Skip to main content

Regulation of Cell Secretion: The Integrated Action of Cyclic AMP and Calcium

  • Chapter

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 58 / 2))

Overview

Both cyclic AMP and calcium play a central role in stimulus-secretion coupling. As the function of cyclic AMP is described in detail elsewhere in this volume, the emphasis of this chapter is placed on calcium which often is the key second messenger in secretory cells. The first part of the review describes the mechanisms responsible for generating a calcium signal originating either from calcium entering from the outside or from calcium being released from internal reservoirs. Entry of signal calcium from the external medium is regulated either through voltage-dependent or through agonist-dependent channels.

Voltage-dependent channels are found in synaptic endings, insulin-secreting β-cells and in anterior pituitary cells. The mechanisms responsible for depolarising the membrane to open these voltage-dependent channels varies from tissue to tissue. In β-cells there is a remarkable interplay between glycolysis and a potassium channel which leads to fluctuations in membrane potential. These membrane oscillations trigger bursts of calcium-dependent action potentials which are responsible for releasing insulin. These voltage-dependent channels can be modulated by cyclic AMP which may represent an important site of interaction between these two intracellular signals. The voltage-dependent channels tend to inactivate during prolonged depolarisation and cyclic AMP may act to prevent or alleviate this process of inactivation. Another possible mechanism to avoid channel inactivation is to depolarise the membrane in short bursts which might account for the membrane oscillations which have been described in β-cells and in anterior pituitary cells.

Calcium entry across the plasma membrane can also be regulated by agonists using receptors which are quite separate from those which generate cyclic AMP. There is growing evidence for the hypothesis that the hydrolysis of phosphatidylinositol (PI) is an integral part of the receptor mechanisms responsible for opening specific calcium channels. In many systems, the PI response is apparently independent of calcium; this lends support to the idea that the hydrolysis of this phospholipid may be responsible for generating rather than being a consequence of the calcium signal.

Many secretory cells are capable of mobilizing calcium to support secretory activity when external calcium is removed from the bathing medium. The functional significance of using intracellular calcium might depend upon the fact that the diffusion of calcium in cytoplasm is exceedingly slow. In many secretory systems (mast cells, β-cells, neurosecretory and nerve terminals) the problem of low calcium diffusibility is circumvented by having the secretory process and the signal generator on the same membrane. Stimulus-secretion coupling in these cells is very dependent upon external calcium which flows into the cell to trigger secretion in the immediate vicinity of the membrane. On the other hand, secretory cells which are organised into epithelia usually have the site of signal generation on the basal membrane whereas some of the effector systems lie on the opposite side of the cell. Such systems (salivary glands and pancreas) are much less dependent upon external calcium and seem to be capable of mobilizing calcium from internal reservoirs. This release of internal calcium may represent another important site of interaction between the cyclic nucleotides and calcium because there are numerous reports suggesting that cyclic AMP may act to release calcium from these internal pools.

Further details of the way in which cyclic AMP and calcium interact with each other are provided by considering how secretion is controlled in cells which release vesicles by exocytosis (insulin-secreting β-cells, anterior pituitary, mast cells) and in cells which primarily secrete fluid (parietal cells and pancreas). These secretory cells which combine exocytosis with fluid secretion (e.g. salivary glands and pancreas) provide fascinating systems for unravelling the way in which cells can integrate the action of both cyclic AMP and calcium in order to regulate two independent processes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akhtar RA, Abdel-Latif AA (1978) Calcium ion requirement for acetylcholine-stimulated breakdown of triphosphoinositide in rabbit iris smooth muscle. J Pharmacol Exp Ther 204:655–668

    PubMed  CAS  Google Scholar 

  • Albano J, Bhoola KA, Harvey RF (1976 a) Intracellular messenger role of cyclic GMP in exocrine pancreas. Nature 262:404–406

    Article  PubMed  CAS  Google Scholar 

  • Albano J, Bhoola KD, Heap PF, Lemon MJC (1976 b) Stimulus-secretion coupling: a role of cyclic AMP, cyclic GMP and calcium in mediating enzyme (kallikrein) secretion in the submandibular gland. J Physiol (Lond) 258:631–658

    CAS  Google Scholar 

  • Albano J, Bhoola KD, Harvey RF (1979) The messenger role of cyclic GMP and calcium in the exocrine pancreas. J Physiol (Lond) 293:49P–50P

    CAS  Google Scholar 

  • Atherton RS, Hawthorne JN (1968) The phosphoinositide inositolphosphohydrolase of guinea-pig intestinal mucosa. Eur J Biochem 4:68–75

    Article  PubMed  CAS  Google Scholar 

  • Atwater I, Ribalet B, Rojas E (1978) Cyclic changes in potential and resistance of the β-cell membrane induced by glucose in islets of Langerhans from mouse. J Physiol (Lond) 278:117–139

    CAS  Google Scholar 

  • Baker BI (1974) Effect of dibutyryl cyclic AMP on the release of melanocyte-stimulating hormone from rat neurointermediate lobe in vitro. J Endocrinol 63:533–538

    Article  PubMed  CAS  Google Scholar 

  • Baker PF (1976) The regulation of intracellular calcium. Symp Soc Biol 30:67–88

    CAS  Google Scholar 

  • Baker PF, Knight DE (1978) Calcium-dependent exocytosis in bovine adrenal medullary cells with leaky plasma membranes. Nature 276:620–622

    Article  PubMed  CAS  Google Scholar 

  • Baker PF, Rink TJ (1975) Catecholamine release from bovine adrenal medulla in response to maintained depolarisation. J Physiol (Lond) 253:593–620

    CAS  Google Scholar 

  • Baker PF, Meves H, Ridgeway EB (1973) Effects of manganese and other agents on the calcium uptake that follows depolarisation of squid axons. J Physiol (Lond) 231:511–526

    CAS  Google Scholar 

  • Bennett JP, Cockcroft S, Gomperts BD (1979) Ionomycin stimulates mast cell histamine secretion by forming a lipid-soluble calcium complex. Nature 282:851–853

    Article  PubMed  CAS  Google Scholar 

  • Berglindh T, Sachs G, Takeguchi N (1980) Ca2+-dependent secretagogue stimulation in isolated rabbit gastric glands. Am J Physiol 239:G90–G94

    PubMed  CAS  Google Scholar 

  • Berridge M (1970) The role of 5-hydroxytryptamine and cyclic AMP in the control of fluid secretion by isolated salivary glands. J Exp Biol 53:171–186

    PubMed  CAS  Google Scholar 

  • Berridge MJ (1975) The interaction of cyclic nucleotides and calcium in the control of cellular activity. Adv Cyclic Nucleotide Res 6:1–98

    PubMed  CAS  Google Scholar 

  • Berridge MJ (1979) Relationship between calcium and the cyclic nucleotides in ion secretion. Kroc Found Ser 12:65–81

    CAS  Google Scholar 

  • Berridge MJ (1980 a) Preliminary measurements of intracellular calcium in an insect salivary gland using a calcium-sensitive microelectrode. Cell Calcium 1:217–227

    Article  CAS  Google Scholar 

  • Berridge MJ (1980 b) The role of cyclic nucleotides and calcium in the regulation of chloride transport. Ann NY Acad Sci 341:156–169

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ (1981) Hormone-induced changes in ion level during stimulation of fluid secretion by gland cells. In: Zeuthen T (ed) The application of ion selective microelectrodes. Elsevier/North-Holland, Amsterdam Oxford New York, pp 61–74

    Google Scholar 

  • Berridge MJ, Fain JN (1979 a) Inhibition of phosphatidylinositol synthesis and the inacti-vation of calcium entry after prolonged exposure of the blowfly salivary gland to 5-hydroxytryptamine. Biochem J 178:59–69

    PubMed  CAS  Google Scholar 

  • Berridge MJ, Fain JN (1979 b) Phosphatidylinositol metabolism and calcium gating. Med Chem 6:117–125

    Google Scholar 

  • Berridge MJ, Lipke H (1978) Changes in calcium transport across Calliphora salivary gland induced by 5-hydroxytryptamine and cyclic AMP. J Exp Biol 78:137–148

    Google Scholar 

  • Berridge MJ, Oschman J (1972) Transporting epithelia. Academic Press, New York London

    Google Scholar 

  • Berridge MJ, Prince WT (1972) Transepithelial potential changes during stimulation of isolated salivary glands with 5-hydroxytryptamine and cyclic AMP. J Exp Biol 56:139–153

    PubMed  CAS  Google Scholar 

  • Berridge MJ, Rapp PE (1979) A comparative survey of the function, mechanism and control of cellular oscillators. J Exp Boil 81:217–279

    CAS  Google Scholar 

  • Berridge MJ, Lindley BD, Prince WT (1975) Membrane permeability changes during stimulation of isolated salivary glands of Calliphora by 5-hydroxytryptamine. J Physiol (Lond) 244:549–567

    CAS  Google Scholar 

  • Biales B, Dichter MA, Tischler A (1977) Sodium and calcium action potentials in pituitary cells. Nature 267:172–174

    Article  PubMed  CAS  Google Scholar 

  • Billah MM, Michell RH (1978) Stimulation of the breakdown and resynthesis of phosphati-dylinositol in rat hepatocytes by angiotensin, vasopressin and adrenaline. Biochem Soc Trans 6:1033–1035

    PubMed  CAS  Google Scholar 

  • Birnbaumer L, Iyengar R (1982) Coupling of receptors to adenylate cyclases. In: Nathanson JA, Kebabian JW (eds) Cyclic nucleotides. Springer, Berlin Heidelberg New York (Handbook of experimental pharmacology, vol 58/1)

    Google Scholar 

  • Blackmore PF, DeHaye J-P, Exton JH (1979) Studies on α-adrenergic activation of hepatic glucose output. J Biol Chem 254:6945–6950

    PubMed  CAS  Google Scholar 

  • Blaustein MP, Ratzlaff RW, Kendrick NC, Schweitzer ES (1978) Calcium buffering in presynaptic nerve terminals. I. Evidence for involvement of a nonmitochondrial Ca sequestration mechanism. J Gen Physiol 72:15–41

    Article  PubMed  CAS  Google Scholar 

  • Bolton JE, Field M (1977) Ca ionophore-stimulated ion secretion in rabbit ileal mucosa: relation to actions of cyclic 3′:5′-AMP and carbamylcholine. J Membr Biol 35:159–173

    Article  PubMed  CAS  Google Scholar 

  • Borgeat P, Chavancy G, Dupont A, Labrie F, Arimura A, Serially AV (1972) Stimulation of adenosine 3′:5′-cyclic monophosphate accumulation in anterior pituitary gland in vitro by synthetic luteinizing hormone-releasing hormone. Proc Natl Acad Sci USA 69:2677–2681

    Article  PubMed  CAS  Google Scholar 

  • Bower A, Hadley ME (1972) Ionic requirements for melanophore-stimulating hormone (MSH) release. Gen Comp Endocrinol 19:147–158

    Article  PubMed  CAS  Google Scholar 

  • Brasitus TA, Field M, Kimberg DV (1976) Intestinal mucosal cyclic AMP: regulation and relation to ion transport. Am J Physiol 231:275–282

    PubMed  CAS  Google Scholar 

  • Bunce KT, Honey AC, Parsons ME (1979) Investigation of the role of extracellular calcium in the control of acid secretion in the isolated whole stomach of the rat. Br J Pharmacol 67:123–131

    PubMed  CAS  Google Scholar 

  • Butcher FR (1975) The role of calcium and cyclic nucleotides in α-amylase release from slices of rat parotid: studies with the divalent cation ionophore A 23187. Metabolism 24:409–418

    Article  PubMed  CAS  Google Scholar 

  • Butcher FR (1978) Calcium and cyclic nucleotides in the regulation of secretion from the rat parotid by autonomic agonists. Adv Cyclic Nucleotide Res 9:707–721

    PubMed  CAS  Google Scholar 

  • Case RM (1978) Synthesis, intracellular transport and discharge of exportable proteins in the pancreatic acinar cells and other cells. Biol Rev 53:211–354

    Article  PubMed  CAS  Google Scholar 

  • Case RM, Clausen T (1973) The relationship between calcium exchange and enzyme secretion in the isolated rat pancreas. J Physiol (Lond) 235:75–102

    CAS  Google Scholar 

  • Chandler DE, Wiliams JA (1974) Pancreatic acinar cells: effects of lanthanum ions on amylase release and calcium ion fluxes. J Physiol (Lond) 243:831–846

    CAS  Google Scholar 

  • Chandler DE, Williams JA (1978) Intracellular divalent cation release in pancreatic acinar cells during stimulus-secretion coupling. II. Subcellular localization of the fluorescent probe chlorotetracycline. J Cell Biol 76:386–399

    Article  PubMed  CAS  Google Scholar 

  • Charles MA, Lawecki J, Pictet R, Grodsky GM (1975) Insulin secretion. Interrelationships of glucose, cyclic adenosine 3′:5′-monophosphate and calcium. J Biol Chem 250:6134–6140

    PubMed  CAS  Google Scholar 

  • Charo IF, Feinman RD, Detwiller TC (1976) Inhibition of platelet secretion by an antagonist of intracellular calcium. Biochem Biophys Res Commun 72:1462–1467

    Article  PubMed  CAS  Google Scholar 

  • Cheung WY, Storm DR (1982) Calmodulin regulation of cyclic AMP metabolism. In: Nathanson JA; Kebabian JW (eds) Cyclic nucleotides. Springer, Berlin Heidelberg New York (Handbook of experimental pharmacology, vol 58/1)

    Google Scholar 

  • Christophe JP, Frandsen EK, Conlon TP, Krishna G, Gardner JD (1976) Action of cholecystokinin, cholinergic agents and A 23187 on accumulation of guanosine 3′:5′-mono-phosphate in dispersed guinea pig pancreatic acinar cells. J Biol Chem 251:4640–4645

    PubMed  CAS  Google Scholar 

  • Clark RB, Salmon DM, Honeyman TW (1980) Phosphatidic acid inhibition of PGE1-stimulated cAMP accumulation in WI-38 fibroblasts: similarities with carbachol inhibition. J Cyclic Nucleotide Res 6:37–49

    PubMed  CAS  Google Scholar 

  • Clayton RN, Shakespear RA, Marshall JC (1978) LH-RH binding to purified pituitary plasma membranes: absence of adenylate cyclase activation. Mol Cell Endocrinol 11:63–78

    Article  PubMed  CAS  Google Scholar 

  • Cochrane DE, Douglas WW (1974) Calcium-induced extrusion of secretory granules (exo-cytosis) in mast cells exposed to 48/80 or the ionophores A 23187 and X-537A. Proc Natl Acad Sci USA 71:408–412

    Article  PubMed  CAS  Google Scholar 

  • Cockcroft S, Gomperts BD (1979) Evidence for a role of phosphatidylinositol turnover in stimulus-secretion coupling. Studies with rat peritoneal mast cells. Biochem J 178:681–687

    PubMed  CAS  Google Scholar 

  • Conn PM, Rogers DC, Sandhu FS (1979) Alteration of the intracellular calcium level stimulates gonadotropin release from cultured rat anterior pituitary cells. Endocrinology 105:1112–1127

    Article  Google Scholar 

  • Conn PM, Kilpatrick D, Kirshner N (1980 a) Ionophoretic Ca2+ mobilization in rat gona-dotropes and bovine adrenomedullary cells. Cell Calcium 1:129–133

    Article  CAS  Google Scholar 

  • Conn PM, Marian J, McMillian M, Rogers D (1980 b) Evidence for calcium mediation of gonadotropin releasing hormone action in the pituitary. Cell Calcium 1:7–20

    Article  CAS  Google Scholar 

  • Cote T, Munemura M, Eskay RL, Kebabian JW (1980) Biochemical identification of the β-adrenoreceptor and evidence for the involvement of an adenosine 3′:5′-monophosphate system in the β-adrenergically-induced release of α-melanocyte stimulating hormone in the intermediate lobe of the rat pituitary gland. Endocrinology 107:108–116

    Article  PubMed  CAS  Google Scholar 

  • Curry DL, Bennett LL, Grodsky EM (1968) Dynamics of insulin secretion by the perfused rat pancreas. Endocrinolgoy 83:572–584

    Article  CAS  Google Scholar 

  • Davis MD, Hadley ME (1976) Spontaneous electrical potentials and pituitary hormone (MSH) secretion. Nature 261:422–423

    Article  PubMed  CAS  Google Scholar 

  • Dean PM, Matthews EK, Sakamoto Y (1975) Pancreatic islet cells: effects of monosacharides, glycolytic intermediates and metabolic inhibitors on membrane potential and electrical activity. J Physiol (Lond) 246:459–478

    CAS  Google Scholar 

  • De Jonge HR (1981) Cyclic GMP-dependent protein kinase in intestinal brushborders. Adv Cyclic Nucleotide Res 14:315–333

    PubMed  Google Scholar 

  • DeLorenzo RJ, Freedman SD, Yohe WB, Maurer SC (1979) Stimulation of Ca2+-dependent neurotransmitter release and presynaptic nerve protein phosphorylation by calmodulin and a calmodulin-like protein isolated from synaptic vesicles. Proc Natl Acad Sci USA 76:1838–1842

    Article  PubMed  CAS  Google Scholar 

  • Douglas WW, Taraskevich PS (1978) Action potentials in gland cells of rat pituitary pars intermedia: inhibition by dopamine, an inhibitor of MSH secretion. J Physiol (Lond) 285:171–184

    CAS  Google Scholar 

  • Dreifuss JJ, Grau JD, Nordmann JJ (1975) Calcium movements related to neurohypophysial hormone secretion. In: Carafoli E, Clementi F, Drabikowski W, Margreth A (eds) Calcium transport in contraction and secretion. North-Holland, Amsterdam Oxford New York, pp 271–279

    Google Scholar 

  • Dufy B, Vincent J-D, Fleury H, Du Pasquier P, Gourdji D, Tixier-Vidal A (1979) Dopamine inhibition of action potentials in a prolactin secreting cell line is modulated by oestrogen. Nature 282:855–857

    Article  PubMed  CAS  Google Scholar 

  • Endo M, Tanaka M, Ogawa Y (1970) Calcium induced release of calcium from the sarcoplasmic reticulum of skinned skeletal muscle fibres. Nature 228:34–36

    Article  PubMed  CAS  Google Scholar 

  • Eto S, Wood JM, Hutchins M, Fleischer N (1974) Pituitary 45Ca++ uptake and release of ACTH, GH and TSH: effect of verapamil. Am J Physiol 226:1315–1320

    PubMed  CAS  Google Scholar 

  • Fabiato A, Fabiato F (1975) Contractions induced by a calcium-triggered release of calcium from the sarcoplasmic reticulum of single skinned cardiac cells. J Physiol (Lond) 249:469–495

    CAS  Google Scholar 

  • Fain JN, Berridge MJ (1979 a) Relationship between hormonal activation of phosphatidylinositol hydrolysis, fluid secretion and calcium flux in the blowfly salivary gland. Biochem J 178:45–58

    PubMed  CAS  Google Scholar 

  • Fain JN, Berridge MJ (1979 b) Relationship between phosphatidylinositol synthesis and recovery of 5-hydroxytryptamine -responsive Ca2+ flux in blowfly salivary glands. Biochem J 180:655–661

    PubMed  CAS  Google Scholar 

  • Feinman RD, Detwiler TC (1974) Platelet secretion induced by divalent cation ionophores. Nature 249:172–173

    Article  PubMed  CAS  Google Scholar 

  • Field M (1979) Intracellular mediators of secretion in the small intestine. Kroc Found Ser 12:83–91

    CAS  Google Scholar 

  • Foreman JC, Garland LG (1974) Desensitization in the process of histamine secretion induced by antigen and dextran. J Physiol (Lond) 239:381–391

    CAS  Google Scholar 

  • Foreman JC, Mongar JL, Gomperts BD (1973) Calcium ionophores and movement of calcium ions following the physiological stimulus to a secretory process. Nature 245:249–251

    Article  PubMed  CAS  Google Scholar 

  • Foreman JC, Garland LG, Mongar JL (1975) The role of calcium in secretory processes: model studies in mast cells. Symp Soc Exp Biol 30:193–218

    Google Scholar 

  • Freinkel N, Dawson RMC (1973) Role of inositol cyclic phosphate in stimulated tissues. Nature 243:535–536

    Article  PubMed  CAS  Google Scholar 

  • Frizzell RA (1977) Active chloride secretion by rabbit colon: calcium-dependent stimulation by ionophore A 23187. J Membr Biol 35:175–187

    Article  PubMed  CAS  Google Scholar 

  • Garcia AG, Kirpekar SM, Prat JC (1975) A calcium ionophore stimulating the secretion of catecholamines from the cat adrenal. J Physiol (Lond) 244:253–262

    CAS  Google Scholar 

  • Gardner JD (1979) Regulation of pancreatic exocrine function in vitro: initial steps in the actions of secretagogues. Ann Rev Physiol 41:55–66

    Article  CAS  Google Scholar 

  • Gilkey JC, Jaffe LF, Ridgeway LB, Reynolds GT (1978) A free calcium wave traverses the activating egg of the medaka, Oryzias latipes. J Cell Biol 76:448–466

    Article  PubMed  CAS  Google Scholar 

  • Gomperts BD (1976) Calcium and cell activation. In: Cuatrecasas P, Greaves MF (eds) Receptors and recognition, Serie A, vol 2. Chapman & Hall, London, pp 43–102

    Google Scholar 

  • Gorman RR, Wierenga W, Miller OV (1979) Independence of the cyclic AMP-lowering activity of thromboxane A2 from the platelet release reaction. Biochim Biophys Acta 572:95–104

    PubMed  CAS  Google Scholar 

  • Gratzl M, Dahl G, Russel JT, Thorn NA (1977) Fusion of neurohypophyseal membranes in vitro. Biochim Biophys Acta 470:45–57

    Article  PubMed  CAS  Google Scholar 

  • Green DE, Fry M, Blondin GA (1980) Phospholipids as the molecular instruments of ion and solute transport in biological membranes. Proc Natl Acad Sci USA 77:257–261

    Article  PubMed  CAS  Google Scholar 

  • Griffin HD, Hawthorne JN (1978) Calcium-activated hydrolysis of phosphatidyl-myo-inositol 4-phosphate and phosphatidyl-myo-inositol 4,5-bisphosphate in guinea pig synaptosomes. Biochem J 176:541–552

    PubMed  CAS  Google Scholar 

  • Gunther GR, Jamieson JD (1979) Increased intracellular cyclic GMP does not correlate with protein discharge from pancreatic acinar cells. Nature 280:318–320

    Article  PubMed  CAS  Google Scholar 

  • Gupta BL, Hall TA (1978) Electron microprobe X-ray analysis of calcium. Ann NY Acad Sci 307:28–51

    Article  CAS  Google Scholar 

  • Hagiwara S, Takahashi K (1967) Surface density of calcium ions and calcium spikes in the barnacle muscle fiber membrane. J Gen Physiol 50:583–601

    Article  PubMed  CAS  Google Scholar 

  • Hales CN, Luzio JP, Chandler JA, Herman L (1974) Localization of calcium in the smooth endoplasmic reticulum of rat isolated fat cells. J Cell Sci 15:1–15

    PubMed  CAS  Google Scholar 

  • Hansen Bay CM, (1978) The control of enzyme secretion from fly salivary glands. J Physiol (Lond) 274:421–435

    Google Scholar 

  • Harper JF, Brooker G (1977) Refractoriness to muscarinic and adrenergic agonists in the rat parotid: responses of adenosine and guanosine cyclic 3′:5′-monophosphate. Mol Pharmacol 12:1048–1059

    Google Scholar 

  • Harper JF, Brooker G (1978) Amylase secretion from the rat parotid: refractoriness to muscarinic and adrenergic agonists. Mol Pharmacol 14:1031–1045

    PubMed  CAS  Google Scholar 

  • Hawthorne JN, Pickard MR (1977) Metabolism of phosphatidic acid and phosphatidylinositol in relation to transmitter release from synaptosomes. Adv Exp Med Biol 83:419–427

    PubMed  CAS  Google Scholar 

  • Hawthorne JN, Pickard MR (1979) Phospholipids in synaptic function. J Neurochem 32:5–14

    Article  PubMed  CAS  Google Scholar 

  • Hedeskov CJ (1980) Mechanism of glucose-induced insulin secretion. Physiol Rev 60:442–509

    PubMed  CAS  Google Scholar 

  • Hedeskov CJ, Capito K (1975) The restoring effect of caffeine on the decreased sensitivity of the insulin secretory mechanism in mouse pancreatic islets during starvation. Horm Metab Res 7:1–5

    Article  CAS  Google Scholar 

  • Heisler S (1976) Effects of an ATP analogue (α,β-methylene-adenosine-5-triphosphate) on cyclic AMP and cyclic GMP levels, 45Ca efflux, and protein secretion from rat pancreas. Can J Physiol Pharmacol 54:692–697

    Article  PubMed  CAS  Google Scholar 

  • Henkart M, Nelson PG (1979) Evidence for an intracellular calcium store releasable by surface stimuli in fibroblast (L cells). J Gen Physiol 73:655–673

    Article  PubMed  CAS  Google Scholar 

  • Henkart M, Landis DMD, Reese TS (1976) Similarity of junctions between plasma membranes and endoplasmic reticulum in muscle and neurons. J Cell Biol 70:338–347

    Article  PubMed  CAS  Google Scholar 

  • Henquin J-C (1978 a) D-Glucose inhibits potassium efflux from pancreatic islet cells. Nature 271:271–273

    Article  PubMed  CAS  Google Scholar 

  • Henquin J-C (1978 b) Relative importance of extracellular and intracellular calcium for the two phases of glucose-stimulated insulin release: studies with theophylline. Endocrinology 102:723–730

    Article  PubMed  CAS  Google Scholar 

  • Henquin J-C (1978) Opposite effects of intracellular Ca2+ and glucose on K+ permeabilitiy of pancreatic islets cells. Nature 280:66–68

    Article  Google Scholar 

  • Henquin J-C (1980 a) Metabolic control of the potassium permeability in pancreatic islet cells. Biochem J 186:541–550

    PubMed  CAS  Google Scholar 

  • Henquin J-C (1980b b) Tolbutamine stimulation and inhibition of insulin release; studies of the underlying ionic mechanisms in isolated rat islets. Diabetologia 18: 151–160

    Article  PubMed  CAS  Google Scholar 

  • Henquin J-C, Lambert AE (1974) Cationic environment and dynamics of insulin secretion. II. Effect of a high concentration of potassium. Diabetes 23:933–942

    PubMed  CAS  Google Scholar 

  • Henquin J-C, Lambert AE (1975) Cobalt inhibition of insulin secretion and calcium uptake by isolated rat islets. Am J Physiol 228:1669–1677

    PubMed  CAS  Google Scholar 

  • Henquin J-C, Meissner HP (1978) Valinomycin inhibition of insulin release and alteration of the electrical properties of pancreatic B-cells. Biochim Biophys Acta 543:455–464

    Article  PubMed  CAS  Google Scholar 

  • Henquin J-C, Meissner HP, Preissler M (1979) 9-Aminoacridine- and tetraethylammonium-induced reduction of the potassium permeability in pancreatic B-cells. Biochim Biophys Acta 586:579–592

    Google Scholar 

  • Hokin LE (1966) Effects of calcium omission on acetylcholine-stimulated amylase secretion and phospholipid synthesis in pigeon pancreas slices. Biochim Biophys Acta 115:219–221

    Article  PubMed  CAS  Google Scholar 

  • Hokin LE, Hokin MR (1960) Studies of the carrier function of phosphatidic acid in sodium transport. I. The turnover of phosphatidic acid and phosphoinositide in the avian salt gland on stimulation of secretion. J gen Physiol 44:61–85

    Article  PubMed  CAS  Google Scholar 

  • Hokin MR, Hokin LE (1953) Enzyme secretion and the incorporation of 32P into phospholipids of pancreas slices. J Biol Chem 203:967–977

    PubMed  CAS  Google Scholar 

  • Hokin MR, Hokin LE (1954) Effects of acetylcholine on phospholipids in the pancreas. J Biol Chem 209:549–558

    PubMed  CAS  Google Scholar 

  • Hokin-Neaverson M (1977) Metabolism and role of phosphatidylinositol in acetylcholine-stimulated membrane function. Adv Exp Med Biol 83:429–445

    PubMed  CAS  Google Scholar 

  • Hopkins CR (1970) Studies on secretory activity in the pars intermedia of Xenopus laevis. Tissue Cell 2:83–98

    Article  PubMed  CAS  Google Scholar 

  • Hopkins CR, Walker AM (1978) Calcium as a second messenger in the stimulation of luteinizing hormone secretion. Mol Cell Endocrinol 12:189–208

    Article  PubMed  CAS  Google Scholar 

  • Howell SL, Montague W, Tyhurst M (1975) Calcium distribution in Islets of Langerhans: a study of calcium concentrations and of calcium accumulation in B cell organelles. J Cell Sci 19:395–409

    PubMed  CAS  Google Scholar 

  • Ilundain A, Naftalin RJ (1979) Role of Ca2+-dependent regulator protein in intestinal secretion. Nature 279:446–448

    Article  PubMed  CAS  Google Scholar 

  • Irvine RF, Dawson RMC (1978) The distribution of calcium-dependent phosphodiesterase in rat brain. J Neurochem 31:1427–1434

    Article  PubMed  CAS  Google Scholar 

  • Iwatsuki N, Petersen OH (1977) Acetylcholine-like effects of intracellular calcium application in pancreatic cells. Nature 268:147–149

    Article  PubMed  CAS  Google Scholar 

  • Jacobson ED, Thompson WJ (1976) Cyclic AMP and gastric secretion: the illusive second messenger. Adv Cyclic Nucleotide Res 7:199–224

    PubMed  CAS  Google Scholar 

  • Jones LM, Michell RH (1975) The relationship of calcium to receptor-controlled stimulation of phosphatidylinositol turnover. Biochem J 148:479–485

    PubMed  CAS  Google Scholar 

  • Jones LM, Michell RH (1978) Enhanced phosphatidylinositol breakdown as a calcium independent response of rat parotid fragments to substance P. Biochem Soc Trans 6:1035–1037

    PubMed  CAS  Google Scholar 

  • Kanagasuntheram P, Randle PJ (1976) Calcium metabolism and amylase release in rat parotid acinar cells. Biochem J 160:547–564

    PubMed  CAS  Google Scholar 

  • Kanno T, Nishimura O (1976) Stimulus-secretion coupling in pancreatic acinar cells: inhibitory effects of calcium removal and manganese addition on pancreozymin-induced amylase release. J Physiol (Lond) 257:309–324

    CAS  Google Scholar 

  • Kanno T, Yamamoto M (1977) Differentiation between the calcium-dependent effects of cholecystokinin-pancreozymin and the bicarbonate dependent effects of secretin in exocrine secretion of the rat pancreas. J Physiol (Lond) 264:787–799

    CAS  Google Scholar 

  • Kapoor C, Krishna G (1978) A possible role for guanosine 3′:5′-monophosphate in the stimulus-secretion coupling in exocrine pancreas. Biochim Biophys Acta 544:102–112

    Article  PubMed  CAS  Google Scholar 

  • Katsumi W, Kamberi IA, McCann SM (1979) In vitro response of the rat pituitary to gona-dotropin-releasing factors and to ions. Endocrinology 85:1046–1056

    Google Scholar 

  • Kawakami M, Kimura F (1980) Stimulation of guanosine 3′:5′-monophosphate accumulation in anterior pituitary glands in vivo by synthetic luteinizing hormone-releasing hormone. Endocrinology 106:626–630

    Article  PubMed  CAS  Google Scholar 

  • Kazimierczak W, Diamant B (1978) Mechanisms of histamine release in anaphylactic and anaphylactoid reactions. Prog Allergy 24:295–365

    PubMed  CAS  Google Scholar 

  • Kennedy DA, Sullivan TJ, Parker CW (1979) Activation of phospholipid metabolism during mediator release from stimulated rat mast cells. J Immunol 122:152–159

    Google Scholar 

  • Keryer G, Rossignol B (1978) Lanthanum as a tool to study the role of phosphatidylinositol in the calcium transport in rat parotid glands upon cholinergic stimulation. Eur J Bio-chem 85:77–83

    CAS  Google Scholar 

  • Kidokoro Y (1975) Spontaneous calcium action potentials in a clonal pituitary cell line and their relationship to prolactin secretion. Nature 258:741–742

    Article  PubMed  CAS  Google Scholar 

  • Kirk CJ, Verrinder TR, Hems DA (1978) The influence of extracellular calcium concentration on the vasopressin-stimulated incorporation of inorganic phosphate into phosphatidylinositol in hepatocyte suspensions. Biochem Soc Trans 6:1031–1033

    PubMed  CAS  Google Scholar 

  • Klein M, Kandel ER (1978) Presynaptic modulation of voltage-dependent Ca2+ current: mechanisms for behavioural sensitization in Aplysia californica. Proc Natl Acad Sci USA 75:3512–3516

    Article  PubMed  CAS  Google Scholar 

  • Kohlhardt M, Bauer B, Krause H, Fleckenstein A (1972) New selective inhibitors of the transmembrane Ca conductivity in mammalian myocardial fibres. Studies with the voltage clamp technique. Experientia 28:288–289

    Article  PubMed  CAS  Google Scholar 

  • Labrie F, Borgeat P, Drouin J, Beaulieu M, Legace L, Ferland L, Raymond V (1979) Mechanism of action of hypothalamic hormones in the adenohypophysis. Annu Rev Physiol 41:555–569

    Article  PubMed  CAS  Google Scholar 

  • Landis CA, Putney JW (1979) Calcium and receptor regulation of radiosodium uptake by dispersed rat parotid acinar cells. J Physiol (Lond) 297:369–377

    CAS  Google Scholar 

  • Lapetina EG, Michell RH (1973) A membrane-bound activity catalysing phosphatidylinositol breakdown to 1,2 diacylglycerol, D-wyo-inositol 1,2-cyclic phosphate and D-myo-inositol-l-phosphate. Biochem J 131:433–442

    PubMed  CAS  Google Scholar 

  • Laugier R, Petersen OH (1980) Pancreatic acinar cells: electrophysiological evidence for stimulant-evoked increase in membrane calcium permeability in the mouse. J Physiol (Lond) 303:61–72

    CAS  Google Scholar 

  • Lawson D, Fewtrell C, Raff MC (1978) Localized mast cell degranulation induced by con-canavalin A-sepharose beads. J Cell Biol 79:394–400

    Article  PubMed  CAS  Google Scholar 

  • Leslie BA, Putney JW, Sherman JM (1976) α-Adrenergic, β-adrenergic and cholinergic mechanisms for amylase secretion by rat parotid gland in vitro. J Physiol (Lond) 260:351–370

    CAS  Google Scholar 

  • Levin RM, Weiss B (1977) Binding of trifluoperazine to the calcium-dependent activator of cyclic nucleotide phosphodiesterase. Mol Pharmacol 13:690–697

    PubMed  CAS  Google Scholar 

  • Limas CJ (1980) Phosphatidate releases calcium from cardiac sarcoplasmic reticulum Biochem Biophys Res Commun 95:541–546

    Article  PubMed  CAS  Google Scholar 

  • Llinas R, Blinks JR, Nicholson C (1972) Calcium transient in presynaptic terminal of squid giant synapse: detection with aequorin. Science 176:1127–1129

    Article  PubMed  CAS  Google Scholar 

  • Llinas R, Steinberg IZ, Walton K (1976) Presynaptic calcium currents and their relation to synaptic transmission: voltage clamp study in squid giant synapse and theoretical model for the calcium gate. Proc Natl Acad Sci USA 73:2918–2922

    Article  PubMed  CAS  Google Scholar 

  • Lopatin RN, Gardner JD (1978) Effects of calcium and chelating agents on the ability of various agonists to increase cyclic GMP in pancreatic acinar cells. Biochim Biophys Acta 543:465–475

    Article  PubMed  CAS  Google Scholar 

  • MacDermot J, Higashida H, Wilson SP, Matsuzawa H, Minna J, Nirenberg M (1979) Adenylate cyclase and acetylcholine release regulated by separate serotonin receptors of somatic cell Hybrids. Proc Natl Acad Sci USA 76:1135–1139

    Article  PubMed  CAS  Google Scholar 

  • Malaisse WJ, Herchuelz A, Levy J et al. (1975) Insulin release and the movements of calcium in pancreatic islets. In Carafoli E, Clementi F, Drabikowski W, Margreth A (eds) Calcium transport in contraction and secretion. North Holland, Amsterdam Oxford, pp 211–326

    Google Scholar 

  • Malaisse WJ, Boschero AC, Kawazu S, Hutton JC (1978) The stimulus secretion coupling of glucose-induced insulin release. XXVII. Effect of glucose on K+ fluxes in isolated islets. Pfluegers Arch 373:237–242

    Article  CAS  Google Scholar 

  • Marier SH, Putney JW, Van De Walle CM (1978) Control of calcium channels by membrane receptors in the rat parotid gland. J Physiol (Lond) 279:141–151

    CAS  Google Scholar 

  • Matthews EK (1975) Calcium and stimulus-secretion coupling in pancreatic islets cells. In: Carafoli E, Clementi F, Drabikowski W, Margreth A (eds) Calcium transport in contraction and secretion. North Holland, Amsterdam Oxford New York, pp 203–210

    Google Scholar 

  • Matthews EK (1979) Calcium translocation and control mechanisms for endocrine secretion. Soc Exp Biol Symp 33:225–249

    CAS  Google Scholar 

  • Matthews EK, O’Connor MDL (1979) Dynamic oscillations in the membrane potential of pancreatic islet cells. J Exp Biol 81:75–91

    PubMed  CAS  Google Scholar 

  • Matthews EK, Petersen OH, Wiliams JA (1973) Pancreatic acinar cells; acetylcholine-in-duced membrane depolarization, calcium efflux and amylase release. J Physiol (Lond) 234:689–701

    CAS  Google Scholar 

  • Meissner HP, Atwater I (1976) The kinetics of electrical activity of Beta cells in response to a “square wave” stimulation with glucose or glibenclamide. Horm Metab Res 8:11–16

    Article  PubMed  CAS  Google Scholar 

  • Meissner HP, Schmidt H (1976) The electrical activity of pancreatic β-cells of diabetic mice. FEBS Lett 67:371–374

    Article  PubMed  CAS  Google Scholar 

  • Michell RH (1975) Inositol phospholipids and cell surface receptor function. Biochim Bio-phys Acta 415:81–147

    CAS  Google Scholar 

  • Michell RH, Lapetina EG (1972) Production of cyclic inositol phosphate in stimulated tissues. Nature New Biol 240:258–260

    PubMed  CAS  Google Scholar 

  • Michell RH, Jafferji SS, Jones LM (1977 a) The possible involvement phosphatidylinositol breakdown in the mechanism of stimulus-response coupling at receptors which control cell-surface calcium gating. Adv Exp Med Biol 83:447–464

    PubMed  CAS  Google Scholar 

  • Michell RH, Jones LM, Jafferji SS (1977 b) A possible role for phosphatidylinositol breakdown in muscarinic cholinergic stimulus-response coupling. Biochem Soc Trans 5:77–81

    Google Scholar 

  • Miledi R (1971) Lanthanum ions abolish the “calcium response” of nerve terminals. Nature 229:410–411

    Article  PubMed  CAS  Google Scholar 

  • Milligan JV, Kraicer J (1974) Physical characteristics of the Ca++ compartments associated with in vitro ACTH release. Endocrinology 94:435–443

    Article  PubMed  CAS  Google Scholar 

  • Moriarty CM (1978) Role of calcium in the regulation of adenohypophysial hormone release. Life Sci 23:185–194

    Article  PubMed  CAS  Google Scholar 

  • Munemura M, Eskay RL, Kebabian JW (1980) Release of alpha-melanocyte stimulating hormone from dispersed cells of the intermediate lobe of the rat pituitary gland: involvement of catecholamines and adenosine 3′:5′-monophosphate. Endocrinology 106:1795–1803

    Article  PubMed  CAS  Google Scholar 

  • Murphy L, Coll K, Rich TL, Wiliamson JR (1980) Hormonal effects on calcium homeostasis in isolated hepatocytes. J Biol Chem 255:6600–6608

    PubMed  CAS  Google Scholar 

  • Nakazato Y, Douglas WW (1974) Vasopressin release from the isolated neurohypophysis induced by a calcium ionophore, X-537 A. Nature 249:479–481

    Article  PubMed  CAS  Google Scholar 

  • Naftalin RJ, Simmons NL (1979) The effects of theophylline and choleragen on sodium and chloride ion movements within isolated rabbit ileum. J Physiol (Lond) 290:331–350

    CAS  Google Scholar 

  • Naor Z, Catt KJ (1980) Independent action of gonadotropin releasing hormone upon cyclic GMP production and luteinizing hormone release. J Biol Chem 255:342–344

    PubMed  CAS  Google Scholar 

  • Naor Z, Fawcett CP, McCann SM (1978) Involvement of cGMP in LHRH-stimulated gonadotropin release. Am J Physiol 235:E586–E590

    PubMed  CAS  Google Scholar 

  • Nordmann JJ (1976) Evidence for calcium inactivation during hormone release in the rat neurohypophysis. J Exp Biol 65:669–683

    PubMed  CAS  Google Scholar 

  • Norn S, Stahl Skov P, Geisler A, Klysner R (1980) Cyclic nucleotides and allergic-inflammatory reactions. Prog Pharmacol 4:101–108

    CAS  Google Scholar 

  • Oron Y, Lowe M, Selinger Z (1975) Incorporation of inorganic (32P) phosphate into rat parotid phosphatidylinositol. Mol Pharmacol 11:79–86

    PubMed  CAS  Google Scholar 

  • Oron Y, Kellog J, Lamer J (1978 a) Stable cholinergic-muscarinic inhibition of rat parotid adenylate cyclase. FEBS Lett 94:331–334

    Article  PubMed  CAS  Google Scholar 

  • Oron Y, Kellog J, Larner J (1978 b) Alpha adrenergic and cholinergic-muscarinic regulation of adenosine cyclic 3′:5′-monophosphate levels in the rat parotid. Mol Pharmacol 14:1018–1030

    PubMed  CAS  Google Scholar 

  • Ozawa S, Kimura N (1979) Membrane potential changes caused by thyrotropin-releasing hormone in the clonal GH3 cell and their relationship to secretion of pituitary hormone. Proc Natl Acad Sci USA 76:6017–6020

    Article  PubMed  CAS  Google Scholar 

  • Ozawa S, Miyazaki S (1979) Electrical excitability in the rat clonal pituitary cell and its relation to hormone secretion. Jpn J Physiol 29:411–426

    Article  PubMed  CAS  Google Scholar 

  • Petersen OH, Ueda N (1976) Pancreatic acinar cells: the role of calcium in stimulus-secretion coupling. J Physiol (Lond) 254:583–606

    CAS  Google Scholar 

  • Petersen OH, Ueda N (1977) Secretion of fluid and amylase in the perfused rat pancreas. J Physiol (Lond) 264:819–835

    CAS  Google Scholar 

  • Pickard MR, Hawthorne JN (1978) The labelling of nerve ending phospholipids in guinea pig brain in vivo and the effect of electrical stimulation on phosphatidylinositol metabolism in prelabelled synaptosomes. J Neurochem 30:145–155

    Article  PubMed  CAS  Google Scholar 

  • Poulsen JH, Williams JA (1976) Spontaneous repetitive hyperpolarizations from cells in the rat adenohypophysis. Nature 263:156–158

    Article  PubMed  CAS  Google Scholar 

  • Poulsen JH, Williams JA (1977) Effects of the calcium ionophore A 23187 on pancreatic acinar cell membrane potentials and amylase release. J Physiol (Lond) 264: 323–339

    CAS  Google Scholar 

  • Powell DW, Tapper EJ (1979) Intestinal ion transport: cholinergic-adrenergic interactions. Kroc Found Ser 12:175–192

    CAS  Google Scholar 

  • Prince WT, Berridge MJ (1973) The role of calcium in the action of 5-hydroxytryptamine and cyclic AMP on salivary glands. J Exp Biol 58:367–384

    CAS  Google Scholar 

  • Prince WT, Berridge MJ, Rasmussen H (1972) Role of calcium and adenosine-3′:5′-cyclic monophosphate in controlling fly salivary gland secretion. Proc Natl Acad Sci USA 69:553–557

    Article  PubMed  CAS  Google Scholar 

  • Prince WT, Rasmussen H, Berridge MJ (1973) The role of calcium in fly salivary gland secretion analysed with the ionophore A 23187. Biochim Biophys Acta 329:98–107

    Article  PubMed  CAS  Google Scholar 

  • Putney JW (1979) Stimulus-permeability coupling: role of calcium in the receptor regulation of membrane permeability. Pharmacol Rev 30:209–245

    Google Scholar 

  • Putney JW, Weiss SJ, Leslie BA, Marier SH (1977) Is calcium the final mediator of exocyto-sis in the rat parotid gland? J Pharmacol Exp Ther 203:144–155

    PubMed  CAS  Google Scholar 

  • Putney JW, Weiss SJ, Van de Walle CM, Haddas RA (1980) Is phosphatidic acid a calcium ionophore under neurohumoral control? Nature 284:345–347

    Article  PubMed  CAS  Google Scholar 

  • Rall TW (1982) Formation and degradation of cyclic nucleotides: an overview. In: Nathan-son JA; Kebabian JW (eds) Cyclic nucleotides. Springer, Berlin Heidelberg New York (Handbook of experimental pharmacology, vol 58/1)

    Google Scholar 

  • Ratner A, Wilson MC, Srivastava L, Peake GT (1976) Dissociation between LH release and pituitary cyclic nucleotide accumulation in response to synthetic LH-releasing hormone in vivo. Neuroendocrinology 20:35–42

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen H, Goodman DBP (1977) Relationships between calcium and cyclic nucleotides in cell activation. Physiol Rev 57:421–509

    PubMed  CAS  Google Scholar 

  • Reed PW, Lardy HA (1972) A 23187: a divalent cation ionophore. J Biol Chem 247:6970–6977

    PubMed  CAS  Google Scholar 

  • Renckens BAM, Schrijen JJ, Swart HGP, De Pont JJHHM, Bonting SL (1978) Role of calcium in exocrine pancreatic secretion. IV. Calcium movements in isolated acinar cells of rabbit pancreas. Biochim Biophys Acta 544:338–350

    Article  PubMed  CAS  Google Scholar 

  • Ribalet B, Beigelman PM (1979) Cyclic variation of K+ conductance in pancreatic B-cells: Ca2+ and voltage dependence. Am J Physiol 237:C137-C146

    PubMed  CAS  Google Scholar 

  • Rose B, Loewenstein WR (1975) Calcium ion distribution in cytoplasm visualized by aequorin: diffusion in cytosol restricted by energised sequestering. Science 190:1204–1206

    Article  PubMed  CAS  Google Scholar 

  • Rubin RP (1970) The role of calcium in the release of neurotransmitter substances and hormones. Pharmacol Rev 22:389–428

    PubMed  CAS  Google Scholar 

  • Russell JT, Thorn NA (1974) Calcium and stimulus-secretion coupling in the neurohypophysis. Acta Endocrinol (Copenh) 76:471–487

    CAS  Google Scholar 

  • Sabol SL, Nirenberg M (1979) Regulation of adenylate cyclase of neuroblastoma x glioma hybrid cells by α-adrenergic receptors. I. Inhibition of adenylate cyclase mediated by α-receptors. J Biol Chem 254:1913–1920

    PubMed  CAS  Google Scholar 

  • Salmon DM, Honeyman TW (1980) Proposed mechanism of cholinergic action in smooth muscle. Nature 284:344–345

    Article  PubMed  CAS  Google Scholar 

  • Samli MH, Geschwind II (1968) Some effects of energy-transfer inhibitors and of Ca2+ free or K+ enhanced media on the release of luteinizing hormone (LH) from the rat pituitary gland in vitro. Endocrinology 82:225–231

    Article  PubMed  CAS  Google Scholar 

  • Schramm M, Selinger Z (1975) The functions of cyclic AMP and calcium as alternative second messengers in parotid gland and pancreas. J Cyclic Nucleotide Res 1:181–192

    PubMed  CAS  Google Scholar 

  • Schrey MP, Brown BL, Ekins RP (1978) Studies on the role of calcium and cyclic nucleotides in the control of TSH secretion. Mol Cell Endocrinol 11:249–264

    Article  PubMed  CAS  Google Scholar 

  • Schulz I, Stolze HH (1980) The exocrine pancreas: the role of secretagogues, cyclic nucleotides, and calcium in enzyme secretion. Annu Rev Physiol 42:127–156

    Article  PubMed  CAS  Google Scholar 

  • Sehlin J (1976) Calcium uptake by subcellular fractions of pancreatic islets. Biochem J 156:63–69

    CAS  Google Scholar 

  • Selinger Z, Eimerl S, Schramm M (1974) A calcium ionophore simulating the action of epinephrine on the α-adrenergic receptor. Proc Natl Acad Sci USA 71:128–131

    Article  PubMed  CAS  Google Scholar 

  • Siegel EG, Wollheim CB, Sharp GWG, Herberg L, Renold AE (1979) Defective calcium handling and insulin release in islets from diabetic Chinese hamsters. Biochem J 180:233–236

    PubMed  CAS  Google Scholar 

  • Siegel EG, Wollheim CB, Sharp GWG (1980) Glucose-induced first phase insulin release in the absence of extracellular Ca2+ in rat islets. FEBS Lett 109:213–215

    Article  PubMed  CAS  Google Scholar 

  • Sieghart W, Theoharides TC, Alper SL, Douglas WW, Greengard P (1978) Calcium-dependent protein phosphorylation during secretion by exocytosis in the mast cell. Nature 275:329–331

    Article  PubMed  CAS  Google Scholar 

  • Singh M (1979) Calcium and cyclic nucleotide interaction in secretion of amylase from pancreas in vivo. J Physiol (Lond) 296:159–176

    CAS  Google Scholar 

  • Smith RJ, Iden SS (1979) Phorbol myristate acetate-induced release of granule enzymes from human neutrophils: inhibition by the calcium antagonist 8-(N,N-diethylamino)-octy 13,4,5-trimethoxybenzoate hydrochloride. Biochem Biophys Res Commun 91:262–271

    Article  Google Scholar 

  • Soll AH (1979) Secretagogue stimulation of [14C]-aminopyrine accumulation by isolated canine parietal cells. Am J Physiol 238:G366–G375

    Google Scholar 

  • Soll AH, Grossman MI (1978) Cellular mechanisms in acid secretion. Annu Rev Med 29:495–507

    Article  PubMed  CAS  Google Scholar 

  • Soll AH, Walsh JH (1979) Regulation of gastric acid secretion. Annu Rev Physiol 41:35–53

    Article  PubMed  CAS  Google Scholar 

  • Somers G, Devis G, Van Obberghen E, Malaisse WJ (1976) Calcium antagonists and islet function. II. Interaction of theophylline and verapamil. Endocrinology 99:114–124

    Article  PubMed  CAS  Google Scholar 

  • Somlyo AP, Somylo AV, Shuman H (1979) Electron probe analysis of vascular smooth muscle. J Cell Biol 81:316–335

    Article  PubMed  CAS  Google Scholar 

  • Spence JW, Sheppard MS, Kraicer J (1980) Release of growth hormone from purified somatotrophs: interrelation between Ca2+ and adenosine 3′:5′-monophosphate. Endocrinology 106:764–769

    Article  PubMed  CAS  Google Scholar 

  • Streweler GJ, Orloff J (1977) Role of cyclic nucleotides in the transport of water and electrolytes. Adv Cyclic Nucleotide Res 8:311–361

    Google Scholar 

  • Sugden MC, Christie MR, Ashcroft SJH (1979) Presence and possible role of calcium-dependent regulator (calmodulin) in rat islets of Langerhans. FEBS Lett 105:95–100

    Article  PubMed  CAS  Google Scholar 

  • Tarn SW, Dannies PS (1980) Dopaminergic inhibition of ionophore A 23187-stimulated release of prolactin from rat anterior pituitary cells. J Biol Chem 255:6595–6599

    Google Scholar 

  • Taraskevich PS, Douglas WW (1977) Action potentials occur in cells of the normal anterior pituitary gland and are stimulated by the hypophysiotropic peptide thyrotropin-releas-ing hormone. Proc Natl Acad Sci USA 74:4064–4067

    Article  PubMed  CAS  Google Scholar 

  • Taraskevich PS, Douglas WW (1978) Catecholamines of supposed inhibitory hypophysiotropic function suppress action potentials in prolactin cells. Nature 276:832–834

    Article  PubMed  CAS  Google Scholar 

  • Taraskevich PS, Douglas WW (1979) Stimulant effect of 5-hydroxytryptamine on action potential activity in pars intermedia cells of the lizard Apolis carolinensis: contrasting effects in pars intermedia of rat and rostral pars distalis of fish (Alosapseudoharengus). Brain Res 178:584–588

    Article  PubMed  CAS  Google Scholar 

  • Tashjian AH, Lomedico ME, Maina D (1978) Role of calcium in the thyrotropin-releasing hormone-stimulated release of prolactin from pituitary cells in culture. Biochem Bio-phys Res Commun 81:798–806

    Article  CAS  Google Scholar 

  • Thomas MV, Gorman ALF (1977) Internal calcium changes in bursting pacemaker neuron measured with Arsenazo III. Science 196:531–533

    Article  PubMed  CAS  Google Scholar 

  • Thompson WJ, Rosenfeld GC, Jacobson ED (1977) Adenylyl cyclase and gastric acid secretion. Fed Proc 36:1938–1941

    PubMed  CAS  Google Scholar 

  • Thorn NA, Russell JT, Robinson ICAF (1975) Factors affecting intracellular concentration of free calcium ions in neurosecretory nerve endings. In: Carafoli E, Clementi F, Drabikowski W, Margreth A (eds) Calcium transport in contraction and secretion. North Holland, Amsterdam Oxford New York, pp 261–269

    Google Scholar 

  • Torda C (1972) Cyclic AMP-dependent diphosphoinositide kinase. Biochim Biophys Acta 286:389–395

    Article  PubMed  CAS  Google Scholar 

  • Trifaro JM (1969) The effect of Ca++ omission on the secretion of catecholamine and the incorporation of orthophosphate-32P into nucleotides and phospholipids of bovine adrenal medulla during acetylcholine stimulation. Mol Pharmacol 5:420–431

    Google Scholar 

  • Tyson CA, Vande Zande H, Green DE (1976) Phospholipids as ionophores. J Biol Chem 251:1326–1332

    PubMed  CAS  Google Scholar 

  • Vale W, Guillemin R (1967) Potassium-induced stimulation of thyrotropin release in vitro. Requirement for presence of calcium and inhibition by thyroxine. Experientia 23:855–857

    Article  PubMed  CAS  Google Scholar 

  • Vale W, Burgess R, Guillemin R (1967) Presence of calcium ions as a requisite for the in vitro stimulation of TSH-release by hypothalamic TRF. Experientia 23:853–855

    Article  PubMed  CAS  Google Scholar 

  • Valverde I, Vandermeers A, Anjaneyulu R, Malaisse WJ (1979) Calmodulin activation of adenylate cyclase in pancreatic islets. Science 206:225–227

    Article  PubMed  CAS  Google Scholar 

  • Van Breemen C, De Weer P (1970) Lanthanum inhibition of 45Ca efflux from the squid giant axon. Nature 226:760–761

    Article  PubMed  Google Scholar 

  • Van Golde LMG, Raben J, Batenburg JJ, Fleischer B, Zambrano F, Fleischer S (1974) Biosynthesis of lipids in golgi complex and other subcellular fractions from rat liver. Biochim Biophys Acta 360:179–192

    PubMed  Google Scholar 

  • Walker AM, Hopkins CR (1978) Dissociation of the porcine anterior pituitary: the kinetics of luteinizing hormone release in response to luteinizing hormone-releasing hormone. Mol Cell Endocrinol 12:177–187

    Article  PubMed  CAS  Google Scholar 

  • Weiss B, Levin RM (1978) Mechanism for selectively inhibiting the activation of cyclic nucleotide phosphatidiesterase and adenylate cyclase by antipsychotic agents. Adv Cyclic Nucleotide Res 9:285–303

    PubMed  CAS  Google Scholar 

  • Wilber JF, Peake GT, Utiger RD, (1969) Thyrotropin release in vitro: stimulation by cyclic 3′:5′ adenosine monophosphate. Endocrinology 84:758–760

    Article  PubMed  CAS  Google Scholar 

  • Williams JA (1975) Na+ dependence of in vitro pancreatic amylase release. Am J Physiol 229:1023–1026

    PubMed  CAS  Google Scholar 

  • Williams JA, Lee M (1974) Pancreatic acinar cells: use of a Ca2+ ionophore to separate enzyme release from the earlier steps in stimulus-secretion coupling. Biochem Biophys Res Commun 60:542–548

    Article  PubMed  CAS  Google Scholar 

  • Wolff DJ, Brostrom CO (1979) Properties and functions of the calcium-dependent regulator protein. Adv Cyclic Nucleotide Res 11:27–88

    PubMed  CAS  Google Scholar 

  • Wollheim CB, Blondel B, Trueheart PA, Renold AE, Sharp GWG (1975) Calcium-induced insulin release in monolayer culture of the endocrine pancreas. J Biol Chem 250:1354–1360

    PubMed  CAS  Google Scholar 

  • Wollheim CB, Kikuchi M, Reynold AG (1978) The roles of intracellular and extracellular Ca++ in glucose-stimulated biphasic insulin release by rat islets. J Clin Invest 62:451–458

    Article  PubMed  CAS  Google Scholar 

  • Zawalich WS, Karl RC, Ferrendelli J, Matschinsky FM (1975) Effects of glucose, Ca++ and an ionophore on cyclic-3′:5′-AMP (cAMP) and insulin release in isolated pancreatic islets. Diabetes 23:337

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Berridge, M.J. (1982). Regulation of Cell Secretion: The Integrated Action of Cyclic AMP and Calcium. In: Kebabian, J.W., Nathanson, J.A. (eds) Cyclic Nucleotides. Handbook of Experimental Pharmacology, vol 58 / 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68393-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68393-0_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68395-4

  • Online ISBN: 978-3-642-68393-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics