Skip to main content

Dünndarm und Lipoproteinstoffwechsel

  • Chapter
Dünndarm A

Part of the book series: Handbuch der inneren Medizin ((INNEREN 3,volume 3 / 3 / A))

  • 60 Accesses

Zusammenfassung

Bis vor wenigen Jahren galt der Dünndarm fast ausschließlich als Resorptionsorgan. Erst der tierexperimentellen und klinischen Forschung der beiden letzten Jahrzehnte verdanken wir die Kenntnis eines wesentlich breiteren Funktionsspektrums dieses Organs. So spielt der Dünndarm abgesehen von seiner digestive-resorptiven Funktion auch eine wichtige Rolle in verschiedenen Aspekten der Immunologie: sein lymphatisches Gewebe (gut associated lymphoid tissue, Galt) stellt eine erste Barriere gegen das Eindringen von bakteriellen und Nahrungsmittelantigenen aus dem Darmlumen dar (Hall 1979), beeinflußt daher maßgeblich die Immunitätslage des Organismus (s. auch S. 73, 702) und es besteht heute kein Zweifel mehr an der Schlüsselstellung des Immunsystems des Darmes in der Pathogenese zahlreicher gastrointestinaler Erkrankungen (McGuigan 1973).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Baxter JH (1966) Origin and characteristics of endogenous lipid in thoracic duct lymph in rat. J Lipid Res 7:158–166

    PubMed  CAS  Google Scholar 

  • Bhattathiry EPM, Siperstein MD (1963) Feedback control of cholesterol synthesis in man. J Clin Invest 42:1613–1618

    Article  PubMed  CAS  Google Scholar 

  • Brown MS, Goldstein JL (1976) Receptor-mediated control of cholesterol metabolism. Science 191:150–154

    Article  PubMed  CAS  Google Scholar 

  • Brunzell JD, Hazzard WR, Porte D jr, Bierman EL (1973) Evidence for a common, saturable, triglyceride removal mechanism for chylomicrons and very low density lipoproteins in man. J Clin Invest 42:1578–1585

    Article  Google Scholar 

  • Byers SO, Friedman M (1960) Site of origin of plasma triclyceride. Am J Physiol 198:629–631

    PubMed  CAS  Google Scholar 

  • Carter EA, Drummey GD, Isselbacher KJ (1971) Ethanol stimulation of triglyceride synthesis by the intestine. Science 174:1245–1247

    Article  PubMed  CAS  Google Scholar 

  • Cayen MN (1971) Effect of dietary tomatine on cholesterol metabolism in the rat. J Lipid Res 12:482–490

    PubMed  CAS  Google Scholar 

  • Cenedella RM, Crouthamel WG, Mengoli HF (1974) Intestinal versus hepatic contribution to circulating triglyceride levels. Lipids 9:35–42

    Article  PubMed  CAS  Google Scholar 

  • Coniglio JG, Cate DL (1958) The distribution and biosynthesis of palmitic and stearic acids in liver, intestine, and carcass of intact normal and fasted rats. J Biol Chem 232:361–368

    PubMed  CAS  Google Scholar 

  • Coniglio JG, Anderson CE, Robinson CS (1952) Acetate utilization in normal, fasting, and pyruvate-treated rats. J Biol Chem 198:525–532

    PubMed  CAS  Google Scholar 

  • Coniglio JG, McCormick DB, Hudson GW (1956) Biosynthesis of fatty acids in liver and intestine of intact normal, fasted and X-irradiated rats. Am J Physiol 185:577–582

    PubMed  CAS  Google Scholar 

  • Courtice FC, Morris B (1955) The exchange of lipids between plasma and lymph of animals. Q J Exp Physiol 40:138–148

    CAS  Google Scholar 

  • Cox GE, Nelson LG, Wood WB, Taylor CB (1954) Effect of dietary cholesterol on cholesterol synthesis in monkey’s tissue in vitro (Abstr). Fed Proc 13:31

    Google Scholar 

  • Den Besten L, Reyna RH, Connor WE, Stegink LD (1973) The different effects on the serum lipids and fecal steroids of high carbohydrate diets given orally or intravenously. J Clin Invest 52:1384–1393

    Article  Google Scholar 

  • Dietschy JM (1968) The role of bile salts in controlling the rate of intestinal cholesterogenesis. J Clin Invest 47:286–300

    Article  PubMed  CAS  Google Scholar 

  • Dietschy JM (1969) The role of the intestine in the control of cholesterol metabolism. Gastroenterology 57:461–464

    PubMed  CAS  Google Scholar 

  • Dietschy JM, Gamel WG (1971) Cholesterol synthesis in the intestine of man: regional differences and control mechanisms. J Clin Invest 50:872–880

    Article  PubMed  CAS  Google Scholar 

  • Dietschy JM, Siperstein MD (1965) Cholesterol synthesis by the gastrointestinal tract: localization and mechanisms of control. J Clin Invest 44:1311–1327

    Article  PubMed  CAS  Google Scholar 

  • Dietschy JM, Siperstein MD (1967) Effect of cholesterol feeding and fasting on sterol synthesis in seventeen tissues of the rat. J Lipid Res 8:97–104

    PubMed  CAS  Google Scholar 

  • Dietschy JM, Wilson JD (1968) Cholesterol synthesis in the squirrel monkey: relative rates of synthesis in various tissues and mechanisms of control. J Clin Invest 47:166–174

    Article  PubMed  CAS  Google Scholar 

  • Dietschy JM, Wilson JD (1970) Regulation of cholesterol metabolism (first of three parts). N Engl J Med 282:1128–1138

    Article  PubMed  CAS  Google Scholar 

  • Durr IF, Rudney H (1960) The reduction of β-hydroxy-β-methylglutaryl coenzyme A to mevalonic acid. J Biol Chem 235:2572–2578

    PubMed  CAS  Google Scholar 

  • Edwards PA (1973) Effect of adrenalectomy and hypophysectomy on the circadian rhythm of β-hydroxy-β-methylglutaryl coenzyme A-reductase activity in rat liver. J Biol Chem 248:2912–2917

    PubMed  CAS  Google Scholar 

  • Edwards PA, Muroya H, Gould RG (1972) In vivo demonstration of the circadian rhythm of cholesterol biosynthesis in the liver and intestine of the rat. J Lipid Res 13:396–401

    PubMed  CAS  Google Scholar 

  • Eisenberg S (1979) Very low density lipoprotein metabolism. Prog Biochem Pharmacol 15:139–165

    PubMed  CAS  Google Scholar 

  • Favarger P (1968) Relative importance of different tissues in the synthesis of fatty acids. In: Handbook of physiology, sect 5, vol III, Adipose tissue, chap 4, pp 19–23. American Physiological Society, Washington D.C.

    Google Scholar 

  • Favarger P, Gerlach J (1955) Recherches sur la synthèse des graisses à partir d’acétate ou de glucose. II. Helv Physiol Acta 13:96–105

    CAS  Google Scholar 

  • Fimognari GM, Rodwell VW (1965) Cholesterol biosynthesis: mevalonate synthesis inhibited by bile salts. Science 147:1038

    Article  PubMed  CAS  Google Scholar 

  • Forte TM, Nichols AV, Gong EC, Lux S, Levy RI (1971) Electron microscopic study on reassembly of plasma high density apoprotein with various lipids. Biochim Biophys Acta 248:318–386

    Google Scholar 

  • Franks JJ, Riley EM, Isselbacher KJ (1966) Synthesis of fatty acids by rat intestine in vitro. Proc Soc Exp Biol Med 121:322–327

    PubMed  CAS  Google Scholar 

  • Frantz ID Jr, Schneider HS, Hinkelman BT (1954) Suppression of hepatic cholesterol synthesis in the rat by cholesterol feeding. J Biol Chem 206:465–469

    PubMed  CAS  Google Scholar 

  • Friedman M, Byers SO, Michaelis F (1951) Production and excretion of cholesterol in mammals. IV. Role of liver in restoration of plasma cholesterol after experimentally induced hypocholesteremia. Am J Physiol 164:789–791

    PubMed  CAS  Google Scholar 

  • Fujiwara T, Hirono H, Arakawa T (1965) Idiopathic hypercholesterolemia: demonstration of an impaired feedback control of cholesterol synthesis in vivo. Tohoku J Exp Med 87:155–167

    Article  PubMed  CAS  Google Scholar 

  • Gangl A (1975 a) Der Fettstoffwechsel des Dünndarms und seine Beziehung zum Lipid- und Lipoproteinstoffwechsel des Gesamt-Organismus. Acta Med Austriaca [Suppl 2] 2:1–49

    CAS  Google Scholar 

  • Gangl A (1975 b) Aktuelle Konzepte in der Physiologie der Fettresorption. Leber Magen Darm 5:265–268

    PubMed  CAS  Google Scholar 

  • Gangl A, Ockner R (1974) Intestinal metabolism of plasma free fatty acids (FFA). Clin Res 22:358 A

    Google Scholar 

  • Gangl A, Ockner RK (1975 a) Intestinal metabolism of lipids and lipoproteins. Gastroenterology 68:167–186

    PubMed  CAS  Google Scholar 

  • Gangl A, Ockner RK (1975 b) Intestinal metabolism of plasma free fatty acids. Intracellular compartmentation and mechanisms of control. J Clin Invest 55:803–813

    Article  PubMed  CAS  Google Scholar 

  • Gangl A, Renner F (1978) In vivo metabolism of plasma free fatty acids by intestinal mucosa of man. Gastroenterology 74:847–850

    PubMed  CAS  Google Scholar 

  • Gangl A, Pavelka M, Stockinger L, Grabner G (1976) Fett-Resorption: Aktuelle Konzepte und Mikromorphologie. Z Gastroenterol 14:626–637

    PubMed  CAS  Google Scholar 

  • Gangl A, Pavelka M, Klose B (1979) Evidence for functional significance of microtubuli in intestinal transepithelial lipid transport. In: Peeters H (ed) Protides of the biological fluids. Proceedings of the XXVIth Colloquium, 1978. Pergamon, Oxford New York, pp 527–530

    Google Scholar 

  • Gangl A, Kornauth W, Mlczoch J, Sulm O, Klose B (1980) Different metabolism of saturated and unsaturated long chain plasma free fatty acids by intestinal mucosa of rats. Lipids 15:75–79

    Article  PubMed  CAS  Google Scholar 

  • Ganguly J (1960) Studies on the mechanism of fatty acid synthesis. VII. Biosynthesis of fatty acids from malonyl CoA. Biochim Biophys Acta 40:110–118

    Article  PubMed  CAS  Google Scholar 

  • Glickman RM, Green PHR (1977) The intestine as a source of apolipoprotein A-I. Proc Natl Acad Sci USA 74:2569–2573

    Article  PubMed  CAS  Google Scholar 

  • Glomset JA (1968) The plasma lecithin: cholesterol acyltransferase reaction. J Lipid Res 9:155–167

    PubMed  CAS  Google Scholar 

  • Gould RG, Taylor CB, Hagerman JS, Warner I, Campbell DJ (1953) Cholesterol metabolism: I. Effect of dietary cholesterol on the synthesis of cholesterol in dog tissue in vitro. J Biol Chem 201:519–528

    PubMed  CAS  Google Scholar 

  • Green PR, Tall AR, Glickman RM (1978) Rat intestine secretes discoid high density lipoprotein. J Clin Invest 61:528–534

    Article  PubMed  CAS  Google Scholar 

  • Green PHR, Glickman RM, Saudek CD, Blum CB, Tall AR (1979) Human intestinal lipoproteins. Studies in chyluric subjects. J Clin Invest 64:233–242

    Article  PubMed  CAS  Google Scholar 

  • Grundy S, Ahrens EH, Salen G (1970) Hourly rates of secretion of biliary lipids in man. Clin Res 18:529

    Google Scholar 

  • Hall J (1979) Lymphocyte recirculation and the gut: the cellular basis of humoral immunity in the intestine. Blood Cells 5:479–492

    PubMed  CAS  Google Scholar 

  • Hamilton RL (1972) Synthesis and secretion of plasma lipoproteins. Adv Exp Med Biol 26:7–24

    PubMed  CAS  Google Scholar 

  • Hamilton RL, Williams MC, Fielding CJ, Havel RJ (1976) Discoidal bilayer structure of nascent high density lipoproteins from perfused rat liver. J Clin Invest 58:667–680

    Article  PubMed  CAS  Google Scholar 

  • Havel RJ (1969) Pathogenesis differentiation and management of hypertriglyceridemia. Adv Intern Med 15:117–154

    PubMed  CAS  Google Scholar 

  • Hickman PE, Horton BJ, Sabine JR (1972) Effect of adrenalectomy on the diurnal variation of hepatic cholesterogenesis in the rat. J Lipid Res 13:17–22

    PubMed  CAS  Google Scholar 

  • Holloway PW (1970) Steroid metabolism. In: Wakil SJ (ed) Lipid metabolism. Academic Press, New York London, pp 371–429

    Google Scholar 

  • Holt PR, Dominguez AA (1980) Triton-induced hyperlipidemia: a model for studies of intestinal lipoprotein production. Am J Physiol 238:G453–G457

    PubMed  CAS  Google Scholar 

  • Hotta S, Chaikoff IL (1955) The role of the liver in the turnover of plasma cholesterol. Arch Biochem Biophys 56:28–37

    Article  PubMed  CAS  Google Scholar 

  • Huber J, Hamprecht B, Müller OA, Guder W (1972) Tageszeitlicher Rhythmus der Hydroxymethyl-glutaryl-CoA-Reduktase in der Rattenleber. IL Rhythmus bei adrenalektomierten Tieren. Hoppe Seylers Z Physiol Chem 353:313–317

    Article  PubMed  CAS  Google Scholar 

  • Hutchens TT, Van Bruggen JT, Cockburn RM, West ES (1954) The effect of fasting upon tissue lipogenesis in the intact rat. J Biol Chem 208:115–122

    PubMed  CAS  Google Scholar 

  • Ingle DL, Bauman DE, Garrigus US (1972) Lipogenesis in the ruminant: in vivo site of fatty acid synthesis in sheep. J Nutr 102:617–624

    PubMed  CAS  Google Scholar 

  • Jones AL, Ockner RK (1971) An electron microscopic study of endogenous very low density lipoprotein production in the intestine of rat and man. J Lipid Res 12:580–589

    PubMed  CAS  Google Scholar 

  • Karmen A, Whyte M, Goodman DS (1963) Fatty acid esterification and chylomicron formation during fat absorption. I. Triglycerides and cholesterol esters. J Lipid Res 4:312–321

    PubMed  CAS  Google Scholar 

  • Knappe J, Ringelmann E, Lynen F (1959) Über die β-Hydroxy-β-methyl-glutaryl-Reduktase der Hefe. Zur Biosynthese der Terpene IX. Biochem Zeitschr 332:195–213

    CAS  Google Scholar 

  • Koizumi J, Mabuchi H, Wakasugi T, Watanabe A, Tatami R, Ueda K, Ueda R, Haba T, Kametani T, Ito S, Miyamoto S, Ota M, Takeda R (1979) Regulation of fatty acid synthesis in isolated hepatocytes by intestinal chylomicrons and their remnants. FEBS Letters 106:370–374

    Article  PubMed  CAS  Google Scholar 

  • Lehmann B, Grajewski O, Arntz HR, Oberdisse E (1976) Correlation between serum high density lipoprotein content and liver function during experimental hepatic degeneration and regeneration. Acta Hepatogastroenterol (Stuttg) 24:328–333

    Google Scholar 

  • Liersch MEA, Barth CA, Hackenschmidt HJ, Ulimann HL, Decker KFA (1973) Influence of bile salts on cholesterol synthesis in the isolated perfused rat liver. Eur J Biochem 32:365–371

    Article  PubMed  CAS  Google Scholar 

  • Lutton C (1976) The role of the digestive tract in cholesterol metabolism. Digestion 14:342–356

    Article  PubMed  CAS  Google Scholar 

  • Mak KM, Trier JS (1972) Radioautographic and chemical evidence for (5–3H) mevalonate incorporation into cholesterol by rat villous absorptive cells. Biochim Biophys Acta 280:316–328

    PubMed  CAS  Google Scholar 

  • McGuigan JE (1973) Immunology and disease of the gastrointestinal tract. In: Sleisenger MH, Fordtran JS (eds) Gastrointestinal disease. Saunders, Philadelphia London Toronto, pp 51–69

    Google Scholar 

  • McIntyre N, Isselbacher KJ (1973) Role of the small intestine in cholesterol metabolism. Am J Clin Nutr 26:647–656

    PubMed  CAS  Google Scholar 

  • Mistilis SP, Ockner RK (1972) Effects of ethanol on endogenous lipid and lipoprotein metabolism in small intestine. J Lab Clin Med 80:34–46

    PubMed  CAS  Google Scholar 

  • Mjøs OD, Faergman O, Hamilton RL, Havel RJ (1975) Characterization of remnants produced during the metabolism of triglyceride-rich lipoproteins of blood plasma and intestinal lymph in the rat. J Clin Invest 56:603–615

    Article  PubMed  Google Scholar 

  • Morris MD, Chaikoff IL, Felts JM, Abraham S, Fansah NO (1957) The origin of serum cholesterol in the rat: diet versus synthesis. J Biol Chem 224:1039–1045

    PubMed  CAS  Google Scholar 

  • Nervi FO, Weis HJ, Dietschy JM (1975) The kinetic characteristics of inhibition of hepatic cholesterogenesis by lipoproteins of intestinal origin. J Biol Chem 250:4145–4151

    PubMed  CAS  Google Scholar 

  • Oberdisse E, Winkler R, Grajweski O, Lehmann B von, Arntz HR (1974) Pharmakologische Untersuchungen zum Mechanismus der Praseodym-ausgelösten Leberschädigung. Verh Dtsch Ges Inn Med 80:1556–1558

    PubMed  CAS  Google Scholar 

  • Ockner RK (1966) Intestinal metabolism of cholesterol: evidence against side-chain oxidation by mammalian intestinal mucosa. Proc Soc Exp Biol Med 123:374–378

    PubMed  CAS  Google Scholar 

  • Ockner RK, Jones AL (1970) An electron microscopic and functional study of very low density lipoproteins in intestinal lymph. J Lipid Res 11:284–292

    PubMed  CAS  Google Scholar 

  • Ockner RK, Hughes FB, Isselbacher KJ (1969) Very low density lipoproteins in intestinal lymph: origin, composition, and role in lipid transport in the fasting state. J Clin Invest 48:2079–2088

    Article  PubMed  CAS  Google Scholar 

  • Pawlinger DF, Shipp JC (1968) Familial hypercholesteremia: effect of exogenous cholesterol on cholesterol biosynthesis in vivo and by liver in vitro (Abstr). Clin Res 16:51

    Google Scholar 

  • Pertsemlidis D, Kirchman EH, Ahrens EH Jr (1973) Regulation of cholesterol metabolism in the dog. I. Effects of complete bile diversion and of cholesterol feeding on absorption, synthesis, accumulation and excretion rates measured during life. J Clin Invest 52:2353–2367

    Article  PubMed  CAS  Google Scholar 

  • Risser TR, Reaven GM, Reaven EP (1978) Intestinal contribution to secretion of very low density lipoproteins into plasma. Am J Physiol 234:E277–E281

    PubMed  CAS  Google Scholar 

  • Roheim PS, Gidez LI, Eder HA (1966) Extrahepatic synthesis of lipoproteins of plasma and chyle: role of the intestine. J Clin Invest 45:297–300

    Article  PubMed  CAS  Google Scholar 

  • Seitz W, von Brand V (1969) Der Einfluß von gekoppelten Gallensäuren auf die Synthese von Fettsäuren und Cholesterin in der Leber. Klin Wochenschr 39:891–895

    Article  Google Scholar 

  • Shefer S, Hauser S, Lapar V, Mosbach EH (1972) HMG CoA reductase of intestinal mucosa and liver of the rat. J Lipid Res 13:402–412

    PubMed  CAS  Google Scholar 

  • Shefer S, Hauser S, Lapar V, Mosbach EH (1973) Regulatory effects of dietary sterols and bile acids on rat intestinal HmG CoA reductase. J Lipid Res 14:400–405

    PubMed  CAS  Google Scholar 

  • Shrivastava BK, Redgrave TG, Simmonds WJ (1967) The source of endogenous lipid in the thoracic duct lymph of fasting rats. Q J Exp Physiol 52:305–312

    CAS  Google Scholar 

  • Siperstein MD (1960) The homeostatic control of cholesterol synthesis in liver. Am J Clin Nutr 8:645–650

    CAS  Google Scholar 

  • Siperstein MD, Guest MJ (1960) Studies on the site of the feedback control of cholesterol synthesis. J Clin Invest 39:642–652

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama T, Clinkenbeard K, Moss J, Lane MD (1972) Multiple cytosolic forms of hepatic β-hydroxy-β-methylglutaryl CoA synthase: possible regulatory role in cholesterol synthesis. Biochem Biophys Res Commun 48:255–261

    Article  PubMed  CAS  Google Scholar 

  • Swann A, Siperstein M (1972) Distribution of cholesterol feedback control in the guinea pig. J Clin Invest 51:95a

    Google Scholar 

  • Tall AR, Small DM, Dekelbaum RJ, Shipley GG (1977) Structure and thermodynamic properties of high density lipoprotein recombinants. J Biol Chem 52:4701–4712

    Google Scholar 

  • Taylor CB, Patton D, Yogi N, Cox GE (1960) Diet as source of serum cholesterol in man. Proc Soc Exp Biol Med 103:768–772

    PubMed  CAS  Google Scholar 

  • Tomkins GM, Sheppard H, Chaikoff IL (1953) Cholesterol synthesis by liver. III. Its regulation by ingested cholesterol. J Biol Chem 201:137–141

    PubMed  CAS  Google Scholar 

  • Tytgat GN, Rubin CE, Saunders DR (1971) Synthesis and transport of lipoprotein particles by intestinal absorptive cells in man. J Clin Invest 50:2065–2078

    Article  PubMed  CAS  Google Scholar 

  • Wakil SJ (1970) Fatty acid metabolism. In: Wakil SJ (ed) Lipid metabolism. Academic Press, New York London, pp 1–48

    Google Scholar 

  • Weis HJ, Dietschy JM (1969) Failure of bile acids to control hepatic cholesterogenesis: evidence for endogenous cholesterol feedback. J Clin Invest 48:2398–2408

    Article  PubMed  CAS  Google Scholar 

  • Weis HJ, Dietschy JM (1971) Presence of an intact cholesterol feedback mechanism in the liver in biliary stasis. Gastroenterology 61:77–84

    PubMed  CAS  Google Scholar 

  • White LW, Rudney H (1970 a) Biosynthesis of β-hydroxy-β-methylglutarate and mevalonate by rat liver homogenates in vitro. Biochemistry 9:2713–2724

    Article  PubMed  CAS  Google Scholar 

  • White LW, Rudney H (1970 b) Regulation of β-hydroxy-β-methylglutarate and mevalonate biosynthesis by rat liver homogenates. Effects of fasting, cholesterol feeding and triton administration. Biochemistry 9:2725–2731

    Article  PubMed  CAS  Google Scholar 

  • Wilson JD (1968) Biosynthetic origin of serum cholesterol in the squirrel monkey: evidence for a contribution by the intestinal wall. J Clin Invest 47:175–187

    Article  PubMed  CAS  Google Scholar 

  • Wilson JD (1972) The relation between cholesterol absorption and cholesterol synthesis in the baboon. J Clin Invest 51:14450–1458

    Google Scholar 

  • Wilson JD, Lindsey CA Jr (1965) Studies on the influence of dietary cholesterol on cholesterol metabolism in the isotopic steady state in man. J Clin Invest 44:1805–1814

    Article  PubMed  CAS  Google Scholar 

  • Windmueller HG, Lindgren FT, Lossow WJ, Levy RI (1970) On the nature of circulating lipoproteins of intestinal origin in the rat. Biochim Biophys Acta 202:507–516

    PubMed  CAS  Google Scholar 

  • Windmueller HG, Spaeth EA (1972) Fat transport and lymph and plasma lipoprotein biosynthesis by isolated intestine. J Lipid Res 13:92–105

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gangl, A. (1983). Dünndarm und Lipoproteinstoffwechsel. In: Bazzoli, F., et al. Dünndarm A. Handbuch der inneren Medizin, vol 3 / 3 / A. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68415-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68415-9_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68416-6

  • Online ISBN: 978-3-642-68415-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics