium on Gastrointestinal Motility. Raven, New York, p 287.

    Google Scholar 

  • Perkins WE (1971) A method for studying the electrical and mechanical activity of isolated intestine. J Appl Physiol 30:768–771.

    PubMed  CAS  Google Scholar 

  • Persson CGA (1976) Inhibitory innervation of cat sphincter of oddi. Br J Pharmacol 58:479–482.

    PubMed  CAS  Google Scholar 

  • Pescatori M, Grassetti F, Ronzoni G, Mancinelli R, Bertuzzi A, Salinari S (1979) Peristalsis in distal colon of the rabbit: an analysis of mechanical events. Am J Physiol 236:464–472.

    Google Scholar 

  • Pick J (1970) The autonomic nervous system; morphological, comparative, clinical and surgical aspects. Lippincott, Philadelphia.

    Google Scholar 

  • Poitras P, Steinbach J, Van Deventer G, Walsh JH, Code CF (1979) Effects of somatostatin on interdigestive myoelectric complexes and motilin blood levels. Gastroenterology 76:1218.

    Google Scholar 

  • Pomeroy AR, Raper C (1971) Maximal responses in guinea-pig isolated ileum preparations: influence of longitudinal and circular muscle. J Pharm Pharmacol 23:796–798.

    PubMed  CAS  Google Scholar 

  • Posey EL, Brown HS, Bargen JA (1948) The response of human intestinal motility to te-traethylammonium chloride. Gastroenterology 11:83–89.

    PubMed  Google Scholar 

  • Preshaw AM, Knauff RS (1966) The effect of sham feeding on the secretion and motility of canine duodenal pouches. Gastroenterology 51:193–199.

    PubMed  CAS  Google Scholar 

  • Prosser CL (1974) Diversity of electrical activity in gastrointestinal muscle. In: Daniel EE (ed) Proceedings of the 4 th International Symposium on Gastrointestinal Motility. Mitchell, Vancouver, pp 21–37.

    Google Scholar 

  • Prosser CL, Bortoff A (1968) Electrical activity of intestinal muscle under in vitro conditions. In: Code CF (ed) Alimentary canal. American Physiological Society, Washington, DC (Handbook of physiology, vol IV, sect 6, pp 2025–2074).

    Google Scholar 

  • Provenzale L, Pisano M (1971) Methods for recording electrical activity of the human colon in vivo. Am J Dig Dis 16:712–722.

    PubMed  CAS  Google Scholar 

  • Puestow CB (1937) Intestinal motility in the dog and man. Ill Med Dent Monogr 2:1–69.

    Google Scholar 

  • Quigley JP, Highstone WH, Ivy AC (1934) A study of the propulsive activity of the Thiry-Vella loop of intestine. Am J Physiol 108:151–158.

    Google Scholar 

  • Quigley JP, Louckes MS (1962) Gastric emptying. Am J Dig Dis 7:672–676.

    PubMed  CAS  Google Scholar 

  • Quigley JP, Solomon EI (1930) Action of insulin on the motility of the gastrointestinal tract. V.a. Action on the human duodenum, b. Action on the colon of dogs. Am J Physiol 91:488–495.

    CAS  Google Scholar 

  • Raiford T, Mulinos MG (1934 a) Intestinal activity in the exteriorized colon of the dog. Am J Physiol 110:123–128.

    Google Scholar 

  • Raiford T, Mulinos MG (1934 b) The myenteric reflex as exhibited by the exteriozed colon of the dog. Am J Physiol 110:129–136.

    Google Scholar 

  • Ramorino ML, Colagrande C (1964) Intestinal motility preliminary studies with telemetering capsule and synchronized fluorocinematrography. Am J Dig Dis 9:64–71.

    PubMed  CAS  Google Scholar 

  • Rand MJ, Ridehalgh A (1965) Actions of hemicholinium and triethylcholine on responses of guinea-pig colon to stimulation of autonomic nerves. J Pharm Pharmacol 17:144–156.

    PubMed  CAS  Google Scholar 

  • Ranieri F, Crousillat J, Mei N (1975) Étude électrophysiologique et histologique des fibres afferentes splanchniques. Arch Ital Biol 113:354–373.

    PubMed  CAS  Google Scholar 

  • Rayner V (1971) Observations on the functional internal anal sphincter of the vervet monkey. J Physiol (Lond) 213:27–28P.

    Google Scholar 

  • Rayner V (1979) Characterisation of the internal anal sphincter and the rectum of the vervet monkey. J Physiol (Lond) 286:383–399.

    CAS  Google Scholar 

  • Read NW (1979) The migrating motor complex and spontaneous fluctuations of transmural potential difference in the human small intestine. In: Christensen J (ed) Gastrointestinal motility. 7 th International Symposium on Gastrointestinal motility. Raven, New York, pp 299–306.

    Google Scholar 

  • Reinke DA, Rosenbaum AH, Bennett DR (1967) Patterns of dog gastrointestinal contractile activity monitored in vivo with extraluminal force transducers. Am J Dig Dis 12:113–141.

    PubMed  CAS  Google Scholar 

  • Rentz E (1938) Über den Einfluß der Vagusreizung auf die Bewegungen des Dickdarms. Arch Exp Pathol Pharmakol 191:172–182.

    Google Scholar 

  • Reverdin N, Hutton M, Ling A, Wingate DL, Ritchie HD, Christofides N, Adrian TE, Bloom SR (1979) The motor responses to food: vagus-dependent or independent? Gastroenterology 76:1225.

    Google Scholar 

  • Reynell PC, Spray GH (1956) The simultaneous measurement of absorption and transit in the gastrointestinal tract of the rat. J Physiol (Lond) 131:452–462.

    CAS  Google Scholar 

  • Rikimaru A (1971 a) Contractile properties of organ-cultured intestinal smooth muscle. To-hoku J Exp Med 103:317–327.

    CAS  Google Scholar 

  • Rikimaru A (1971 b) Relaxing response to transmural stimulation of isolated taenia coli of the chimpanzee and the pig. Tohoku J Exp Med 103:115–116.

    PubMed  CAS  Google Scholar 

  • Rikimaru A, Suzuki T (1971) Neural mechanism of the relaxing responses of guinea-pig taenia coli. Tohoku J Exp Med 103:303–315.

    PubMed  CAS  Google Scholar 

  • Ritchie JA (1968) Colonic motor activity and bowel function. Part 1. Normal movement of contents. Gut 9:442–456.

    PubMed  CAS  Google Scholar 

  • Ritchie JA (1971) Movement of segmental constrictions in the human colon. Gut 12:350–355.

    PubMed  CAS  Google Scholar 

  • Ritchie J (1972) Mass peristalsis in the human colon after contact with oxyphenisatin. Gut 13:211–219.

    PubMed  CAS  Google Scholar 

  • Roden SH (1937) An experimental study on intestinal movements; particularly with regard to ileus conditions in cases of trauma and peritonitis. Acta Chir Scand [Suppl 51] 80:1–146.

    Google Scholar 

  • Ross B, Watson BW, Kay AW (1963) Studies on the effect of vagotomy on small intestinal motility using the radio-telemetering capsule. Gut 4:77–83.

    PubMed  CAS  Google Scholar 

  • Rostad H (1973) Central and peripheral nervous control of colonic motility in the cat. University of Oslo.

    Google Scholar 

  • Rubin MR, Snape WJ Jr, Cohen S (1979) The vagal and cholinergic control of the ileocecal sphincter. Gastroenterology 76:1230.

    Google Scholar 

  • Ruckebusch Y (1973) Les particularites motrices de jejuno-ileum chez le cheval. Cah Med Vet 42:128–143.

    Google Scholar 

  • Ruckebusch Y, Bueno L (1973) The effect of the small intestine in the calf. Br J Nutr 30:491–499.

    PubMed  CAS  Google Scholar 

  • Ruckebusch Y, Bueno L (1975) Electrical activity of ovine jejunum and changes due to disturbances. Am J Dig Dis 20:1027–1034.

    PubMed  CAS  Google Scholar 

  • Ruckebusch Y, Bueno L (1977 a) Migrating myoelectrical complex of the small intestine. Gastroenterology 73:1309–1314.

    PubMed  CAS  Google Scholar 

  • Ruckebusch Y, Bueno L (1977 b) Origin of migrating myoelectric complex in sheep. Am J Physiol 233:E483–487.

    PubMed  CAS  Google Scholar 

  • Ruckebusch M, Ferré JP (1974) Origine alimentaire des variation nycthemerales de l’activité électrique de l’intestin grêle chez le rat. C R Soc Biol (Paris) 167:2005–2009.

    Google Scholar 

  • Ruckebusch M, Fioramonti J (1975) Electrical spiking activity and propulsion in small intestine in fed and fasted rats. Gastroenterology 68:1500–1508.

    Google Scholar 

  • Ruckebusch Y, Grivel ML, Fargeas MJ (1971) Activité électrique de l’intestin et prise de nourriture conditionnelle chez le lapin. Physiol Behav 6:359–365.

    PubMed  CAS  Google Scholar 

  • Ruppin H, Soergel KH, Dodds JW, Wood CM, Domschke W (1979) Effects of the interdigestive motor complex (IMC) and 13-Norleucine motilin (NLEM) on fasting intestinal flow rate and velocity in man. Gastroenterology 76:1231.

    Google Scholar 

  • Ruwart MJ, Klepper MS, Rush BD (1979) Evidence for non-cholinergic mediation of small intestinal transit in the rat. J Pharmacol Exp Ther 209:462–465.

    PubMed  CAS  Google Scholar 

  • Sancholuz AG, Croley TE II, Christensen J, Macagno EO, Glover JR (1975) Phase lock of electrical slow waves and spike bursts in cat duodenum. Am J Physiol 229:608–612.

    PubMed  CAS  Google Scholar 

  • Sanford PA (1976) Effect of actively transported hexoses on afferent nerve discharge from rat small intestine in vivo. J Physiol (Lond) 254:75–76P.

    Google Scholar 

  • Sarna SK, Bardakjian BL, Waterfall WE, Lind JF (1980) Human colonie electrical control activity (ECA). Gastroenterology 78:1526–1536.

    PubMed  CAS  Google Scholar 

  • Sarna SK, Daniel EE, Kingma YJ (1971) Stimulation of slow wave electrical activity of small intestine. Am J Physiol 221:166–175.

    PubMed  CAS  Google Scholar 

  • Sarr MG, Kelly KA (1979) Jejunal transit of liquids and solids during jejunal interdigestive and digestive motor activity. In: Christensen J (ed) Gastrointestinal motility. 7 th International Symposium on Gastrointestinal Motility. Raven, New York, p 309.

    Google Scholar 

  • Sato T, Takayanagi I, Takagi K (1973) Pharmacological properties of electrical activities obtained from neurons in Auerbach’s plexus. Jpn J Pharmacol 23:665–671.

    PubMed  CAS  Google Scholar 

  • Schang JC, Dauchel J, Sava P, Angel F, Bauchet P, Lambert A, Grenier JF (1978) Specific effects of different food components on intestinal motility. Electromyographic study in dogs. Eur Surg Res 10:425–432.

    PubMed  CAS  Google Scholar 

  • Schaumann O, Jochum K, Schmidt H (1953) Analgetika und Darmmotorik. III. Zum Mechanismus der Peristaltik. Arch Expt Pathol Pharmakol 219:302–309.

    CAS  Google Scholar 

  • Schofield GC (1968) Anatomy of muscular and neural tissues in the alimentary canal. In: Code CF (ed) Alimentary canal. American Physiological Society, Washington, DC (Handbook of physiology, vol IV, sect 6, pp 1579–1628).

    Google Scholar 

  • Schuster MW (1968) Motor action of rectum and anal sphincters in continence and defecation. In: Code CF (ed) Alimentary canal. American Physiological Society, Washington, DC (Handbook of physiology, vol IV, sect 6, pp 2121–2139).

    Google Scholar 

  • Schuster MM (1975) The riddle of the sphincters. Gastroenterology 69:249–262.

    PubMed  CAS  Google Scholar 

  • Schuster MM, Hendrix TR, Mendeloff AI (1963) The internal anal sphincter response: manometric studies on its normal physiology, neural pathways and alteration in bowel disorder. J Clin Invest 42:196–207.

    PubMed  CAS  Google Scholar 

  • Scott LD, Summers RW (1976) Correlation of contractions and transit in rat small intestine. Am J Physiol 230:132–137.

    PubMed  CAS  Google Scholar 

  • Sellers AF, Lowe JE, Brondum J (1979) Motor events in equine large colon. Am J Physiol 237:E457–464.

    PubMed  CAS  Google Scholar 

  • Semba T (1954) Studies on the gastro-colic reflexes. Hiroshima J Med Sci 2:329–333.

    Google Scholar 

  • Semba T (1956) Motor effect of the distal colon caused by stimulating the dorsal roots of the dog’s lumbar nerves. Jpn J Physiol 6:321–326.

    PubMed  CAS  Google Scholar 

  • Semba T, Hiraoka T (1957) Motor responses of the stomach and small intestine caused by stimulation of the peripheral end of the splanchnic nerve. Jpn J Physiol 7:64–71.

    PubMed  CAS  Google Scholar 

  • Semba T, Mishima H (1958) Studies on the motor reflexes of the distal colon. J Hiroshima Med Assoc 11:11–20.

    Google Scholar 

  • Semba T, Mizonishi T (1978) Atropine-resistant excitation of motility of the dog stomach and colon induced by stimulation of the extrinsic nerves and their centers. Jpn J Physiol 28:239–248.

    PubMed  CAS  Google Scholar 

  • Sharma KN (1967) Receptor mechanisms in the alimentary tract: their excitation and functions. In: Code CF (ed) Alimentary canal. American Physiological Society, Washington, DC (Handbook of physiology, vol I, sect 6, pp 225–237.

    Google Scholar 

  • Sharma KN, Nasset ES (1962) Electrical activity in mesenteric nerves after perfusion of gut lumen. Am J Physiol 202:725–730.

    PubMed  CAS  Google Scholar 

  • Shearin NL, Bowes KL, Kingma YJ (1978) In vitro electrical activity in canine colon. Gut 20:780–786.

    Google Scholar 

  • Shepherd JJ, Wright POG (1968) The response of the internal anal sphincter in man to stimulation of the presacral nerve. Am J Dig Dis 13:421–427.

    PubMed  CAS  Google Scholar 

  • Short AR (1919) Observations on the ileo-cecal valve. Br Med J 2:164–165.

    PubMed  CAS  Google Scholar 

  • Sillin LF, Condon RF, Shulte WJ, Woods JH, Bass PO, Go VWL (1978) The relationship between gastric inhibitory peptide and right colon electro-mechanical activity after feeding. In: Duthie HL (ed) Gastrointestinal motility in health and disease. MTP Press, Lancaster, pp 361–362.

    Google Scholar 

  • Slaughter RL, Grant EE (1974) Small intestine motor response of the dog during vomiting with demonstration of a reverse peristaltic contraction. Gastroenterology 66:779.

    Google Scholar 

  • Small RC (1971) Transmission from cholinergic neurones to circular smooth muscle obtained from the rabbit caecum. Br J Pharmacol 42:656–657P.

    Google Scholar 

  • Small RC (1972) Transmission from intramural inhibitory neurones to circular smooth muscle of the rabbit caecum and the effects of catecholamines. Br J Pharmacol 45:149P.

    PubMed  CAS  Google Scholar 

  • Small RC, Weston AH (1979) Intramural inhibition in rabbit and guinea-pig intestine. In: Baer HP, Drummond GI (eds) Physiological and regulatory functions of adenosine and adenine nucleotides. Raven, New York, pp 45–61.

    Google Scholar 

  • Smets W (1936) L’activité réflexe de la valvule iléo-caecale et du segment terminal de grêle. C R Soc Biol (Paris) 123:106–107.

    Google Scholar 

  • Smith CC, Brizzee KR (1961) Cineradiographic analysis of vomiting in the cat. Gastroenterology 40:654–664.

    Google Scholar 

  • Snape WJ Jr, Carlson GM, Cohen S (1976) Colonie myoelectric activity in the irritable bowel syndrome. Gastroenterology 70:326–330.

    PubMed  Google Scholar 

  • Snape WJ Jr, Matarazzo SA, Cohen S (1978) Effects of eating and gastrointestinal hormones on human colonie myoelectric and motor activity. Gastroenterology 75:373–378.

    PubMed  CAS  Google Scholar 

  • Shape WJ Jr, Wright SH, Battle WM, Cohen S (1979) The gastro-colic response: evidence for a neural mechanism. Gastroenterology 77:1235–1240.

    Google Scholar 

  • Stavney SL, Kato T, Griffith CA, Nyhus LM, Harkins HN (1963) A physiologic study of motility changes following selective gastric vagotomy. J Surg Res 3:390–394.

    PubMed  CAS  Google Scholar 

  • Stewart JJ, Bass P (1976 a) Effect of intravenous C-terminal octapeptide of cholecystokinin and intraduodenal ricinoleic acid on contractile activity of the dog intestine. Proc Soc Exp Biol Med 152:213–217.

    PubMed  CAS  Google Scholar 

  • Stewart JJ, Bass P (1976 b) Effects of ricinoleic and oleic acids on the digestive contractile activity of the canine small and large bowel. Gastroenterology 70:371–376.

    PubMed  CAS  Google Scholar 

  • Stewart JJ, Weisbrodt NW, Burks TF (1977) Evidence for centrally mediated drug effects on the myoelectric activity of the feline small intestine. In: Brooks FP, Evers PW (eds) Nerves and the gut. Slack, pp 272-284.

    Google Scholar 

  • Stockley HL, Bennett A (1974) The intrinsic innervation of human sigmoid colon muscle. In: Daniel EE (ed) Proceedings of the 4 th International Symposium on Gastrointestinal Motility. Mitchell, Vancouver, pp 165–176.

    Google Scholar 

  • Stockley HL, Bennett A (1977) Relaxations mediated by adrenergic and non-adrenergic nerves in human isolated taenia coli. J Pharm Pharmacol 29:533–537.

    PubMed  CAS  Google Scholar 

  • Stoddart CJ, Duthie HL (1973) The changes in gastroduodenal myoelectrical activity after varying degrees of vagal denervation. Gut 14:824.

    Google Scholar 

  • Stoddard CJ, Smallwood RH, Duthie HL (1978) Migrating myoelectrical complexes in man. In: Duthie HL (ed) Gastrointestinal motility in health and disease. MTP Press, Lancaster, pp 9–15.

    Google Scholar 

  • Stoddart CJ, Duthie HL, Smallwood RH (1979) Colonic myoelectrical activity in man’s comparison of recording techniques and methods of analysis. Gut 20:476–483.

    Google Scholar 

  • Streeten DHP, Vaughan-Williams EM (1951) The influence of intraluminal pressure upon the transport of fluid through cannulated thiry-vella loops in dogs. J Physiol (Lond) 112:1–21.

    CAS  Google Scholar 

  • Sullivan MA, Cohen S, Snape WJ Jr (1978) Colonic myoelectrical activity in irritable bowel syndrome. Effects of eating and anticholinergics. N Engl J Med 298:878–883.

    PubMed  CAS  Google Scholar 

  • Summers RW (1978) Hydrogen ions inhibit jejunal flow. In: Duthie HL (ed) Gastrointestinal motility in health and disease. MTP Press, Lancaster, pp 625–633.

    Google Scholar 

  • Summers RW, Dusdieker NS (1979) Computer-generated display of longitudinal spike burst spread in the small intestine. In: Christensen J (ed) Gastrointestinal motility. 7 th International Symposium on Gastrointestinal Motility. Raven, New York, pp 339–344.

    Google Scholar 

  • Summers RW, Kent TH, Osborne JW (1970) Effects of drugs, ileal obstruction, and irradiation on rat gastrointestinal propulsion. Gastroenterology 59:731–739.

    PubMed  CAS  Google Scholar 

  • Summers RW, Helm J, Christensen J (1976) Intestinal propulsion in the dog. Its relation to food intake and the migrating myoelectric complex. Gastroenterology 70:753–758.

    PubMed  CAS  Google Scholar 

  • Suzuki T, Inomata H (1964) The inhibitory post-synaptic potential in intestinal smooth muscle investigated with intracellular microelectrode. Tohoku J Exp Med 82:48–51

    PubMed  CAS  Google Scholar 

  • Szolcsányi J, Barthó L (1978) New type of nerve-mediated cholinergic contractions of the guinea-pig small intestine and its selective blockade by capsacin. Nauny-Schmiedeberg Arch Pharmacol 305:83–90.

    Google Scholar 

  • Szurszewski JH (1969) A migrating complex of the canine small intestine. Am J Physiol 217:1757.

    PubMed  CAS  Google Scholar 

  • Szurszewski JH (1977 a) Towards a new view of prevertebral ganglion. In: Brooks FP, Evers PW (eds) Nerves and the gut. Slack, pp 244-258.

    Google Scholar 

  • Szurszewski JH (1977 b) Modulation of smooth muscle by nervous activity: a review and a hypothesis. Fed Proc 36: 2456–2461.

    PubMed  CAS  Google Scholar 

  • Szurszewski JH, Weems WA (1976) A study of peripheral input to and its control by post-ganglionic neurones of the inferior mesenteric ganglion. J Physiol (Lond) 256:541–556.

    CAS  Google Scholar 

  • Takayanagi I, Sato T, Takagi K (1977) Effects of sympathetic stimulation on electrical activity of Auerbach’s plexus and intestinal smooth muscle tone. J Pharm Pharmacol 29:376–377.

    PubMed  CAS  Google Scholar 

  • Tansy MF, Kendall FM (1973) Experimental and clinical aspects of gastrocolic reflexes. Am J Dig Dis 18:521–531.

    PubMed  CAS  Google Scholar 

  • Tansy MF, Kendall FM (1977) Systemic effects of visceral afferent fiber stimulation. In: Brooks FP, Evers PW (eds) Nerves and the gut. Stack, pp 334-349.

    Google Scholar 

  • Tansy MF, Kendall FM, Murphy JJ (1972) The reflex nature of the gastrocolic propulsive response in the dog. Surg Gynecol Obstet 135:404–410.

    PubMed  CAS  Google Scholar 

  • Tansy MF, Martin JS, Landin WE, Kendall FM (1979) Evidence of reflexive beta adrener-gic motor stimulation in the canine stomach and small intestine. Surg Gynecol Obstet 148:905–912.

    PubMed  CAS  Google Scholar 

  • Taylor GS, Daniel EE, Tomita T (1975 a) Origin and mechanism of intestinal slow waves. In: 5 th International Symposium on Gastrointestinal Motility.

    Google Scholar 

  • Taylor I, Duthie HL, Smallwood R, Linkens D (1975 b) Large bowel myoelectrical activity in man. Gut 16:808–814.

    PubMed  CAS  Google Scholar 

  • Telford ED, Stopford JSB (1934) The autonomic nerve supply of the distal colon. An anatomical and clinical study. Br Med J 1:572–574.

    PubMed  CAS  Google Scholar 

  • Telford GL, Mir SS, Mason GR, Ormsbee HS III (1979) Neural control of the canine pylorus. Am J Surg 137:92–98.

    PubMed  CAS  Google Scholar 

  • Templeton RD, Lawson H (1931) Studies in the motor activity of the large intestine. Am J Physiol 96:667–676.

    Google Scholar 

  • Thomas JE (1957) Mechanics and regulation of gastric emptying. I. Mech Physiol Rev 37:453–474.

    CAS  Google Scholar 

  • Thomas JE, Baldwin MV (1971) The intestinal mucosal reflex in the unanesthetizes dog. Am J Dig Dis 16:642–647.

    PubMed  CAS  Google Scholar 

  • Thomas JE, Kuntz A (1926 a) A study of the vagoenteric mechanism by means of nicotine. Am J Physiol 76:598–605.

    Google Scholar 

  • Thomas JE, Kuntz A (1926 b) A study of gastrointestinal motility in relation to the enteric nervous system. Am J Physiol 76:606–626.

    Google Scholar 

  • Thomas PA, Kelly KA (1979) Hormonal control of interdigestive motor cycles of canine proximal stomach. Am J Physiol 236:192–197.

    Google Scholar 

  • Thomas PA, Kelly A, Go VWL (1979) Hormonal regulation of gastrointestinal interdiges-tive motor cycles. In: Christensen J (ed) Gastrointestinal motility. 7 th International Sympsium on Gastrointestinal Motility. Raven, New York, pp 267–268.

    Google Scholar 

  • Thouvenot J, Harichaux P (1963) Activité électrique spontanée de l’intestine. Étude chez le cobaye anesthésié. J Physiol (Paris) 55:344–345.

    CAS  Google Scholar 

  • Tomita T (1972) Conductance change during the inhibitory potential in the guinea-pig taenia coli. J Physiol (Lond) 255:693–703.

    Google Scholar 

  • Tonini M, Lecchini S, Frigo G, Crema A (1974) Action of tetrodotoxin on spontaneous electrical activity of some smooth muscle preparations. Eur J Pharmacol 29:236–240.

    PubMed  CAS  Google Scholar 

  • Torsoli A, Ramorino ML, Ammaturo MV, Capurso L, Paoluzzi P, Anzini F (1971) Mass movements and intracolonic pressures. Am J Dig Dis 16:693–696.

    PubMed  CAS  Google Scholar 

  • Trendelenburg P (1917) Physiologische und pharmakologische Versuche über die Dünn-darmperistaltik. Naunyn-Schmiedeberg Arch Exp Pathol Pharmakol 81:55–129.

    Google Scholar 

  • Truelove SC (1966) Movements of the large intestine. Physiol Rev 46:457–512.

    PubMed  CAS  Google Scholar 

  • Tsuchiya K (1972) Electrical and mechanical activities of the longitudinal muscle in the peristaltic wave elicited by the intraluminal pressure raising. Rend Gastroenterol 4:115–125.

    Google Scholar 

  • Ustach TJ, Tobon F, Hambrecht T, Bass DD, Schuster MM (1970) Electrophysiological aspects of human sphincter function. J Clin Invest 49:41–48.

    PubMed  CAS  Google Scholar 

  • Van Harn GL (1963) Responses of muscles of cat small intestine to autonomic nerve stimulation. Am J Physiol 204:352–358.

    Google Scholar 

  • Van Liere EJ, Stickney JC, Northup DW (1945) The rate of progress of inert material through the small intestine. Gastroenterology 5:37–42.

    Google Scholar 

  • Van Merwyk AJ, Duthie HL (1979) Characteristics of human colonie smooth muscle in vitro. In: Christensen J (ed) Gastrointestinal motility. 7 th International Symposium on Gastrointestinal Motility. Raven, New York, pp 473–478.

    Google Scholar 

  • Vantrappen G, Janssen SJ, Hellemans J, Ghoos Y (1977) The interdigestive motor complex of normal subjects and patients with bacterial overgrowth of the small intestine. J Clin Invest 59:1158–1166.

    PubMed  CAS  Google Scholar 

  • Vantrappen G, Janssen SJ, Hellemans J, Christofides N, Bloom S (1978) Studies on the in-terdigestive (migrating) motor complex in man. In: Duthie HL (ed) Gastrointestinal motility in health and disease. MTP Press, Lancaster, pp 3–8.

    Google Scholar 

  • Vantrappen G, Peeters TL, Janssen SJ (1979) The secretory component of the interdigestive complex. In: Christensen J (ed) Gastrointestinal motility. 7 th International Symposium on Gastrointestinal Motility. Raven, New York.

    Google Scholar 

  • Varagic V (1956) The effect of tolazoline and other substances on the response of the isolated colon of the rabbit to nerve stimulation. Arch Int Pharmacodyn Ther 106:141–150.

    PubMed  CAS  Google Scholar 

  • Vermilion DL, Gillespie JP, Cooke AR, Wood JD (1979) Does 5-hydroxytryptamine influence “purinergic” inhibitory neurons in the intestine? Am J Physiol 236:198–202.

    Google Scholar 

  • Walker GD, Stewart JJ, Bass P (1974) The effect of parietal cell and truncal vagotomy on gastric and duodenal contractile activity of the unanaesthetized dog. Ann Surg 179:853–858.

    PubMed  CAS  Google Scholar 

  • Wankling WJ, Brown BH, Collins CD, Duthie HL (1968) Basal electrical activity in the anal canal in man. Gut 9:457–460.

    PubMed  CAS  Google Scholar 

  • Waterfall WE, Duthie HL, Brown BH (1973) The electrical and motor actions of gastrointestinal hormones on the duodenum in man. Gut 14:689–696.

    PubMed  CAS  Google Scholar 

  • Weems WA, Seygal GE (1979) Intestinal propulsion: studies employing a method for its quantitative evaluation. In: Christensen J (ed) Gastrointestinal motility. 7 th International Symposium on Gastrointestinal Motility. Raven, New York, pp 331–338.

    Google Scholar 

  • Weisbrodt NW (1974) Electrical and contractile activities of the small intestine of the cat. Am J Dig Dis 19:93–99.

    PubMed  CAS  Google Scholar 

  • Weisbrodt NW, Christensen J (1972) Electrical activity in the cat duodenum in fasting and vomiting. Gastroenterology 63:1004–1010.

    PubMed  CAS  Google Scholar 

  • Weisbrodt NW, Copeland EM, Moore EP, Kearley RW, Johnson LR (1975) Effect of vagotomy on electrical activity of the small intestine of the dog. Am J Physiol 228:650–654.

    PubMed  CAS  Google Scholar 

  • Welch PB, Plant OH (1926) A graphic study of the muscular activity of the colon with special reference to its response to feeding. Am J Med Sci 172:261–268.

    Google Scholar 

  • Wells JA, Mercer TH, Gray JS, Ivy AC (1942) The motor innervation of the colon. Am J Physiol 138:83–93.

    Google Scholar 

  • Weston AH (1973 a) Nerve mediated inhibition of mechanical activity in rabbit duodenum and the effects of desensitization to adenosine and several of its derivatives. Br J Pharmacol 48:302–308.

    PubMed  CAS  Google Scholar 

  • Weston AH (1973 b) The effect of desensitization to adenosine triphosphate on the peristaltic reflex in guinea-pig ileum. Br J Pharmacol 47:606–608.

    PubMed  CAS  Google Scholar 

  • White JC, Verlot MG, Ehrentheil O (1940) Neurogenic disturbances of the colon and their investigation by the colon metrogram. Ann Surg 112:1042–1058.

    PubMed  CAS  Google Scholar 

  • Wienbeck M (1972) The electrical activity of the cat in vivo. I. The normal electrical activity and its relation to contractile activity. Res Exp Med 158:268–279.

    CAS  Google Scholar 

  • Wienbeck M, Altaparmacov I (1979) Is the internal anal sphincter controlled by a myoelec-trical mechanism? In: Christensen J (ed) Gastrointestinal motility. 7 th International Symposium on Gastrointestinal Motility. Raven, New York, pp 487–493.

    Google Scholar 

  • Wienbeck M, Janssen H (1974) Electrical control mechanisms at the ileo-colic junction. In: Daniel EE (ed) Proceedings of the 4 th International Symposium on Gastrointestinal Motility. Mitchell, Vancouver, pp 97–107.

    Google Scholar 

  • Wienbeck M, Janssen H, Kreuzpainter G (1978) Nycthemeral variation of ileocolic myoelectrical activity in the cat. In: Duthie HL (ed) Gastrointestinal motility in health and disease. MTP Press, Lancaster, pp 399–404.

    Google Scholar 

  • Williams I (1967) Mass movement (mass peristalsis) and diverticular disease of the colon. Br J Radiol 40:2–14.

    PubMed  CAS  Google Scholar 

  • Wingate DL, Ruppin H, Green WER et al. (1976) Motilin-induced electrical activity in the canine gastrointestinal tract. Scand J Gastroenterol 11:111–118.

    CAS  Google Scholar 

  • Wingate DL, Thompson HH, Pearce EA, Dand A (1977) Quantitative analysis of the effects of oral feeding on canine intestinal myoelectrical activity. Gastroenterology 72:1151.

    Google Scholar 

  • Wingate DL, Thompson HH, Pearce EA, Dand A (1978) The effects of exogenous chole-cystokinin and pentagastrin on myoelectrical activity in the small intestine of the conscious fasted dog. In: Duthe HL (ed) Gastrointestinal motility in health and disease. MTP Press, Lancaster, pp 47–58.

    Google Scholar 

  • Wood JD (1970) Electrical activity from single neurons in Auerbach’s plexus. Am J Physiol 219:159–169.

    PubMed  CAS  Google Scholar 

  • Wood JD (1972) Excitation of intestinal muscle by atropine, tetrodotoxin, and xylocaine. Am J Physiol 222:118–125.

    PubMed  CAS  Google Scholar 

  • Wood JD (1973) Electrical discharge of single enteric neurons of guinea-pig small intestine. Am J Physiol 225:1107–1113.

    PubMed  CAS  Google Scholar 

  • Wood JD (1975) Neurophysiology of Auerbach’s plexus and control of intestinal motility. Physiol Rev 55:307–324.

    PubMed  CAS  Google Scholar 

  • Wood JD, Mayer CJ (1978 a) Intracellular study of electrical activity of Auerbach’s plexus in guinea-pig small intestine. Pfluegers Arch 374:265–275.

    CAS  Google Scholar 

  • Wood JD, Perkins WE (1970) Mechanical interaction between longitudinal and circular axes of the small intestine. Am J Physiol 281:762–768.

    Google Scholar 

  • Yamamoto T, Satomi H, Ise H, Takatamo H, Takahashi K (1978) Sacral spinal innervations of the rectal and vesical smooth muscles and the sphincteric striated muscules as demonstrated by the horseradish peroxidase method. Neurosci Lett 7:41–47.

    PubMed  CAS  Google Scholar 

  • Yokoyama S (1966) Aktionspotentiale der Ganglienzelle des Auerbachschen Plexus im Kaninchendünndarm. Pfluegers Arch 288:95–102.

    CAS  Google Scholar 

  • Yokoyama S, Ozaki T (1978) Functions of Auerbach’s plexus. Jpn J Smooth Muscle Res 14:173–187.

    CAS  Google Scholar 

  • Yokoyama S, Ozaki T, Kajitsuka T (1977) Excitation conduction in Auerbach’s plexus of rabbit small intestine. Am J Physiol 232:E100–108.

    PubMed  CAS  Google Scholar 

  • You CH, Chey WY, Lee KY (1980) Studies on plasma motilin concentration and interdigestive motility of the duodenum in humans. Gastroenterology 79:62–66.

    PubMed  CAS  Google Scholar 

  • Youmans WB (1952) Neural regulation of gastric and intestinal motility. Am J Med 13:209–226.

    PubMed  CAS  Google Scholar 

  • Youmans WB (1968) Innervation of the gastrointestinal tract. In: Codde CF (ed) Alimentary canal. American Physiological Society, Washington, DC (Handbook of physiology, vol IV, sect 6, pp 1655–1664).

    Google Scholar 

  • Youmans WB, Karstens AI, Aumann KW (1943) Relation of the extrinsic nerves of the intestine to the inhibitory action of atropine and scopalamine on intestinal motility. J Pharmacol Exp Ther 777:266–273.

    Google Scholar 

  • Zondek B (1920) Über Dickdarmperistaltik. Beobachtungen am experimentellen Bauchfenster. Arch Verdauungskr 27:18–23.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Costa, M., Furness, J.B. (1982). Nervous Control of Intestinal Motility. In: Bertaccini, G. (eds) Mediators and Drugs in Gastrointestinal Motility I. Handbook of Experimental Pharmacology, vol 59 / 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68437-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68437-1_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68439-5

  • Online ISBN: 978-3-642-68437-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics