Skip to main content

Experimentelle Methoden

  • Chapter
Dünndarm A

Part of the book series: Handbuch der inneren Medizin ((INNEREN 3,volume 3 / 3 / A))

  • 61 Accesses

Zusammenfassung

Nach frühen Experimenten im 16. und 17. Jahrhundert begannen quantitative Versuche zur intestinalen Resorption am Menschen Ende des 18. Jahrhunderts (Spallanzani 1780). Von der ersten Hälfte des 19. Jahrhunderts sind Experimente zur Aufklärung der intestinalen Resorption an Tieren bekannt, wobei schon In-situ-Präparationen angewandt wurden (s. Literaturangaben bei Parsons 1968). Im allgemeinen beschränkten sich In-vivo-Versuche in Tieren auf die orale Applikation von Stoffen und die Erfassung derselben oder ihrer Digestionsprodukte im Gastrointestinaltrakt der getöteten Tiere. Durch Cori (1925) wurde diese Methode verbessert, indem er in Versuchen zur Kohlenhydratresorption verschiedene Zucker mit Hilfe einer Magensonde verabreichte. Beeinflussungen durch die Magenentleerung wurden später durch die Plazierung einer Duodenalsonde umgangen (Fenton 1945). Die heute weit verbreiteten und vielfach modifizierten Perfusionsmethoden an Tieren wurden durch Versuche von Sols u. Ponz (1947) begründet. Ebenso wie beim Tier wurde auch beim Menschen die quantitative Erfassung intestinaler Resorptionsleistungen durch die Einführung von Sonden zugänglich. Nach Versuchen von Abbott u. Miller (1936) wurden erstmals von Nicholson u. Chornock (1942) direkte Messungen zur Dünndarmresorption am Menschen durchgeführt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Abbott WO, Miller TG (1936) Intubation studies of the human small intestine. III. A technic for the collection of pure intestinal secretion and for the study of intestinal absorption. JAMA 106:16–18

    CAS  Google Scholar 

  • Allen LH, Raynolds WL, Margen S (1979) Polyethylene glycol as a quantitative fecal marker in human nutrition experiments. Am J Clin Nutr 32:427–440

    PubMed  CAS  Google Scholar 

  • Antonioli JA, Joseph C, Robinson JWL (1978) Kinetics of the absorption of amino acids by the rat intestine in vivo. Biochim Biophys Acta 512:172–191

    PubMed  CAS  Google Scholar 

  • Atkinson RM, Parsons BJ, Smyth DM (1957) The intestinal absorption of glucose. J Physiol 135:581–589

    PubMed  CAS  Google Scholar 

  • Axon ATR, Creamer B (1975) The exsorption characteristics of various sugars. Gut 16:99–104

    PubMed  CAS  Google Scholar 

  • Barr WH, Riegelman S (1970) Intestinal drug absorption and metabolism I: comparison of methods and models to study physiological factors of in vitro and in vivo intestinal absorption. J Pharm Sci 59:154–163

    PubMed  CAS  Google Scholar 

  • Berger EY, Kanzaki G, Homer MA, Steele JM (1959) Simultaneous flux of sodium into and out of the dog intestine. Am J Physiol 196:74–82

    PubMed  CAS  Google Scholar 

  • Bihler J, Cybulsky R (1973) Sugar transport at the basal and lateral aspect of the small intestinal epithelial cell. Biochim Biophys Acta 298:429–438

    PubMed  CAS  Google Scholar 

  • Binder HJ (1974) Sodium transport across isolated human jejunum. Gastroenterology 67:231–236

    PubMed  CAS  Google Scholar 

  • Bingham JK, Newey H, Smyth DH (1966) Specificity of the inhibitory effects of sugars on intestinal amino acid transfer. Biochim Biophys Acta 120:314–316

    PubMed  CAS  Google Scholar 

  • Borgström B (1969) Quantification of cholesterol absorption in man by fecal analysis after the feeding of a single isotope-labeled meal. J Lipid Res 10:331–337

    PubMed  Google Scholar 

  • Boulter JM, McMichael HB (1970) Modification of polyethyleneglycol estimation suitable for use with small mammals. Gut 11:268–270

    PubMed  CAS  Google Scholar 

  • Boyd CAR (1977) Vascular flow and the compartmental distribution of transported solutes within the small intestinal wall. In: Kramer M, Lauterbach F (eds) Intestinal permeation. Excerpta Medica, Amsterdam Oxford, p 41

    Google Scholar 

  • Boyd CAR, Parsons DS (1978) Effects of vascular perfusion on the accumulation, distribution and transfer of 3-O-methyl-D-glucose within and across the small intestine. J Physiol 274:17–36

    PubMed  CAS  Google Scholar 

  • Boyd CAR, Cheeseman CI, Parsons DS (1975) Amino acid movements across the wall of anuran small intestine perfused through the vascular bed. J Physiol 250:409–429

    PubMed  CAS  Google Scholar 

  • Bronk JR, Ingham PA (1976) Evidence for carrier-mediated uptake and efflux of sugars at the serosal side of the rat intestinal mucosa in vitro. J Physiol 255:481–495

    PubMed  CAS  Google Scholar 

  • Caspary WF (1975a) Resorption von Kohlenhydraten und Proteinen im Dünndarm unter normalen und krankhaften Bedingungen. In: Bartelheimer H, Kühn HA, Becker V, Stelzner F (Hrsg) Gastroenterologie und Stoffwechsel, Bd VII. Thieme, Stuttgart

    Google Scholar 

  • Caspary WF (1975b) Einfluß von Aspirin, Antazida, Alkohol und Gallensäuren auf die transmurale elektrische Potentialdifferenz des menschlichen Magens. Dtsch Med Wochenschr 100:1263–1268

    PubMed  CAS  Google Scholar 

  • Caspary WF (1978) Breath tests. Clin Gastroenterol 7:351–374

    PubMed  CAS  Google Scholar 

  • Caspary WF, Stevenson NR, Crane RK (1969) Evidence for an intermediate step in carrier-mediated sugar translocation across the brush border membrane of hamster small intestine. Biochim Biophys Acta 193:168–178

    PubMed  CAS  Google Scholar 

  • Chadwick VS, Phillips SF, Hofmann AF (1977 a) Measurements of intestinal permeability using low molecular weight polyethylene glycols (PEG 400). I. Chemical analysis and biological properties of PEG 400. Gastroenterology 73:241–246

    PubMed  CAS  Google Scholar 

  • Chadwick VS, Phillips SF, Hofmann AF (1977 b) Measurements of intestinal permeability using low molecular weight polyethylene glycols (PEG 400). II. Application to normal and abnormal permeability states in man and animals. Gastroenterology 73:247–251

    PubMed  CAS  Google Scholar 

  • Cheng B, Navab F, Lis MT, Miller TN, Matthews DM (1971) Mechanisms of dipeptide uptake by rat small intestine in vitro. Clin Sci 40:247–259

    PubMed  CAS  Google Scholar 

  • Christensen HN (1975) Biological transport, 2nd edn. Benjamin, New York

    Google Scholar 

  • Christiansen PA, Kirsner JB, Ablaza J (1959) D-xylose and its use in the diagnosis of malabsorptive states. Am J Med 27:443–453

    PubMed  CAS  Google Scholar 

  • Cobden I, Rothwell J, Axon ATR (1980) Intestinal permeability and screening tests for coeliac disease. Gut 21:512–518

    PubMed  CAS  Google Scholar 

  • Code CF (1960) The semantics of the process of absorption. Perspect Biol Med 3:561–562

    Google Scholar 

  • Code CF, Bass P, McClary GB, Newnum RL, Orvis AL (1960) Absorption of water, sodium and potassium in small intestine of dogs. Am J Physiol 199:281–288

    PubMed  CAS  Google Scholar 

  • Cori CF (1925) Fate of sugar in the animal body. I. Rate of absorption of hexoses and pentoses from the intestinal tract. J Biol Chem 66:691–715

    CAS  Google Scholar 

  • Crane RK (1965) Na+-dependent transport in the intestine and other animal tissues. Fed Proc 24:1000–1005

    PubMed  CAS  Google Scholar 

  • Crane RK (1968) Absorption of sugars. In: Code CF (ed) Alimentary canal. American Physiological Society, Washington (Handbook of physiology, vol III/6, pp 1323–1358)

    Google Scholar 

  • Crane RK, Mandelstam P (1960) The active transport of sugars by various preparations of hamster intestine. Biochim Biophys Acta 45:460–476

    PubMed  CAS  Google Scholar 

  • Crane RK, Wilson TH (1958) In vitro method for the study of the rate of intestinal absorption of sugars. J Appl Physiol 12:145–146

    PubMed  CAS  Google Scholar 

  • Crane RK, Malathi P, Preiser H (1976) Reconstitution of specific Na+-dependent D-glucose transport in liposomes by Triton X-100 extracted proteins from purified brush border membranes of hamster small intestine. Biochem Biophys Res Commun 71:1010–1016

    PubMed  CAS  Google Scholar 

  • Davignon J, Simmonds WJ, Ahrens EH jr (1968) Usefulness of chromic oxide as an internal standard for balance studies in formula-fed patients and for assessment of colonic function. J Clin Invest 47:127–138

    PubMed  CAS  Google Scholar 

  • Davis GR, Santa Ana CA, Morawski SG, Fordtran JS (1980) Inhibition of water and electrolyte absorption by polyethylene glycol (PEG). Gastroenterology 79:35–39

    PubMed  CAS  Google Scholar 

  • Debnam ES, Levin RJ (1975) An experimental method of identifying and quantifying the active transfer electrogenic component from the diffusive component during sugar absorption measured in vivo. J Physiol 246:181–196

    PubMed  CAS  Google Scholar 

  • Dietschy JM, Westergaard H (1975) The effect of unstirred water layers on various transport processes in the intestine. In: Csáky TZ (ed) Intestinal absorption and malabsorption. Raven, New York, p 197

    Google Scholar 

  • Dinda PK, Beck IT, Beck M (1977) Some observations on the determination of extracellular fluid volume of jejunal tissue using 3H inulin and 14C inulin. Can J Physiol Pharmacol 55:389–393

    PubMed  CAS  Google Scholar 

  • Dubois RS, Vaughan GD, Roy CC (1968) Isolated rat small intestine with intact circulation. In: Norman JC (ed) Organ perfusion and preservation. Appleton-Century-Crofts, New York, pp 863–875

    Google Scholar 

  • Elsas LJ, Hillman RE, Patterson JH, Rosenberg LE (1970) Renal and intestinal hexose transport in familial glucose-galactose malabsorption. J Clin Invest 49:576–585

    PubMed  CAS  Google Scholar 

  • Esposito G, Faelli A, Capraro V (1973) Sugar and electrolyte absorption in the rat intestine perfused in vivo. Pfluegers Arch 340:335–348

    CAS  Google Scholar 

  • Esposito G, Csáky TZ (1974) Extracellular space in the epithelium of rat’s small intestine. Am J Physiol 226:50–55

    PubMed  CAS  Google Scholar 

  • Esposito G, Faelli A, Tosco M, Burlini N, Capraro V (1979) Extracellular space determination in rat small intestine by using markers of different molecular weights. Pfluegers Arch 382:67–71

    CAS  Google Scholar 

  • Evans GW, Grace CI, Votava HJ (1975) A proposed mechanism for zinc absorption in the rat. Am J Physiol 228:501–505

    PubMed  CAS  Google Scholar 

  • Fenton PF (1945) Response of the gastrointestinal tract to ingested glucose solutions. Am J Physiol 144:609–619

    CAS  Google Scholar 

  • Fisher RB, Parsons DS (1949) A preparation of surviving rat small intestine for the study of absorption. J Physiol 110:36–46

    PubMed  CAS  Google Scholar 

  • Fordtran JS, Levitan R, Bikerman V, Burrow SBA, Ingelfinger FJ (1961) The kinetics of water absorption in the human intestine. Trans Assoc Am Physicians 74:195–205

    PubMed  CAS  Google Scholar 

  • Fordtran JS, Rector FC jr, Ewton MF, Soter N, Kinney J (1965) Permeability characteristics of the human small intestine. J Clin Invest 44:1935–1944

    PubMed  CAS  Google Scholar 

  • Forstner GG, Sabesin SM, Isselbacher KJ (1968) Rat intestinal micro villus membranes. Purification and biochemical characterization. Biochem J 106:381–390

    PubMed  CAS  Google Scholar 

  • French AB, Brown IF, Good CJ, Mcleod GM (1968) Comparison of phenol red and polyethyleneglycol as nonabsorbable markers for the study of intestinal absorption in humans. Am J Dig Dis 13:558–564

    PubMed  CAS  Google Scholar 

  • Fromm D, Gianella RA, Formal SB, Quijano R, Collins H (1974) Ion transport across isolated ileal mucosa invaded by salmonella. Gastroenterology 66:215–225

    PubMed  CAS  Google Scholar 

  • Galluser M, Pousse A, Ferard G, Grenier JF (1976) Mise au point d’une technique d’étude de l’absorption intestinale des monosaccharides chez le rat, in vivo. Biomedicine 25:127–132

    Google Scholar 

  • Gleeson MH, Cullen J, Dowling RH (1972) Intestinal structure and function after small bowel by-pass in the rat. Clin Sci 43:731–742

    PubMed  CAS  Google Scholar 

  • Grasset E, Heyman M, Dumontier AM, Lestradet H, Desjeux JF (1979) Possible sodium and D-glucose cotransport in isolated jejunal epithelium of children. Pediatr Res 13:1240–1246

    PubMed  CAS  Google Scholar 

  • Grundy SM, Ahrens EH jr (1970) The effects of unsaturated dietary fats on absorption, excretion, synthesis, and distribution of cholesterol in man. J Clin Invest 49:1135–1152

    PubMed  CAS  Google Scholar 

  • Grundy SM, Ahrens EH jr, Davignon J (1969) The interaction of cholesterol absorption and cholesterol synthesis in man. J Lipid Res 10:304–315

    PubMed  CAS  Google Scholar 

  • Hajjar JJ, Khuri RN, Bikhazi AB (1975) Effect of bile salts on amino acid transport by rabbit intestine. Am J Physiol 229:518–523

    PubMed  CAS  Google Scholar 

  • Hansen T, Siegers JFG, Bonting SL (1975) Gastric acid secretion in the lizard. Ionic requirements and effects of inhibitors. Biochim Biophys Acta 382:590–608

    PubMed  CAS  Google Scholar 

  • Hanson PJ, Parsons DS (1976) The utilization of glucose and production of lactate by in vitro preparations of rat small intestine: effects of vascular perfusion. J Physiol 255:775–795

    PubMed  CAS  Google Scholar 

  • Harries JT, Sladen GE (1972) The effects of different bile salts on the absorption of fluid, electrolytes, and monosaccharides in the small intestine of the rat in vivo. Gut 13:596–603

    PubMed  CAS  Google Scholar 

  • Harrison DD, Webster HL (1964) An improved method for the isolation of brush borders from the rat intestine. Biochim Biophys Acta 93:662–664

    PubMed  CAS  Google Scholar 

  • Heading RC, Schedl HP, Stegink LD, Miller DL (1977) Intestinal absorption of glycine and glycyl-L-proline in the rat. Clin Sci Mol Med 52:607–614

    PubMed  CAS  Google Scholar 

  • Heinz E, Geck P, Pietrzyk C (1977) Energy sources of active transport. In: Kramer M, Lauterbach F (eds) Intestinal permeation. Excerpta Medica, Amsterdam Oxford, p 313

    Google Scholar 

  • Hoffman AGD, Kuksis A (1979) Improved isolation of villus and crypt cells from rat small intestinal mucosa. Can J Physiol Pharmacol 57:832–842

    PubMed  CAS  Google Scholar 

  • Hogben CAM, Tocco DJ, Brodie BB, Schanker LS (1959) On the mechanism of intestinal absorption of drugs. J Pharmacol Exp Ther 125:275–282

    PubMed  CAS  Google Scholar 

  • Holmes R (1971) The intestinal brush border. Gut 12:668–677

    PubMed  CAS  Google Scholar 

  • Honegger P, Semenza G (1973) Multiplicity of carriers for free glucalogues in hamster small intestine. Biochim Biophys Acta 318:390–410

    CAS  Google Scholar 

  • Hoshi T, Suzuki Y, Kusachi T, Igarashi Y (1976) Interrelationship between sugar-evoked increases in transmural potential difference and sugar influxes across the mucosal border in the small intestine. Tohoku J Exp Med 119:201–209

    PubMed  CAS  Google Scholar 

  • Hradil J, Fendrich Z, Senius KEO, Kvetina J (1978) A new method for phamacokinetic analysis of gastrointestinal drug absorption. Arzneim Forsch (Drug Res) 28:2127–2134

    CAS  Google Scholar 

  • Jackson MJ, Shiau Y-F, Bane S, Fox M (1974) Intestinal transport of weak electrolytes. Evidence in favour of a three-compartment system. J Gen Physiol 63:187–213

    PubMed  CAS  Google Scholar 

  • Jackson MJ, Kutcher LM (1977) The three-compartment system for transport of weak electrolytes in the small intestine. In: Kramer M, Lauterbach F (eds) Intestinal permeation. Excerpta Medica, Amsterdam Oxford, p 65

    Google Scholar 

  • Jacobs FA (1968) Continuous radioactivity monitoring of perfusion in the small intestine of the intact animal. In: Rothchild S (ed) Advances in tracer methodology, vol IV. Plenum, New York, pp 255–272

    Google Scholar 

  • Jacobs LR, Taylor BR, Dowling RH (1975) Effect of luminal nutrition on the intestinal adaptation following Thiry-Vella by-pass in the dog. Clin Sci 49:26P–27P

    Google Scholar 

  • Kavin H, Levin NW, Stanley MM (1967) Isolated perfused rat small bowel-technic, studies of viability, glucose absorption. J Appl Physiol 22:604–611

    PubMed  CAS  Google Scholar 

  • Kelsay JL, Behall KM, Prather ES (1979) Effect of fiber from fruits and vegetables on metabolic responses of human subjects. II. Calcium, magnesium, iron, and silicon balances. Am J Clin Nutr 32:1876–1880

    PubMed  CAS  Google Scholar 

  • Keren DF, Elliott HL, Brown GD, Yardley JH (1975) Atrophy of villi with hypertrophy and hyperplasia of Paneth cells in isolated (Thiry-Vella) ileal loops in rabbits. Gastroenterology 68:83–93

    PubMed  CAS  Google Scholar 

  • Kessler M, Acuto O, Storelli C, Murer H, Müller M, Semenza G (1978) A modified procedure for the rapid preparation of efficiently transporting vesicles from small intestinal brush border membranes. Their use in investigating some properties of D-glucose and choline transport systems. Biochim Biophys Acta 506:136–154

    PubMed  CAS  Google Scholar 

  • Kimmich GA (1970 a) Preparation and properties of mucosal epithelial cells isolated from small intestine of the chicken. Biochemistry 9:3659–3668

    PubMed  CAS  Google Scholar 

  • Kimmich GA (1970 b) Active sugar accumulation by isolated intestinal epithelial cells. A new model for sodium-dependent metabolite transport. Biochemistry 9:3669–3677

    PubMed  CAS  Google Scholar 

  • Krijgsheld KR, Frankena H, Scholtens E, Zweens J, Mulder GJ (1979) Absorption, serum levels and urinary excretion of inorganic sulfate after oral administration of sodium sulfate in the conscious rat. Biochim Biophys Acta 586:492–500

    PubMed  CAS  Google Scholar 

  • Lauterbach F (1977) Intestinal secretion of organic ions and drugs. In: Kramer M, Lauterbach F (eds) Intestinal permeation. Excerpta Medica, Amsterdam Oxford, p 173

    Google Scholar 

  • Lee JS, Duncan KM (1968) Lymphatic and venous transport of water from rat jejunum: a vascular perfusion study. Gastroenterology 54:559–567

    PubMed  CAS  Google Scholar 

  • Lentner C, Lauffenburger T, Guncaga J, Dambacher MA, Haas HG (1975) The metabolic balance technique: a critical reappraisal. Metabolism 24:461–471

    PubMed  CAS  Google Scholar 

  • Levin SR, Pehlevanian MZ, Lavee AE, Adachi RI (1979) Secretion of an insulinotropic factor from isolated, perfused rat intestine. Am J Physiol 236:E710–E720

    PubMed  CAS  Google Scholar 

  • Loehry CA, Kingham J, Baker J (1973) Small intestinal permeability in animals and man. Gut 14:683–688

    PubMed  CAS  Google Scholar 

  • Lukie BE, Westergaard H, Dietschy JM (1974) Validation of a chamber that allows measurement of both tissue uptake rates and unstirred layer thicknesses in the intestine under conditions of controlled stirring. Gastroenterology 67:652–661

    PubMed  CAS  Google Scholar 

  • Lyon I, Crane RK (1966) Studies on transmural potentials in vitro in relation to intestinal absorption. I. Apparent Michaelis constants for Na+-dependent increment of transmural potential of rat small intestine. Biochim Biophys Acta 112:146–152

    Google Scholar 

  • Mailman D (1978) Effects of vasoactive intestinal polypeptide on intestinal absorption and blood flow. J Physiol 279:121–132

    PubMed  CAS  Google Scholar 

  • Marceau N, Aspin N, Sass-Kortsak A (1970) Absorption of copper 64 from gastrointestinal tract of the rat. Am J Physiol 218:377–383

    PubMed  CAS  Google Scholar 

  • McKeeney JR, Sullivan MF (1969) Electrolyte transport and voltage measurements with rat intestine in vitro. Am J Physiol 217:1728–1735

    Google Scholar 

  • Menzies IS, Laker MF, Pounder R, Bull J, Heyer S, Wheeler PG, Creamer B (1979) Abnormal intestinal permeability to sugars in villous atrophy. Lancet 2:1107–1109

    PubMed  CAS  Google Scholar 

  • Miller D, Crane RK (1961) The digestive function of the epithelium of the small intestine. II. Localization of disaccharide hydrolysis in the isolated brush border portion of intestinal epithelial cells. Biochim Biophys Acta 52:293–298

    PubMed  CAS  Google Scholar 

  • Miller DL, Schedl HP (1970) Total recovery studies of non-absorbable indicators in the rat small intestine. Gastroenterology 58:40–46

    PubMed  CAS  Google Scholar 

  • Modigliani R, Rambaud JC, Bernier JJ (1973) The method of intraluminal perfusion of the human small intestine. Digestion 9:176–192

    PubMed  CAS  Google Scholar 

  • Molokhia M, Sturniolo G, Shields R, Turnberg LA (1980) A simple method for measuring zinc absorption in man using a short-lived isotope (69mZn). Am J Clin Nutr 33:881–886

    PubMed  CAS  Google Scholar 

  • Munck BG, Rasmussen SN (1977) Paracellular permeability of extracellular space markers across rat jejunum in vitro. Indication of a transepithelial fluid circuit. J Physiol 271:473–488

    PubMed  CAS  Google Scholar 

  • Murer H, Kinne R (1980) The use of isolated membrane vesicles to study epithelial transport processes. J Membr Biol 55:81–95

    PubMed  CAS  Google Scholar 

  • Neame KD, Richards TG (1972) Elementary kinetics of membrane carrier transport. Blackwell Scientific Publications, Oxford, pp 51–52

    Google Scholar 

  • Nellans HN, Schultz SG (1976) Relations among transepithelial sodium transport, potassium exchange, and cell volume in rabbit ileum. J Gen Physiol 68:441–463

    PubMed  CAS  Google Scholar 

  • Nicholson JTL, Chornock FW (1942) Intubation studies of the human small intestine XXII. An improved technic for the study of absorption; its application to ascorbic acid. J Clin Invest 21:505–509

    PubMed  CAS  Google Scholar 

  • Nicolaysen R, Eeg-Larsen N (1953) The biochemistry and physiology of vitamin D. Vitam Horm 11:29–60

    PubMed  CAS  Google Scholar 

  • Nicolaysen R, Eeg-Larsen N, Malm OJ (1953) Physiology of calcium metabolism. Physiol Rev 33:424–444

    PubMed  CAS  Google Scholar 

  • Ochsenfahrt H, Winne D (1969) Der Einfluß der Durchblutung auf die Resorption von Arzneimitteln aus dem Jejunum der Ratte. Naunyn-Schmiedebergs Arch Pharmakol 264:55–75

    PubMed  CAS  Google Scholar 

  • Parsons DS (1968) Methods for investigation of intestinal absorption. In: Code CF (ed) Alimentary canal. American Physiological Society, Washington D.C. (Handbook of physiology, vol III/6, pp 1177–1216)

    Google Scholar 

  • Perris AD (1966) Isolation of the epithelial cells of the rat small intestine. Can J Biochem 44:687–693

    PubMed  CAS  Google Scholar 

  • Powell DW, Binder HJ, Curran PF (1972) Electrolyte secretion by the guinea pig ileum in vitro. Am J Physiol 223:531–537

    PubMed  CAS  Google Scholar 

  • Preston RL, Schaeffer JF, Curran PF (1974) Structure-affinity relationships of substrates for the neutral amino acid transport system in rabbit ileum. J Gen Physiol 64:443–467

    PubMed  CAS  Google Scholar 

  • Reinhold JG, Faradji B, Abadi P, Ismail-Beigi F (1975) Decreased absorption of calcium, magnesium, zinc and phosphorus by humans due to increased fiber and phosphorus consumption as wheat bread. J Nutr 106:493–503

    Google Scholar 

  • Reiser S, Christiansen PA (1971) The properties of the preferential uptake of L-leucine by isolated intestinal epithelial cells. Biochim Biophys Acta 225:123–139

    PubMed  CAS  Google Scholar 

  • Reiser S, Hallfrisch J, Putney J, Lev F (1976) Enhancement of intestinal sugar transport by rats fed sucrose as compared to starch. Nutr Metab 20:461–470

    CAS  Google Scholar 

  • Robinson JWL, Antonioli J-A (1980) Is paracellular movement of importance in the intestinal absorption of organic solutes? Gastroenterol Clin Biol 4:78–86

    PubMed  CAS  Google Scholar 

  • Rosenberg IH, Coleman AL, Rosenberg LE (1965) The role of sodium ion in the transport of amino acids by the intestine. Biochim Biophys Acta 102:161–171

    PubMed  CAS  Google Scholar 

  • Rosenberg T (1954) The concept and definition of active transport. Sympos Soc Exp Biol 8:27–41

    CAS  Google Scholar 

  • Schanker LS (1962) Passage of drugs across body membranes. Pharmacol Rev 14:501–510

    PubMed  CAS  Google Scholar 

  • Schedl HP, Clifton JA (1961) Kinetics of intestinal absorption in man: normal subjects and patients with sprue. J Clin Invest 40:1079–1080

    Google Scholar 

  • Schedl HP, Miller DL, Wilson HD, Flores P (1969) α-aminoisobutyric acid transport and tissue concentration at various intestinal sites. Am J Physiol 216:1131–1138

    PubMed  CAS  Google Scholar 

  • Schultz SG, Zalusky R (1964) Ion transport in isolated rabbit ileum. I. Short-circuit current and Na fluxes. J Gen Physiol 47:567–584

    PubMed  CAS  Google Scholar 

  • Schultz SG, Fuisz RE, Curran PF (1966) Amino acid and sugar transport in rabbit ileum. J Gen Physiol 49:849–866

    PubMed  CAS  Google Scholar 

  • Schultz SG, Curran PF, Chez RA, Fuisz RE (1967) Alanine and sodium fluxes across mucosal border of rabbit ileum. J Gen Physiol 50:1241–1260

    PubMed  CAS  Google Scholar 

  • Schultz SG, Curran PF (1970) Coupled transport of sodium and organic solutes. Physiol Rev 50:637–718

    PubMed  CAS  Google Scholar 

  • Schultz SG (1977) Some properties and consequences of low-resistance paracellular pathways across the small intestine: the advantages of being,leaky’. In: Kramer M, Lauterbach F (eds) Intestinal permeation. Excerpta Medica, Amsterdam Oxford, p 382

    Google Scholar 

  • Silva AJ, Fleshman DG, Shore B (1970) The effects of sodium alginate on the absorption and retention of several divalent cations. Health Phys 19:245–251

    PubMed  CAS  Google Scholar 

  • Smithson KW, Gray GM (1977) Intestinal assimilation of a tetrapeptide in the rat. Obligate function of brush border aminopeptidase. J Clin Invest 60:665–674

    PubMed  CAS  Google Scholar 

  • Soergel KH, Hogan WJ (1967) On the suitability of poorly absorbed markers as dilution indicators in the gastrointestinal tract. Gastroenterology 52:1056–1057

    PubMed  CAS  Google Scholar 

  • Sols A, Ponz F (1947) A new method for the study of intestinal absorption. Rev Esp Fisiol 3:207–211

    CAS  Google Scholar 

  • Spallanzani L (1780) Delia digestione degli animali. In: Dissertazioni di fisica animale e vegetabile, dell’ abate Spallanzani, vol 1. Presso La Societá Tipografica, Modena, pp 1–275

    Google Scholar 

  • Spiegler KS (1958) Transport processes in ionic membranes. Trans Faraday Soc 54:1408–1428

    CAS  Google Scholar 

  • Sundqvist T, Magnusson KE, Sjödahl R, Stjernström I, Tagesson C (1980) Passage of molecules through the wall of the gastrointestinal tract. II. Application of low-molecular weight polyethyleneglycol and a deterministic mathematical model for determining intestinal permeability in man. Gut 21:208–214

    PubMed  CAS  Google Scholar 

  • Svanvik J (1973) Mucosal blood circulation and its influence on passive absorption in the small intestine. Acta Physiol Scand [Suppl] 385:1–44

    CAS  Google Scholar 

  • Tagesson C, Sjödahl R, Thorén B (1978) Passage of molecules through the wall of the gastrointestinal tract. I. A simple experimental model. Scand J Gastroenterol 13:519–524

    PubMed  CAS  Google Scholar 

  • Tamura T, Stokstad ELR (1973) The availability of food folate in man. Br J Haematol 25:513–532

    PubMed  CAS  Google Scholar 

  • Teorell T (1953) Transport processes and electrical phenomena in ionic membranes. Prog Biophys Biophys Chem 3:305–369

    CAS  Google Scholar 

  • Ussing HH, Zerahn K (1951) Active transport of sodium as the source of electric current in the short circuited isolated frog skin. Acta Physiol Scand 23:110–127

    PubMed  CAS  Google Scholar 

  • Van de Kamer JH, ten Bokkel Huinink H, Weijers HA (1949) Rapid method for determination of fat in faeces. J Biol Chem 177:347–355

    Google Scholar 

  • Van Kampen DR, Mitchell EA (1965) Absorption of 64Cu, 65Zn, 99Mo, and 59Fe from ligated segments of the rat gastrointestinal tract. J Nutr 86:120–124

    Google Scholar 

  • Vaughan BE (1960) Intestinal electrolyte absorption by parallel determination of unidirectional sodium and water transfers. Am J Physiol 198:1235–1244

    PubMed  CAS  Google Scholar 

  • Weber FL, Deak SB, Laine RA (1979) Absorption of keto-analogues of branched-chain amino acids from rat small intestine. Gastroenterology 76:62–70

    PubMed  CAS  Google Scholar 

  • Weiser MM (1973) Intestinal epithelial cell surface membrane glycoprotein synthesis. I. An indicator of cellular differentiation. J Biol Chem 248:2536–2541

    PubMed  CAS  Google Scholar 

  • Wilkinson R (1971) Polyethylene glycol 4000 as a continuously administered non-absorbable marker for metabolic balance studies in human subjects. Gut 12:654–660

    PubMed  CAS  Google Scholar 

  • Wilson FA, Dietschy JM (1974) The intestinal unstirred layer: its surface area and effect on active transport kinetics. Biochim Biophys Acta 363:112–126

    PubMed  CAS  Google Scholar 

  • Wilson TH, Wiseman G (1954) The use of sacs of everted small intestine for the study of the transference of substances from the mucosal to the serosal surface. J Physiol 123:116–125

    PubMed  CAS  Google Scholar 

  • Windmueller HG, Spaeth AE, Ganote CE (1970) Vascular perfusion of isolated rat gut: norepinephrine and glucocorticoid requirement. Am J Physiol 218:197–204

    PubMed  CAS  Google Scholar 

  • Wingate DL (1973) A miniature digital millivoltmeter for measuring intestinal transmural electrical potential difference. Gut 14:399–401

    PubMed  CAS  Google Scholar 

  • Winne D (1972) A discrepancy between the accumulation of L-phenylalanine in the intestinal wall and the appearance rate in the blood. FEBS Lett 27:94–96

    PubMed  CAS  Google Scholar 

  • Winne D (1973) The influence of blood flow on the absorption of L- and D-phenylalanine from the jejunum of the rat. Naunyn-Schmiedebergs Arch Pharmacol 277:113–138

    PubMed  CAS  Google Scholar 

  • Winne D (1976) Unstirred layer thickness in perfused rat jejunum in vivo. Experientia 32:1278–1279

    PubMed  CAS  Google Scholar 

  • Winne D, Remischovsky J (1971) Der Einfluß der Durchblutung auf die Resorption von Harnstoff, Methanol and Äthanol aus dem Jejunum der Ratte. Naunyn-Schmiedebergs Arch Pharmakol 268:392–416

    PubMed  CAS  Google Scholar 

  • Winne D, Kopf S, Ulmer M-L (1979) Role of unstirred layer in intestinal absorption of phenylalanine in vivo. Biochim Biophys Acta 550:120–130

    PubMed  CAS  Google Scholar 

  • Younoszai MK, Schedl HP (1970) Vitamin D deficiency and neutral amino acid absorption in the rat intestine. Proc Soc Exp Biol Med 134:562–565

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Elsenhans, B. (1983). Experimentelle Methoden. In: Bazzoli, F., et al. Dünndarm A. Handbuch der inneren Medizin, vol 3 / 3 / A. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68415-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68415-9_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68416-6

  • Online ISBN: 978-3-642-68415-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics