Skip to main content

Bakterienflora des Dünndarms

  • Chapter
Dünndarm A

Part of the book series: Handbuch der inneren Medizin ((INNEREN 3,volume 3 / 3 / A))

Zusammenfassung

Die Entdeckung „kleiner Lebewesen“auf seinen Zähnen und im Stuhl durch van Leeuwenhoeck im Jahre 1719, gleichsam der Beginn der Darmbakteriologie, läßt bereits topographische Interessenschwerpunkte der gastrointestinalen Mikrobiologie in den nachfolgenden 250 Jahren erkennen. Während die Flora des Oropharynx und der Fäzes extensiv untersucht worden ist, war die mikrobielle Ökologie des Dünndarms lange Gegenstand kontroverser und vielfach spekulativer Auffassungen. Teilweise liegen die Ursachen hierfür in der relativen Unzugängigkeit dieses Darmabschnitts und seiner geringen Keimdichte, die zudem durch die routinemäßig vorhandenen bakteriologischen Techniken nur unzureichend erfaßt wird (Borriello et al. 1978). Die Diskrepanz zwischen der Zahl mikroskopisch sichtbarer Keime im Dünndarm und den häufig negativen Kulturergebnissen, ein bereits frühzeitig erkanntes Stigma der Mikrobiologie des Gastrointestinaltrakts (Cohnheim 1908), ist bis heute nicht beseitigt. Während die bakteriologischen Voraussetzungen der Kultur, Identifikation und Enumeration der meisten im Gastrointestinaltrakt vorkommenden Genera als etablierte Verfahren gelten können, ist die Taxonomie, Isolation, Identifikation und Zählung von einzelnen Spezies der obligat anaeroben Gattungen uneinheitlich und durch methodische Schwierigkeiten gekennzeichnet (Borriello et al. 1978).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Aarbakke J, Schjönsby H (1976) Value of urinary simple phenol and indican determinations in the diagnosis of the stagnant loop syndrome. Scand J Gastroenterol 11:409–414

    PubMed  CAS  Google Scholar 

  • Abrams GD, Bishop JE (1967) Effect of the normal microbial flora on gastrointestinal motility. Proc Soc Exp Biol Med 126:301–304

    PubMed  CAS  Google Scholar 

  • Abrams GD, Bauer H, Sprinz H (1963) Influence of the normal flora on mucosal morphology and cellular renewal in the ileum. A comparison of germ-free and conventional mice. Lab Invest 12:355–364

    PubMed  CAS  Google Scholar 

  • Ament ME, Shimoda SS, Saunders DR, Rubin CE (1972) Pathogenesis of steatorrhea in three cases of small intestinal stasis syndrome. Gastroenterology 63:728–747

    PubMed  CAS  Google Scholar 

  • Anderson CM, Langford RF (1958) Bacterial content of small intestine of children in health, in coeliac disease and in fibrocystic disease of pancreas. Br Med J 1:803–806

    PubMed  CAS  Google Scholar 

  • Axelsson CK, Justesen T (1977) Studies of the duodenal and fecal flora in gastrointestinal disorders during treatment with an elemental diet. Gastroenterology 72:397–401

    PubMed  CAS  Google Scholar 

  • Badenoch J, Bedford PD, Evans JR (1955) Massive diverticulosis of the small intestine with steatorrhea and megaloblastic anemia. Q J Med 24:321–330

    PubMed  CAS  Google Scholar 

  • Barbero GJ, Runge G, Fischer D, Crawford MN, Tores FE, Gyorgy P (1952) Investigations on the bacterial flora, pH, and sugar content in the intestinal tract of infants. J Pediatr 40:152–163

    PubMed  CAS  Google Scholar 

  • Barnes E, Goldberg HS (1968) The relationship of bacteria within the family bacterioideaceae as shown by numerical taxonomy. J Gen Microbiol 51:313–324

    PubMed  CAS  Google Scholar 

  • Bartle HJ, Harkins MJ (1925) The gastric secretion: its bactericidal value to man. Am J Med Sci 1969:373–388

    Google Scholar 

  • Beeken WL, Kanich RE (1973) Microbial flora of the upper small bowel in Crohn’s disease. Gastroenterology 65:390–397

    PubMed  CAS  Google Scholar 

  • Beerens H, Castel MM (1960) Action de la bile sur la croissance de certaines bactéries anaérobies a gramsnégatif. Ann Inst Pasteur 99:454–456

    CAS  Google Scholar 

  • Bentley DW, Nichols RL, Condon RE, Gorbach SL (1972) The microflora of the human ileum and intraabdominal colon: Results of direct needle aspiration at surgery and evaluation of the technique. J Lab Clin Med 79:421–429

    PubMed  CAS  Google Scholar 

  • Bernstein LH, Gutstein S, Efron G (1972) Experimental production of elevated serum folate in dogs with intestinal blind loops: relationship of serum levels to location of the blind loop. Gastroenterology 63:815–819

    PubMed  CAS  Google Scholar 

  • Bhat P, Shantakumari S, Rajan D, Mathan VL, Karpadia CR, Swarnabai C, Baker SJ (1972) Bacterial flora of the gastrointestinal tract in Southern Indian control subjects and patients with tropical sprue. Gastroenterology 62:11–21

    PubMed  CAS  Google Scholar 

  • Binder HJ, Filburn B, Floch M (1975) Bile acid inhibition of intestinal anaerobic organisms. Am J Clin Nutr 28:119–125

    PubMed  CAS  Google Scholar 

  • Bishop RF (1963) Bacterial flora of the small intestine of dogs and rats with intestinal blind loops. Br J Exp Pathol 44:189–196

    PubMed  CAS  Google Scholar 

  • Bishop RF, Allcock EA (1960) Bacterial flora of the small intestine in acute intestinal obstruction. Br Med J 1:766

    PubMed  CAS  Google Scholar 

  • Bishop RF, Anderson CM (1960) The bacterial flora of the stomach and small intestine in children with intestinal obstruction. Arch Dis Child 35:487–491

    PubMed  CAS  Google Scholar 

  • Bloch R, Menge H, Lorenz-Meyer H, Stöckert HG, Riecken EO (1975) Functional, biochemical and morphological alterations in the intestines of rats with an experimental blind-loop syndrome. Res Exp Med 166:67–78

    CAS  Google Scholar 

  • Bode JC (1980) Alcohol and the gastrointestinal tract. Ergeb Inn Med Kinderheilkd 45:1–75

    PubMed  CAS  Google Scholar 

  • Bohnhoff M, Miller CP, Martin WR (1964) Resistance of mouse’s intestinal tract to experimental salmonella infection. I. Factors which interfere with the initiation of infection by oral inoculation. J Exp Med 120:805–816

    PubMed  CAS  Google Scholar 

  • Bornside GH, Cohn I (1965) The normal microbial flora. Am J Dig Dis 10:844–852

    PubMed  CAS  Google Scholar 

  • Bordello P, Hudson M, Hill M (1978) Investigation of the gastrointestinal bacterial flora. Clin Gastroenterol 7:329–349

    Google Scholar 

  • Branche WC, Young VM, Robinet HG, Massey ED (1963) Effect of colicine production of Escherichia coli in the normal human intestine. Proc Soc Exp Biol Med 114:198–201

    PubMed  CAS  Google Scholar 

  • Broido PW, Gorbach SL, Nyhus LM (1972) Microflora of the gastrointestinal tract and the surgical malabsorption syndromes. Surg Gynecol Obstet 135:449–460

    PubMed  CAS  Google Scholar 

  • Broido PW, Gorbach SL, Condon RE, Nyhus LM (1973) Upper intestinal microfloral control. Arch Surg 106:90–93

    PubMed  CAS  Google Scholar 

  • Brown WR, Savage DC, Dubos RS (1972) Intestinal microflora of immunoglobulin-deficient and normal human subjects. Gastroenterology 62:1143–1152

    PubMed  CAS  Google Scholar 

  • Browning GG, Buchan KA, Mackay C (1974) The effect of vagotomy and drainage on the small bowel flora. Gut 15:139–142

    PubMed  CAS  Google Scholar 

  • Bryant MP (1974) Nutritional features and ecology of predominant anaerobic bacteria of the intestinal tract. Am J Clin Nutr 27:1313–1319

    PubMed  CAS  Google Scholar 

  • Burke V, Stone DE, Beaman J, Gracey M (1977) Effects of biliary diversion on intestinal microflora in the rat. J Med Microbiol 10:241–244

    PubMed  CAS  Google Scholar 

  • Byrne BM, Dankert J (1979) Volatile fatty acids and aerobic flora in the gastrointestinal tract of mice under various conditions. Infect Immunol 23:559–563

    CAS  Google Scholar 

  • Cash R, Music S, Labonati J, Synder M, Wenzel R, Hornick R (1974) Response of man to infection with V. cholerae. I. Clinical, serologic and bacteriologic response to a known inoculum. J Infect Dis 129:45–52

    PubMed  CAS  Google Scholar 

  • Caspary WF, Reimold WV (1976) Klinische Bedeutung des 14C-Glykocholat-Atemtests in der gastroenterologischen Diagnostik bei Erkrankungen mit gesteigerter Dekonjugation von Gallensäuren. Dtsch Med Wochenschr 101:353–360

    PubMed  CAS  Google Scholar 

  • Challacombe DN, Richardson JM, Anderson CM (1974) Bacterial microflora of the upper gastrointestinal tract in infants without diarrhoea. Arch Dis Child 49:264–269

    PubMed  CAS  Google Scholar 

  • Chernov AJ, Doe WF, Gompertz D (1972) Intrajejunal volatile fatty acids in the stagnant loop syndrome. Gut 13:103–106

    PubMed  CAS  Google Scholar 

  • Cobden L, Axon ATR, McGoldrick J, Ghonheim AT, Rowell NR (1979) Small intestinal bacterial overgrowth in systemic sclerosis. Gut 20:A456

    Google Scholar 

  • Cohen R, Kaiser MH, Arteaga I, Yawn E, Frazier D, Leite CA, Ahearn DG, Roth F (1967) Microbial intestinal flora in acute diarrheal disease. JAMA 201:835–840

    PubMed  CAS  Google Scholar 

  • Cohen R, Roth FJ, Delgado E, Ahearn DG, Kaiser MH (1969) Fungal flora of the normal human small and large intestine. N Engl J Med 280:638–641

    PubMed  CAS  Google Scholar 

  • Cohnheim O (1908) Die Physiologie der Verdauung und Ernährung, 1.Aufl. Urban & Schwarzenberg, Berlin Wien, S 286–296

    Google Scholar 

  • Connell AM (1970) Propulsion in the small intestine. Rend R Gastroenterol 2:38–46

    Google Scholar 

  • Correa P, Cuello C, Duque E (1970) Carcinoma and intestinal metaplasia of the stomach in Columbian migrants. J Natl Cancer Inst 44:297–306

    PubMed  CAS  Google Scholar 

  • Cregan J, Hayward N (1953) The bacterial content of the healthy human small intestine. Br Med J 1:1356–1359

    PubMed  CAS  Google Scholar 

  • Cregan J, Dunlop EE, Hayward NJ (1953) The bacterial content of the human small intestine in disease of the stomach. Br J Med 2:1248–1251

    CAS  Google Scholar 

  • Dack GM, Petran E (1934) Bacterial activity in different levels of the intestine and in isolated segments of small and large bowel in monkeys and dogs. J Infect Dis 54:204–220

    Google Scholar 

  • Dawson AM, Isselbacher KJ (1960) Studies of lipid metabolism in the small intestine with observation on the role of bile salts. J Clin Invest 39:730–740

    PubMed  CAS  Google Scholar 

  • Deckx R, Vantrappen GR, Parein MM (1967) Localization of lysozyme activity in a Paneth cell granule fraction. Biochim Biophys Acta 139:204–207

    PubMed  CAS  Google Scholar 

  • Dellipiani AW, Girdwood RH (1964) Bacterial changes in the small intestine in malabsorptive states and in pernicious anaemia. Clin Sci 26:359–374

    PubMed  CAS  Google Scholar 

  • Dick GF (1941) The bacteriologic examination of the stomach contents in pernicious anemia. Am J Dig Dis 8:255–260

    Google Scholar 

  • Dickman MD, Chappelka AR, Schaedler RW (1975) Evaluation of gut microflora during administration of an elemental diet in a patient with an ileoproctostomy. Dig Dis 20:377–380

    CAS  Google Scholar 

  • Dietschy JM (1967) Effects of bile salts on intermediate metabolism of the intestinal mucosa. Fed Proc 26:1589–1598

    PubMed  CAS  Google Scholar 

  • Dixon JMS (1960) The fate of bacteria in the small intestine. J Pathol Bacteriol 79:131–140

    PubMed  CAS  Google Scholar 

  • Dixon JMS, Paulley JW (1963) Bacteriological and histological studies of the small intestine of rats treated with mecamylamine. Gut 4:169–173

    PubMed  CAS  Google Scholar 

  • Donaldson RM jr (1964) Normal bacterial populations of the intestine and their relation to intestinal function. N Engl J Med 270:938–946, 994–1000, 1050–1056

    PubMed  Google Scholar 

  • Donaldson RM jr (1965) Studies on the pathogenesis of steatorrhea in the blind loop syndrome. J Clin Invest 44:1815–1825

    PubMed  Google Scholar 

  • Donaldson RM (1968) Role of indigenous enteric bacteria in intestinal function and disease. In: Code CF (ed) Alimentary canal, vol V, American Physiological Society, Washington, D.C. (Handbook of Physiology, section 6, pp 2807–2837)

    Google Scholar 

  • Donaldson RM jr (1970) Small bowel bacterial overgrowth. Adv Intern Med 16:191–212

    PubMed  Google Scholar 

  • Donaldson RM jr (1978) The relation of enteric bacterial population to gastrointestinal function and disease. In: Sleisenger MH, Fordtran JS (eds) Gastrointestinal disease. Saunders, Philadelphia, pp 79–92

    Google Scholar 

  • Donaldson RM, McConnell C, Deffner N (1967) Bacteriological studies in clinical and experimental blind loop syndromes. Gastroenterology 52:1082

    Google Scholar 

  • Dowling RH, Small DM (1968) The effect of pH on the solubility of varying mixtures of free and conjugated bile salts in solutions. Gastroenterology 54:1291 A

    Google Scholar 

  • Drasar BS (1967) Cultivation of anaerobic intestinal bacteria. J Pathol Bacteriol 94:417–427

    PubMed  CAS  Google Scholar 

  • Drasar BS, Hill MJ (1974) Human intestinal flora. Academic Press, New York

    Google Scholar 

  • Drasar BS, Shiner M (1969) Studies on the intestinal flora. II. Bacterial flora of the small intestine in patients with gastrointestinal disorders. Gut 10:812–819

    PubMed  CAS  Google Scholar 

  • Drasar BS, Hill MJ, Shiner M (1966) The deconjugation of bile salts by human intestinal bacteria. Lancet. 1:1237–1238

    PubMed  CAS  Google Scholar 

  • Drasar BS, Shiner M, McLeod GM (1969) Studies on the intestinal flora. I. The bacterial flora of the gastrointestinal tract in healthy and achlorhydric persons. Gastroenterology 56:71–79

    PubMed  CAS  Google Scholar 

  • Dubos R, Schaedler RW, Costello R, Hoet P (1965) Indigenous, normal, and autochthonous flora of the gastrointestinal tract. J Exp Med 122:67–77

    PubMed  CAS  Google Scholar 

  • Ducluzeau R, Dubos F, Raibaud P, Abrams GD (1976) Inhibition of Clostridium perfringeus by an antibiotic substance produced by Bacillus licheniformis in the digestive tract of gnotobiotic mice: Effect on other bacteria from the digestive tract. Antimicrob Agents Chemother 9:20–25

    PubMed  CAS  Google Scholar 

  • Egger G, Kessler JI (1973) Clinical experience with a simple test for the detection of bacterial deconjugation of bile salts and the site and extent of bacterial overgrowth in the small intestine. Gastroenterology 64:545–551

    PubMed  CAS  Google Scholar 

  • Ellen RP, Gibbons RJ (1974) Parameters affecting the adherence and tissue tropismus of Streptococcus pyogenes. Infect Immun 9:85

    PubMed  CAS  Google Scholar 

  • El-Shazky K, Hungate RE (1965) Fermentation capacity as a measure of net growth of rumen microorganisms. Appl Microbiol 13:62–69

    Google Scholar 

  • Engström J, Hellström K, Hoegman L, Lönnquist B (1971) Microorganisms of the liver, biliary tract and duodenal aspirates in biliary diseases. Scand J Gastroenterol 6:177–182

    PubMed  Google Scholar 

  • Faber (1897) Perniziöse Anämie bei Dünndarmstrikturen. Berlin Klin Wochenschr 34:643

    Google Scholar 

  • Feldheim G, Schmidt EF, Haenel H (1960) Über die Besiedlung des Mekoniums. Zentralbl Bakteriol 177:62

    PubMed  CAS  Google Scholar 

  • Floch MH, Gershengoren W, Diamond S, Hersh T (1970) Cholic acid inhibition by intestinal bacteria. Am J Clin Nutr 23:8–10

    PubMed  CAS  Google Scholar 

  • Floch MH, Gerhengoren W, Elliot S (1971) Bile acid inhibition of the intestinal microflora — a function for simple bile acids? Gastroenterology 61:228–233

    PubMed  CAS  Google Scholar 

  • Florey HW (1930) The relative amounts of lysozyme present in the tissues of some animals. Br J Exp Pathol 11:251

    CAS  Google Scholar 

  • Florey HW (1933) Observations on the function of mucus and the early stages of bacterial invasion of the intestinal mucosa. J Pathol Bacteriol 37:282–289

    Google Scholar 

  • Forth W, Rummel W, Glasner H (1966) Zur resorptionshemmenden Wirkung der Gallensäuren. Naunyn-Schmiedebergs Arch Exp Pathol Pharmakol 254:364

    CAS  Google Scholar 

  • Fredericq P (1957) Colichins. Ann Rev Microbiol 11:7–22

    CAS  Google Scholar 

  • Frederiksen W, Bruusgaard A, Thaysen EH (1973) Assessment of the relationship between gastric secretory capacity and jejunal bacteriology. Scand J Gastroenterol 8:353–359

    PubMed  CAS  Google Scholar 

  • Freter R (1974) Interactions between mechanisms controlling the intestinal microflora. Am J Clin Nutr 27:1409–1416

    PubMed  CAS  Google Scholar 

  • Fromm H, Hofmann AF (1971) Breath test for altered bile-acid metabolism. Lancet 1:621–625

    Google Scholar 

  • Fubara ES, Freter R (1972) Availability of the locally synthesized and systemic antibodies in the intestine. Infect Immun 6:965–981

    PubMed  CAS  Google Scholar 

  • Gale D, Sandoval B (1957) Response of mice to the inoculations of both Candida albicans and Escherichia coli. I. The enhancement phenomenon. J Bacteriol 73:616–622

    PubMed  CAS  Google Scholar 

  • Gaon D, Checkerdemian M, Harwicz R, Meeroff JC (1981) Another important side-effect of H2-blockers: secondary lactase deficiency. Gastroenterology 80:1152A

    Google Scholar 

  • Gaon D, Chekherdemian M, de Paula A, Harwicz R, Meeroff JC (1982) Bacterial overgrowth without secondary lactase deficiency: a side-effect of high dose antacid regimens. Gastroenterology 82:1064A

    Google Scholar 

  • Garrod LP (1939) A study of the bacteriocidal power of hydrochloric acid and of the gastric juice. St Barth Hosp Rep 72:145–167

    Google Scholar 

  • Ghoos Y, Vantrappen GR, Peeters T (1975) Bile acids inhibit lysozyme activity. Gut 16:394 Gianella RA, Toskes PP (1976) Gastrointestinal bleeding and iron absorption in the experimental blind loop syndrome. Am J Clin Nutr 29:754–757

    Google Scholar 

  • Gianella RA, Broitman SA, Zamcheck N (1971a) Salmonella enteritis. I. Role of reduced gastric secretion in pathogenesis. Am J Dig Dis 16:1000–1006

    Google Scholar 

  • Gianella RA, Broitman SA, Zamcheck N (1971 b) Vitamin B12 uptake by intestinal microorganisms: Mechanism and relevance to syndromes of intestinal bacterial overgrowth. J Clin Invest 50:1100–1107

    Google Scholar 

  • Gianella RA, Rout WR, Toskes PP (1974) Jejunal brush border injury and impaired sugar and amino acid uptake in the blind loop syndrome. Gastroenterology 67:965–974

    Google Scholar 

  • Gibbons RJ, Kapsimalis B (1967) Estimates of the overall role of growth of the intestinal microflora of hamsters guinea pigs and mice. J Bacteriol 93:510–512

    PubMed  CAS  Google Scholar 

  • Goldman P, Peppercorn MA, Goldin BR (1974) Metabolism of drugs by microorganisms in the intestine. Am J Clin Nutr 27:1348–1355

    PubMed  CAS  Google Scholar 

  • Goldstein F, Wirts CW, Kramer S (1961) The relationship of afferent limb stasis and bacterial flora to the production of post gastrectomy steatorrhea. Gastroenterology 40:47–50

    PubMed  CAS  Google Scholar 

  • Goldstein F, Wirts CW, Joseph L (1962) The bacterial flora of the small intestine. Gastroenterology 42:755–756 A

    Google Scholar 

  • Goldstein F, Cozzolino HJ, Wirts CW (1963) Diarrhea and steatorrhea due to a large solitary duodenal diverticulum. Am J Dig Dis 8:937

    PubMed  CAS  Google Scholar 

  • Goldstein F, Karacadag S, Wirts CW, Kowlessar DD (1970a) Intraluminal small intestinal utilization of d-xylose by bacteria. A limitation of the d-xylose absorption test. Gastroenterology 59:380–386

    PubMed  CAS  Google Scholar 

  • Goldstein F, Wirts CW, Kowlessar DD (1970b) Diabetic diarrhea and steatorrhea. Microbiologic and clinical observations. Ann Intern Med 72:215–217

    PubMed  CAS  Google Scholar 

  • Goldsworthy NE, Florey HW (1930) Some properties of mucus with special reference to its antimicrobial functions. Br J Exp Pathol 11:192–208

    CAS  Google Scholar 

  • Gorbach SL (1967) Population control in the small bowel. Gut 8:530–532

    PubMed  CAS  Google Scholar 

  • Gorbach SL (1971) Intestinal microflora. Gastroenterology 60:1110–1129

    PubMed  CAS  Google Scholar 

  • Gorbach SL, Levitan R (1970) Intestinal flora in health and in gastrointestinal diseases. In: Glass GBJ (ed) Progress in gastroenterology, vol IL Grune & Stratton, New York, pp 252–275

    Google Scholar 

  • Gorbach SL, Tabaqchali S (1969) Bacteria, bile, and the small bowel. Gut 10:963–972

    PubMed  CAS  Google Scholar 

  • Gorbach SL, Nahas L, Lerner PI, Weinstein L (1967 a) Studies of intestinal microflora. I. Effects of diet, age, and periodic sampling on numbers of fecal microorganisms in man. Gastroenterology 53:845–855

    PubMed  CAS  Google Scholar 

  • Gorbach SL, Plaut AG, Nahas L, Weinstein L (1967b) Studies of intestinal microflora. II. Microorganisms of the small intestine and their relations to oral and fecal flora. Gastroenterology 53:856–867

    PubMed  CAS  Google Scholar 

  • Gorbach SL, Mitra R, Jacobs B, Banwell JG, Chatterjee BD, Guha Mazumder DN (1969) Bacterial contamination of the upper small bowel in tropical sprue. Lancet 1:74–77

    PubMed  CAS  Google Scholar 

  • Gorbach SL, Banwell JG, Jacobs B, Chatterjee BD, Mitra R, Sen NN, Mazumder DNG (1970a) Tropical sprue and malnutrition in West Bengal. I. Intestinal microflora and absorption. Am J Clin Nutr 23:1545–1558

    PubMed  CAS  Google Scholar 

  • Gorbach SL, Neale G, Levitan R, Hepner GW (1970 b) Alterations in human intestinal microflora during experimental diarrhoea. Gut 11:1–6

    PubMed  CAS  Google Scholar 

  • Gordon HA (1960) The germ free animal: its use in the study of “physiologic” effects of the normal microbial flora on the animal host. Am J Dig Dis 5:841–867

    PubMed  CAS  Google Scholar 

  • Gordon HA (1975) The role of the intestinal flora in absorption: A comparative study between germfree and conventional animals. In: Czaky TZ (ed) Intestinal absorption and malabsorption. Raven, New York, pp 237–251

    Google Scholar 

  • Gordon HA, Bruckner-Kardoss E (1961): Effect of normal microbial flora on intestinal surface area. Am J Physiol 201:175–182

    PubMed  CAS  Google Scholar 

  • Gottschalk G (1979) Bacterial metabolism. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Gracey M (1971) Intestinal absorption in the “contaminated small-bowel syndrome.” Gut 12:403–410

    PubMed  CAS  Google Scholar 

  • Gracey M, Stone DE (1972) Small-intestinal microflora in Australian Aboriginal children with chronic diarrhoea. Aust NZ J Med 3:215–219

    Google Scholar 

  • Gracey M, Burke V, Anderson CM (1969) Association of monosaccharide malabsorption with abnormal small-intestinal flora. Lancet 2:384–385

    PubMed  CAS  Google Scholar 

  • Gracey M, Burke V, Oshin A (1971) Reversible inhibition of intestinal active sugar transport by deconjugated bile salt in vitro. Biochim Biophys Acta (Amst) 225:308–314

    CAS  Google Scholar 

  • Gracey M, Suharjono S, Stone DE (1973) Microbial contamination of the gut. Another feature of malnutrition. Am J Clin Nutr 26:1170–1174

    PubMed  CAS  Google Scholar 

  • Gracey M, Papadimitriou J, Bower G (1974) Ultrastructural changes in the small intestines of rats with self-filling blind loops. Gastroenterology 67:646–651

    PubMed  CAS  Google Scholar 

  • Gracey M, Thomas J, Houghton M (1975) Effect of stasis on intestinal enzyme activities. Aust NZ J Med 5:141–144

    CAS  Google Scholar 

  • Gracey M, Cullity GJ, Suharjono S (1977) The stomach in malnutrition. Arch Dis Child 52:325–327

    PubMed  CAS  Google Scholar 

  • Gray JDA, Shiner M (1967) Influence of gastric pH on gastric and jejunal flora. Gut 8:574–581

    PubMed  CAS  Google Scholar 

  • Greenberger NJ, Saegh S, Ruppert RD (1968) Urine indican excretion in malabsorptive disorders. Gastroenterology 55:204–211

    PubMed  CAS  Google Scholar 

  • Greenlee HB, Vivit R, Paez J, Dietz A (1971) Bacterial flora of the jejunum following peptic ulcer surgery. Arch Surg 102:260–265

    PubMed  CAS  Google Scholar 

  • Greenlee HB, Gelbart SM, DeOrio AJ, Francescatti DS, Paez J, Reinhardt GF (1977) The influence of gastric surgery on the intestinal flora. Am J Clin Nutr 30:1826–1833

    PubMed  CAS  Google Scholar 

  • Grütte FK, Haenel H (1980) Intestinalflora. In: Cremer HD, Hötzel D, Kühnau J (Hrsg) Ernährungslehre und Diätetik, Bd I: Biochemie und Physiologie der Ernährung. Thieme, Stuttgart, S 210–239

    Google Scholar 

  • Gyllenberg H, Carlberg G (1958) The dominance of a specific nutritional type of Lactobacillus bifidus in breast-fed infants. Acta Pathol Microbiol Scand 42:380–384

    PubMed  CAS  Google Scholar 

  • Hamilton JD, Dyer NH, Dawson AM, O’Grady FW, Vince A, Fenton JCB, Mollin DL (1970) Assessment and significance of bacterial overgrowth in the small bowel. Q J Med 39:265–285

    PubMed  CAS  Google Scholar 

  • Hampton JC, Rosario B (1965) The attachment of microorganisms to epithelial cells in the distal ileum of the mouse. Lab Invest 14:1464–1471

    PubMed  CAS  Google Scholar 

  • Heneghan JB (1963) Influence of microbial flora on xylose absorption in rats and mice. Am J Physiol 205(3): 417–420

    PubMed  CAS  Google Scholar 

  • Henning N, Zeitler G, Neugebauer J (1958) Über eine Darmpatrone zur Entnahme von Dünndarminhalt für bakteriologische Untersuchungen. Muench Med Wochenschr 47:1858–1860

    Google Scholar 

  • Hepner GW (1978) Breath tests in gastroenterology. Adv Int Med 23:25–45

    CAS  Google Scholar 

  • Hermann G, Axtell AK, Starzl TE (1964) Bacterial contamination of jejunum and vitamin B12 absorption. Gastroenterology 47:61–64

    PubMed  CAS  Google Scholar 

  • Hermans PE, Huizenga KA, Hoffman HN, Brown AL, Markowitz H (1966) Dysgammaglobulinemia associated with nodular lymphoid hyperplasia of the small intestine. Am J Med 40:78–89

    PubMed  CAS  Google Scholar 

  • Hersh T, Floch HM, Binder HJ, Conn HO, Prizont R, Spiro HM (1970) Disturbance of the jejunal and colonic bacterial flora in immunglobulin deficiencies. Am J Clin Nutr 23:1556–1601

    Google Scholar 

  • Heyworth B, Brown J (1975) Jejunal flora in malnourished Gambian children. Arch Dis Child 50:27–33

    PubMed  CAS  Google Scholar 

  • Hill MJ, Drasar BS (1968) Degradation of bile salts by human intestinal bacteria? Gut 8:22–27

    Google Scholar 

  • Hines C, Davis WD (1972) Ehlers-Danlos syndrome with megaduodenum and malabsorption secondary to bacterial overgrowth: Report of the first case. Am J Med 54:539–543

    Google Scholar 

  • Hirtzmann M, Reuter G (1963) Klinische Erfahrungen mit einer neuen, automatisch gesteuerten Kapsel zur Gewinnung von Darminhalt und bakteriologische Untersuchungen des Inhalts höherer Darmabschnitte. Med Klin 58:1408–1412

    PubMed  CAS  Google Scholar 

  • Hislop IG, Hofmann AF, Schoenfield LS (1967) Determinants of the rate and site of bile acid absorption in man. J Clin Invest 46:1070–1071

    Google Scholar 

  • Hoffbrand AV, Tabaqchali S, Mollin DL (1966) High serum-folate in intestinal blind-loop syndrome. Lancet 2:1339–1342

    Google Scholar 

  • Hoffbrand AV, Tabaqchali S, Booth CC Mollin DL (1971) Small intestinal bacterial flora and folate status in gastrointestinal disease. Gut 12:27–33

    PubMed  CAS  Google Scholar 

  • Hofmann AF, Small DM (1967) Detergent properties of bile salts: correlation with physiological function. Ann Rev Med 18:333–376

    PubMed  CAS  Google Scholar 

  • Hungate RE (1950) The anaerobic mesophilic cellulolytic bacteria. Bacteriol Rev 14:1–63

    PubMed  CAS  Google Scholar 

  • Hungate RE (1978) Bacterial ecology in the small intestine. Am J Clin Nutr 31:125

    Google Scholar 

  • James WPT, Drasar BS, Miller C (1972) Physiological mechanism and pathogenesis of weanling diarrhea. Am J Clin Nutr 25:564–571

    PubMed  CAS  Google Scholar 

  • James OFW, Agnew JE, Bouchier JAD (1973) Assessment of the 14C-glycocholic acid breath test. Br Med J 3:191–195

    PubMed  CAS  Google Scholar 

  • Jonas A, Flanagan PR, Forstner GG (1977) Pathogenesis of mucosal injury in the blind loop syndrome. Brush border enzyme activity and glycoprotein degradation. J Clin Invest 60:1321–1330

    PubMed  CAS  Google Scholar 

  • Jonas A, Krishnan C, Forstner G (1978) Pathogenesis of mucosal injury in the blind loop syndrome: Release of disaccharidases from brush border membranes by extracts of bacteria obtained from intestinal blind loop of rats. Gastroenterology 75:791–795

    PubMed  CAS  Google Scholar 

  • Jones EA, Craigie A, Tavill AS (1968) Protein metabolism in the intestinal stagnant loop syndrome. Gut 9:466–469

    PubMed  CAS  Google Scholar 

  • Kahn LJ, Jeffries GH, Sleisenger MH (1966) Malabsorption in intestinal scleroderma: Correction by antibiotics. N Engl J Med 274:1339–1344

    PubMed  CAS  Google Scholar 

  • Kaiser MH, Cohen R, Arteaga I, Yawn E, Mayoral L, Hoffert WR, Frazier D (1966a) Normal viral and bacterial flora of the human small and large intestine. N Engl J Med 274:500–505

    Google Scholar 

  • Kaiser MH, Cohen R, Arteaga I, Yawn E, Mayoral L, Hoffert WR, Frazier D (1966b) Normal viral and bacterial flora of the human small and large intestine. N Eng J Med 274:558–563

    Google Scholar 

  • Kent TH, Cardelli RM, Stamler FW (1969) Small intestinal ulcers and intestinal flora in rats given indomethacin. Am J Pathol 54:237–249

    PubMed  CAS  Google Scholar 

  • Kenworthy R (1971) Observations on the reaction of the intestinal mucosa to bacterial challenge. J Clin Pathol 24:138–145

    Google Scholar 

  • Kim YS, Spritz N, Blum M, Terz J, Sherlock P (1966) The role of altered bile acid metabolism in the steatorrhea of experimental blind loop. J Clin Invest 45:956–962

    PubMed  CAS  Google Scholar 

  • King CE, Toskes PP (1979) Small intestine bacterial overgrowth. Gastroenterology 76:1035–1055

    PubMed  CAS  Google Scholar 

  • King C, Toskes P, Guilarte T (1976) Advantages of the xylose breath test over the bile salt breath test in diagnosis of the blind loop syndrome. Gastroenterology 70:901

    Google Scholar 

  • King CE, Toskes PP, Spivey JC, Lorenz E, Welkos S (1979) Detection of small intestine bacterial overgrowth by means of a 14C-D-xylose breath test. Gastroenterology 77:75–82

    PubMed  CAS  Google Scholar 

  • King CE, Toskes PP, Guilarte TR, Lorenz E, Welkos SL (1980) Comparison of the one-gram d-[14C]xylose breath test to the [14C] bile acid breath test in patients with small-intestine bacterial overgrowth. Dig Dis 25:53–58

    CAS  Google Scholar 

  • Klipstein FA, Samloff IM (1966) Folate synthesis by intestinal bacteria. Am J Clin Nutr 19:237–246

    PubMed  CAS  Google Scholar 

  • Klipstein FA, Holdeman LV, Corcino JJ, Moore WEC (1973) Enterotoxigenic intestinal bacteria in tropical sprue. Ann Intern Med 79:632–641

    PubMed  CAS  Google Scholar 

  • Klite PD, Gale GR (1961) An antifungal substance from Pseudomonas aeruginosa. Antibiot Chemother 11:256–260

    PubMed  CAS  Google Scholar 

  • Knoke M, Bernhardt H (1973) Zur Konstanz der Darmflora unter verschiedenen Bedingungen. Ernaehrungsforschung 18:359

    Google Scholar 

  • Knoop J, Rowley D (1975) Protection against cholera. A bactericidal mechanism on the mucosal surface of the small intestine in mice. Aust J Exp Biol Med Sci 58:155

    Google Scholar 

  • Knott FA (1923) The gastric germicidal barrier. Guy’s Hosp Rep 73:429–437

    Google Scholar 

  • Knott FA (1927) Addison’s anaemia and subacute combined degeneration of the cord: the role of achlorhydria and intestinal infection. Guy’s Hosp Rep 77:1–12

    Google Scholar 

  • Krone CL, Theodar E, Sleisenger MH (1968) Studies on the pathogenesis of malabsorption, lipid hydrolysis and micelle formation in the intestinal lumen. Medicine (Baltimore) 47:89–106

    CAS  Google Scholar 

  • Lal D, Gorbach SL, Levitan R (1972) Intestinal microflora in patients with alcoholic cirrhosis: urea-splitting bacteria and neomycin resistance. Gastroenterology 62:275–279

    Google Scholar 

  • Lauterburg BH, Newcomer AD, Hofman AF (1978) Clinical value of the bile acid breath test. Evaluation of the Mayo Clinic experience. Mayo Clin Proc 52:227–233

    Google Scholar 

  • Lee A, Gemmell E (1972) Changes in the mouse intestinal microflora during weaning: Role of volatile fatty acids. Infect Immun 5:1–7

    PubMed  Google Scholar 

  • Losowsky MS, Walker BE, Kelleher J (1974) Malabsorption in clinical practice. Churchill Livingstone, Edinburgh London, pp 29–48

    Google Scholar 

  • Luckey TD (1974) The villus in chemostat man. Am J Clin Nutr 27:1266

    PubMed  CAS  Google Scholar 

  • Lyall IG, Parsons PJ (1961) Some aspects of blind-loop syndrome. Med J Austr 2:904–907

    Google Scholar 

  • Lykkegaard Nielsen M, Justesen T, Lenz K, Vagn Nielsen O, Lindkaer Jensen S (1977) Bacterial flora of the small intestine and bile acid metabolism in patients with hepatico-jejunostomy roux-en-Y. Scand J Gastroenterol 12:977–982

    Google Scholar 

  • Macy JM, Yu I, Caldwell C, Hungate RE (1978) Reliable sampling methods for analysis of the ecology of the human alimentary tract. Appl Environ Microbiol 35:113–120

    PubMed  CAS  Google Scholar 

  • Martini GA, Phear EA, Ruebner B, Sherlock S (1957) Bacterial content of small intestine in normal and cirrhotic subjects. Relation to methionine toxicity. Clin Sci 16:35–51

    PubMed  CAS  Google Scholar 

  • Mata LJ, Jiminez F, Cordon M, Rosales R, Prera E, Schneider RE, Viteri F (1972) Gastrointestinal flora of children with protein-calorie malnutrition. Am J Clin Nutr 25:1118–1126

    Google Scholar 

  • Mayer PJ, Beeken WL (1975) The role of urinary indican as a predictor of bacterial colonization in the human jejunum. Am J Dig Dis 20:1003–1010

    PubMed  CAS  Google Scholar 

  • Meihoff WE, Hirschfield JS, Kern F (1968) Small intestinal scleroderma with malabsorption and pneumatosis cystoides intestinalis. JAMA 204:102–106

    Google Scholar 

  • Metz G, Gassull MA, Drasar BS, Jenkins DJA, Blendis LM (1976) Breath hydrogen test for small intestinal bacterial colonisation. Lancet 1:668–669

    PubMed  CAS  Google Scholar 

  • Meynell GG (1963) Antibacterial mechanisms of the mouse gut. II. The role of Eh and volatile fatty acids in the normal gut. Br J Exp Pathol 44:209–219

    PubMed  CAS  Google Scholar 

  • Mickelsen O (1962) Nutrition: germfree animal research. Ann Rev Biochem 31:515–548

    PubMed  CAS  Google Scholar 

  • Moore WEC, Holdeman LV (1974) Human fecal flora; the normal flora of 20 Japanese-Hawaiians. Appl Microbiol 27:961–979

    PubMed  CAS  Google Scholar 

  • Moore WEC, Cato EP, Holdeman LV (1969) Anaerobic bacteria of the gastrointestinal flora and their occurrence in clinical infections. J Infect Dis 119:641–649

    PubMed  CAS  Google Scholar 

  • Nadel H, Gardner FA (1956) Bacteriological assay of small bowel secretion in tropical sprue. Am J Trop Med 5:686–689

    Google Scholar 

  • Neale G, Tabaqchali S (1966) Value of measuring urinary indican excretion. Gut 7:711

    Google Scholar 

  • Neale G, Gompertz D, Schönsby H, Tabaqchali S, Booth CC (1972) The metabolic and nutritional consequence of bacterial overgrowth in the small intestine. Am J Clin Nutr 25:1409–1417

    PubMed  CAS  Google Scholar 

  • Nelson DP, Mata LJ (1970) Bacterial flora associated with the human gastrointestinal mucosa. Gastroenterology 58:56–61

    PubMed  CAS  Google Scholar 

  • Northfield TC (1973) Intraluminal precipitation of bile acids in stagnant loop syndrome. Br Med J 2:743–745

    PubMed  CAS  Google Scholar 

  • Northfield TC, Drasar BS, Wright JT (1973) Value of small intestinal bile acid analysis in the diagnosis of the stagnant loop syndrome. Gut 14:341–347

    PubMed  CAS  Google Scholar 

  • Paine TF (1958) Inhibitory actions of bacteria on Candida growth. Antibiot Chemother 8:273–283

    Google Scholar 

  • Panish JF (1963) Experimental blind loop steatorrhea. Gastroenterology 45:394–399

    PubMed  CAS  Google Scholar 

  • Parkin DM, McClelland DBL, Moore RRO, Percy-Robb IW, Grant IWB, Shearman DJC (1972) Intestinal bacterial flora and bile salt studies in hypogammaglobulinaemia. Gut 13:182–188

    PubMed  CAS  Google Scholar 

  • Paulk EA jr, Farrar WE jr (1964) Diverticulosis of the small intestine and megaloblastic anemia. Intestinal microflora and absorption before and after tetracycline administration. Annu J Med 37:473–480

    Google Scholar 

  • Peach S, Lock MR, Katz D, Todd IP, Tabaqchali S (1978) Mucosal-associated bacterial flora of the intestine in patients with Crohn’s disease and in a control group. Gut 19:1034–1042

    PubMed  CAS  Google Scholar 

  • Pearson AJ, Brzechwa-Ajdukiewicz A, McCarthy CF (1969) Intestinal pseudo-obstruction with bacterial overgrowth in the small intestine. Am J Dig Dis 14:200–205

    Google Scholar 

  • Peled Y, Levy-Gigi C, Ayalon D, Gilat T (1979) The cholyl glycine-1-14C breath test in various gastrointestinal disorders. Digestion 19:267–276

    PubMed  CAS  Google Scholar 

  • Peppercorn MA, Amnuay T, Fromm D (1976) Detection of bacterial overgrowth by analysis of drug metabolites. Gastroenterology 70:926 A

    Google Scholar 

  • Plaut AB, Gorbach SL, Nahas L, Weinstein L (1967) Studies of intestinal microflora. III. The microbial flora of human small intestinal mucosa and fluids. Gastroenterology 53:868–873

    PubMed  CAS  Google Scholar 

  • Prizont R, Hersh T, Floch MH (1970) Jejunal bacterial flora in chronic small bowel disease. I. Celiac disease. II. Regional enteritis. Am J Clin Nutr 23:1602–1607

    PubMed  CAS  Google Scholar 

  • Prizont R, Whitehead JS, Kim YS (1975) Short chain fatty acids in rats with jejunal blind loops. I. Analysis of SCFA in small intestine, cecum, feces, and plasma. Gastroenterology 69:1254–1264

    PubMed  CAS  Google Scholar 

  • Van der Reis V (1921) Das Schicksal der Bakterien im Magen. Arch Verdau Kr 27:353–363

    Google Scholar 

  • Van der Reis V (1925) Die Darmbakterien des Erwachsenen und ihre klinische Bedeutung. Ergeb Inn Med Kinderheilkd 27:77–120

    Google Scholar 

  • Rhodes JM, Middleton P, Jewell DP (1979) The lactulose hydrogen breath test as a diagnostic test for small-bowel bacterial overgrowth. Scand J Gastroenterol 14:333–336

    PubMed  CAS  Google Scholar 

  • Robert SH, James O, Jarvis EH (1977) Bacterial overgrowth syndrome without “blind loop”. A cause for malnutrition in the elderly. Lancet 2:1193–1195

    Google Scholar 

  • Rosebury T (1962) Microorganisms indegenous to man. McGraw-Hill, New York, p 435

    Google Scholar 

  • Rosenberg IH, Hardison WG, Bull DM (1967) Abnormal bile-salt patterns and intestinal bacterial overgrowth associated with malabsorption. N Engl J Med 276:1391–1397

    PubMed  CAS  Google Scholar 

  • Rowland MGM, McCollum JPK (1977) Malnutrition and gastroenteritis in the Gambia. Trans R Soc Trop Hyg 71:199–203

    CAS  Google Scholar 

  • Ruddell WSJ, Axon ATR, Findlay JM, Bartholomew BA, Hill MJ (1980) Effect of Cimetidine on the gastric bacterial flora. Lancet 1:672–674

    PubMed  CAS  Google Scholar 

  • Salen G, Goldstein F, Wirts CW (1966) Malabsorption in intestinal scleroderma. Relation to bacterial flora and treatment with antibiotics. Ann Intern Med 64:834–841

    Google Scholar 

  • Savage DC (1969) Localization of certain indigenous microorganisms on the ileal villi of rats. J Bacteriol 95:1505

    Google Scholar 

  • Savage DC (1970) Association of indigenous microorganisms with gastrointestinal mucosal epithelia. Am J Clin Nutr 23:1495–1501

    PubMed  CAS  Google Scholar 

  • Savage DC (1972) Association and physiological interactions of indigenous microorganisms and gastrointestinal epithelia. Am J Clin Nutr 25:1372–1379

    PubMed  CAS  Google Scholar 

  • Savage DC (1977a) Interactions between the host and its microbes. In: Clarke RTJ, Bauchop T (eds) Microbial ecology of the gut. Academic Press, New York, pp 277–310

    Google Scholar 

  • Savage DC (1977 b) Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol 31:107–133

    PubMed  CAS  Google Scholar 

  • Savage DC (1978) Factors involved in colonization of the gut epithelial surface. Am J Clin Nutr 31:131–135

    Google Scholar 

  • Savage DC (1979) Introduction to mechanisms of association of indigenous microbes. Am J Clin Nutr 32:113–118

    PubMed  CAS  Google Scholar 

  • Savage DC, Dubos R, Schaedler RW (1967) The gastrointestinal epithelium and its autochthonous bacterial flora. J Exp Med 127:67–75

    Google Scholar 

  • Schaedler RW, Dubos R, Costello R (1965) The development of the bacterial flora in the gastrointestinal tract of mice. J Exp Med 122:59–66

    PubMed  CAS  Google Scholar 

  • Scheline RR (1968) Drug metabolism by intestinal microorganisms. J Pharm Sci 57:2021–2037

    PubMed  CAS  Google Scholar 

  • Schiffer LM, Falcoon WW, Chodos RB, Lozner EL (1962) Malabsorption syndrome associated with intestinal diverticulosis. Report of a case with jejunal biopsy. Gastroenterology 42:63–68

    PubMed  CAS  Google Scholar 

  • Schjönsby H (1975) The absorption of Vit B12 in the blind loop syndrome. Scand J Gastroenterol [Suppl] 29:65–70

    Google Scholar 

  • Schjönsby H, Halvorsen JF, Hofstadt T, Hovdenak N (1977) Stagnant loop-syndrome in patients with continent ileostomy (intra-abdominal ileal reservoir). Gut 18:795–799

    PubMed  Google Scholar 

  • Schoeller DA, Klein PD, MacLean WC, Watkins JB, Van Santen E (1981) Fecal 13C analysis for the detection and application to disorders of intestinal cholylglycine metabolism. J Lab Clin Med 97:439–448

    Google Scholar 

  • Schütz R (1901) Kritischer und experimenteller Beitrag zur Frage gastrointestinaler Desinfection. Arch Verdau Kr 7:43–66

    Google Scholar 

  • Scott AJ, Khan GA (1968) Partial biliary obstruction with cholangitis producing a blind loop syndrome. Gut 9:187–192

    PubMed  CAS  Google Scholar 

  • Scott LD, Cahall DL (1982) Influence of the interdigestive myoelectric complex on enteric flora in the rat. Gastroenterology 82:737–745

    PubMed  CAS  Google Scholar 

  • Shearman DJC, Parkin DM, McClelland DBL (1972) The demonstration and function of antibodies in the gastrointestinal tract. Gut 13:483–499

    PubMed  CAS  Google Scholar 

  • Sherr HP, Sasaki Y, Newman A, Banwell JG, Wagner HN, Hendrix TR (1971) Detection of bacterial deconjugation of bile salts by a convenient breath analysis technic. N Engl J Med 285:656–661

    PubMed  CAS  Google Scholar 

  • Sherwood WC, Goldstein F, Haurani FI, Wirts CW (1964) Studies of the small intestinal bacterial flora and of intestinal absorption in pernicious anemia. Am J Dig Dis 9:416–425

    PubMed  CAS  Google Scholar 

  • Shimada K, Sutter VL, Finegold SM (1970) Effect of bile and deoxycholate on gram-negative anerobic bacteria. Appl Microbiol 20:737–741

    PubMed  CAS  Google Scholar 

  • Shimoda SS, O’Brian TK, Saunders DR (1974) Fat absorption after infusing bile salts into the human small intestine. Gastroenterology 67:7–18

    PubMed  CAS  Google Scholar 

  • Shiner M (1963) A capsule for obtaining sterile samples of gastrointestinal fluids. Lancet 1:532–533

    PubMed  CAS  Google Scholar 

  • Shiner M, Waters TE, Gray JD (1963) Culture studies of the gastrointestinal tract with a newly devised capsule. Results of tests in vitro and in vivo. Gastroenterology 45:625–632

    PubMed  CAS  Google Scholar 

  • Sjövall J (1960) Bile acids in man under normal and pathological conditions. Clin Chim Acta 5:33–41

    Google Scholar 

  • Smith HW (1965 a) Observations on the flora of the alimentary tract of animals and factors affecting its composition. J Pathol Bacteriol 89:95–122

    PubMed  CAS  Google Scholar 

  • Smith HW (1965 b) The development of the flora of the alimentary tract in young animals. J Pathol Bacteriol 90:495–513

    PubMed  CAS  Google Scholar 

  • Sullivan NP, Manville JA (1937) Relationship of the diet to the self-regulatory defence mechanism. II. Lysozyme in Vitamin A and in uronic acid deficiencies. Am J Public Health 27:1108–1115

    CAS  Google Scholar 

  • Sumi SM, Finlay JM (1961) On the pathogenesis of diabetic steatorrhea. Ann Intern Med 55:994–997

    PubMed  CAS  Google Scholar 

  • Summers RW, Kent TH (1970) Effects of altered propulsion on rat small intestinal flora. Gastroenterology 59:740–744

    PubMed  CAS  Google Scholar 

  • Sykes PA, Boulter KH, Schofield PF (1976) Alterations in small-bowel microflora in acute intestinal obstruction. J Med Microbiol 9:13–22

    PubMed  CAS  Google Scholar 

  • Tabaqchali S (1970) The pathophysiological role of small intestinal bacterial flora. Scand J Gastroenterol [Suppl] 6:139–163

    CAS  Google Scholar 

  • Tabaqchali S, Booth CC (1966) Alteration of bile salt metabolism in the stagnant loop syndrome. Gut 7:712

    Google Scholar 

  • Tabaqchali S, Booth CC (1967) The relationship of intestinal bacterial flora to absorption. Br Med Bull 23:285–290

    PubMed  CAS  Google Scholar 

  • Tabaqchali S, Booth CC (1970) Bacteria and the small intestine. In: Card WI, Creamer B (eds) Modern trends in gastroenterology, vol IV. Butterworth, London, pp 143–179

    Google Scholar 

  • Tabaqchali S, Hatzioannou J, Booth CC (1968) Bile-salt deconjugation and steatorrhea in patients with the stagnant loop syndrome. Lancet 2:12–16

    PubMed  CAS  Google Scholar 

  • Takeuchi A, Sprinz H, Sohn A (1971) Intestinal spirochetosis in the monkey and man. Lab Invest 24:450

    Google Scholar 

  • Thadepalli H. Lou MA, Bach VT, Matsiu TK, Mandai AK (1979) Microflora of the human small intestine. Am J Surg 138:845–850

    PubMed  CAS  Google Scholar 

  • Thaysen EH (1977) Diagnostic value of the 14C-cholylglycine breath test. Clin Gastroenterol 6:227–245

    PubMed  CAS  Google Scholar 

  • Tinker J, Hoffbrand AV, Mitchison RS, Tabaqchali S, Cox AG (1971) Gastro-intestinal flora and diarrhea after vagotomy. S Afr Med J 45:1258–1259

    PubMed  CAS  Google Scholar 

  • Tissier H (1900) Recherches sur la flore intestinale normale et pathologique du nourrisson. Ann Inst Pasteur 26:552

    Google Scholar 

  • Tomkin GH, Weir DG (1972) Indicanuria after gastric surgery: An evaluation of the diagnosis of the blind loop syndrome. Q J Med 41:191–203

    PubMed  CAS  Google Scholar 

  • Toskes PP, Giannella RA, Jervis HR, Rout WR, Takeuchi A (1975) Small intestinal mucosal injury in the experimental blind loop syndrome. Gastroenterology 68:1193–1203

    PubMed  CAS  Google Scholar 

  • Umbarger HE, Müller JH (1951) Isoleucine and valine metabolism of E. coli. J Biol Chem 189:277–285

    PubMed  CAS  Google Scholar 

  • Vantrappen G, Janssens J, Hellemans J, Ghoos Y (1977) The interdigestive complex of normal subjects and patients with bacterial overgrowth of the small intestine. J Clin Invest 59:1158–1166

    PubMed  CAS  Google Scholar 

  • Varcoe R, Holliday D, Tavill A (1974) Utilization of urea nitrogen for albumin synthesis in the stagnant loop syndrome. Gut 15:898–902

    PubMed  CAS  Google Scholar 

  • Watanabe T (1963) Infective heredity of multiple drug resistance in bacteria. Bacteriol Rev 27:87–115

    PubMed  CAS  Google Scholar 

  • Watanabe T (1966) Infectious drug resistance in enteric bacteria. N Engl J Med 275:888–894

    PubMed  CAS  Google Scholar 

  • Watkinson G, Feather DB, Marson FGW, Dossett JA (1959) Massive jejunal diverticulosis with steatorrhoea and megaloblastic anaemia improved by excision of diverticula. Br Med J 2:58–62

    PubMed  CAS  Google Scholar 

  • Werner H, Hemmati A (1965) Klinisch-bakteriologische Erfahrungen mit einer neuen steuerbaren Kapsel zur Entnahme von Darminhalt. Ernaehrungsforschung 10:436–442

    Google Scholar 

  • Williams RC, Showalter R, Kern F (1975) In vivo effect of bile salts and cholestyramine on intestinal anaerobic bacteria. Gastroenterology 69:483–491

    PubMed  CAS  Google Scholar 

  • Wirts CW, Goldstein F (1963) Studies of the mechanisms of post-gastrectomy steatorrhea. Ann Intern Med 58:25–36

    PubMed  CAS  Google Scholar 

  • Wolgemuth RL, Hanson KM, Zassenhaus PH (1976) A new substrate for the rapid evaluation of enteric microbial overgrowth. Am J Dig Dis 21:821–826

    PubMed  CAS  Google Scholar 

  • Wolin MJ (1974) Metabolic interactions among intestinal microorganisms. Am J Clin Nutr 27:1320–1328

    PubMed  CAS  Google Scholar 

  • Wren MWD (1977) The culture of clinical specimens for anaerobic bacteria: a comparison of three regimen. J Med Microbiol 10:195–201

    PubMed  CAS  Google Scholar 

  • Yap SH, Hafkenscheid JCM, Van Tongeren JHM (1974) Rate of synthesis of albumin in relation to serum levels of essential amino acids in patients with bacterial overgrowth in the small bowel. Eur J Clin Invest 4:279–284

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lembcke, B. (1983). Bakterienflora des Dünndarms. In: Bazzoli, F., et al. Dünndarm A. Handbuch der inneren Medizin, vol 3 / 3 / A. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68415-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68415-9_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68416-6

  • Online ISBN: 978-3-642-68415-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics