Skip to main content

Cyclic Nucleotides in the Immune Response

  • Chapter
Cyclic Nucleotides

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 58 / 2))

Overview

Cyclic AMP and cyclic GMP have been implicated as serving modulatory roles in a variety of immune functions. These include the activation of lymphocytes by both mitogenic lectins and antigens, the maturation of lymphocytes into antibody producing B cells or helper, suppressor and effector T cells, the production of specific antibody, and the action of a variety of cytotoxic T cells. In many of these studies the general rule has been that an increase in intracellular cyclic AMP concentration inhibits a particular immune response while an increase in intracellular GMP augments the response. However, as more data have emerged, this hypothesis has frequently not held true. To a large extent, studies of cyclic nucleotide action in the immune response have been compromised because of the marked complexity associated with immune function. That is, five or six individual cell types and as many soluble mediators may interact to produce a cellular or humoral immune response. As a result, investigations have indicated that cyclic AMP and cyclic GMP may enhance, inhibit or have no effect on the immune response, depending upon the timing of the stimulation by these nucleotides and upon the system being tested. Even in simplier systems, controversy has arisen; thus, data indicating a significant role for both cyclic AMP and cyclic GMP in lymphocyte activation, growth and development have been presented. In some instances, differences in experimental results have been interpreted as resulting from an examination of different lymphocyte subpopulations, while in others it has been proposed that a given cyclic nucleotide may have multiple effects on lymphocyte function due to intracellular compartmentalization of the nucleotide. Thus, although it is clear that cyclic nucleotides play an important mediator or modulatory roles at various stages in the immune response, the exact nature of cyclic nucleotide action remains to be elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Atkinson JP, Sullivan TJ, Kelly JM, Parker CW (1977) Stimulation by alcohols of cAMP metabolism in human lymphocytes. J Clin Invest 60:284–294

    Article  PubMed  CAS  Google Scholar 

  • Atkinson JP, Kelly JP, Weiss A, Wedner HJ, Parker CW (1978) Enhanced intracellular cGMP concentrations and lectin induced lymphocyte transformation. J Immunol 121:2282–2291

    PubMed  CAS  Google Scholar 

  • Bach MA (1975) Differences in cyclic AMP changes after stimulation by prostaglandins and isoproterenol in lymphocyte subpopulations. J Clin Invest 55:1074–1081

    Article  PubMed  CAS  Google Scholar 

  • Berger NA, Johnson ES (1976) Studies of DNA synthesis in permeabilized mouse L cells in DNA synthesis and its regulation. Goulian M, Hanawalt P (eds) Benjamin, Inc, Menlo Park, CA., pp 719–721

    Google Scholar 

  • Buckley PJ, Wedner HJ (1977) Variation in DNA and RNA synthetic responses during activation of lymphocytes from inbred strains of mice. J Immunol 119:9–18

    PubMed  CAS  Google Scholar 

  • Buckley PJ, Wedner HJ (1978) Measurements of the DNA synthetic capacity of activated lymphocytes: Nucleotide triphosphate incorporation by permeabilized cells. J Immunol 120:1930–1940

    PubMed  CAS  Google Scholar 

  • Burleson DG, Sage HJ (1976) Effects of lectins on the levels of cAMP and cGMP in guinea pig lymphocytes: early responses of lymph node cells to mitogenic non-mitogenic lectins. J Immunol 116:696–703

    PubMed  CAS  Google Scholar 

  • Castagna M, Palmer WK, Walsh DA (1975) Nuclear protein-kinase activity inperfused rat liver stimulated with dibutyryl-adenosine cyclic 3′,5′-monophosphate. Eur J Biochem 55:192–199

    Article  Google Scholar 

  • Chaplin DD, Wedner HJ (1978) Inhibition of lectin-induced lymphocyte activation by diamide and other sulfhydryl reagents. Cell Immunol 36:303–311

    Article  PubMed  CAS  Google Scholar 

  • Chaplin DD, Wedner HJ, Parker CW (1979 a) Protein phosphorylation in human peripheral blood lymphocytes. I. Subcellular distribution and partial characterization of adenosine 3′,5′-monophosphate-dependent protein kinase and protein phosphorylation in human peripheral blood lymphocytes. Biochem J 182:525–536

    PubMed  CAS  Google Scholar 

  • Chaplin DD, Wedner HJ, Parker CW (1979 b) Protein phosphorylation in human peripheral blood lymphocytes. II. Phosphorylation of endogenous plasma membrane and cytoplasmic proteins. Biochem J 182:537–546

    PubMed  CAS  Google Scholar 

  • Chaplin DD, Wedner HJ, Parker CW (1980) Protein phosphorylation in human peripheral blood lymphocytes: Mitogen-induced increased in protein phosphorylation in intact lymphocytes. J Immunol 124:2390–2398

    PubMed  CAS  Google Scholar 

  • Coffey RG, Hadden EM, Hadden JW (1977) Evidence for cyclic GMP and calcium mediation of lymphocyte activation by mitogens. J Immunol 119:1387–1394

    PubMed  CAS  Google Scholar 

  • Coffey RG, Hadden EM, Hadden JW (1981) Phytohemagglutinin stimulation of guanylate cyclase in human lymphocytes. J Biol Chem 256:4418

    PubMed  CAS  Google Scholar 

  • Collavo D, Biasi G, Colomball A (1976) Generation of cytotoxic cells in absence of blastogenesis by mouse cells in mixed culture. Eur J Immunol 6:612–618

    Article  PubMed  CAS  Google Scholar 

  • Cooper HL, Berger SL, Brauerman R (1975) Free ribosomes in physiologically nondividing cells. Human peripheral lymphocytes. J Biol Chem 251:4891–4900

    Google Scholar 

  • Cross ME, Ord MG (1970) Changes in the phosphorylation and thiol content of histones in phytohemagglutinin-stimulated lymphocytes. Biochem J 118:191–193

    PubMed  CAS  Google Scholar 

  • DeRubertis FR, Zenser T (1976) Activation of murine lymphocytes by cyclic guanosine 3′,5′-monophosphate: specificity and role in mitogen activity. Biochem Biophys Acta 428:91–103

    Article  PubMed  CAS  Google Scholar 

  • Diamanstein T, Ulmer A (1975) Regulation of DNA synthesis by guanosine 5′-diphosphate cyclic guanosine-3′,5′-monophosphate and cyclic adenosine-3′,5′-monophosphate in mouse lymphoid cells. Exp Cell Res 93:309–314

    Article  Google Scholar 

  • Edelman GM (1976) Surface modulation in cell recognition and cell growth. Science 192:218–226

    Article  PubMed  CAS  Google Scholar 

  • Eisen SA, Wedner HJ, Parker CW (1972) Isolation of pure human peripheral blood T-lymphocytes using nylon wool columns. Immunol Commun 1:571–577

    PubMed  CAS  Google Scholar 

  • Epstein PM, Hersh EM, Thompson WJ (1976) Comparison of cyclic nucleotide phosphodiesterase of cultured and isolated lymphoid cells. Fed Proc 35:511

    Google Scholar 

  • Farago A, Antoni F, Fabian F (1974) Histone kinases and cyclic AMP-binding capacity of nuclei of human tonsillar lymphocytes. Biochim Biophys Acta 370:459–467

    PubMed  CAS  Google Scholar 

  • Goldberg ND, Haddox MK (1977) Cyclic GMP metabolism and involvement in biological regulation. Ann Rev Biochem 46:823–896

    Article  PubMed  CAS  Google Scholar 

  • Goffstein BJ, Gordon LK, Wedner HJ, Atkinson JP (1980) cAMP concentrations in human peripheral blood lymphocytes: Changes in association with cell purification. J Lab Clin Med 96:1002–1014

    PubMed  CAS  Google Scholar 

  • Gordon LK, Hamill B, Parker CW (1980) The activation of blast transformation and DNA synthesis in human peripheral blood lymphocytes by wheat germ agglutinin. J Immunol 125:814–819

    PubMed  CAS  Google Scholar 

  • Hadden JW, Coffey RG, Ananthakrishnan R, Hadden EM (1979) Cyclic nucleotide and calcium in lymphocyte regulation and activation. Ann New York Academy of Sciences, pp 241–254

    Google Scholar 

  • Hadden JW, Hadden EM, Haddox MK, Goldberg ND (1972) Guanosine 3′,5′-cyclic monophosphate: a possible intracellular mediator of mitogenic influences in lymphocytes. Pro Natl Acad Sci USA 69:3024–3027

    Article  CAS  Google Scholar 

  • Hadden JW, Hadden EM, Sadlik JR, Coffey RG (1976) Effects of concanavalin A and a succinylated derivative on lymphocyte proliferation and cyclic nucleotide levels. Proc Natl Acad Sci USA 73:1717–1721

    Article  PubMed  CAS  Google Scholar 

  • Hadden JW, Johnson EM, Hadden EM, Coffey RG, Johnson LD (1975) In: Rosenthal AS (ed) Immune recognition. Academic Press, New York, pp 359–389

    Google Scholar 

  • Hait WN, Weiss B (1976) Increased cyclic nucleotide phosphodiesterase activity in leukaemic lymphocytes. Nature 259:321–323

    Article  PubMed  CAS  Google Scholar 

  • Hait WN, Weiss B (1977) Characteristics of the cyclic nucleotide phosphodiesterase of normal and leukemic lymphocytes. Biochim Biophys Acta 497:86–100

    Article  PubMed  CAS  Google Scholar 

  • Haley BE (1975) Photoaffinity labeling of adenosine 3′,5′-cyclic monophosphate binding sites of human red cell membranes. Biochemistry 14:3852–3857

    Article  PubMed  CAS  Google Scholar 

  • Henney CS, Lichtenstein LM (1971) The role of cyclic AMP in the cytolytic activity of lymphocytes. J Immunol 107:610–612

    PubMed  CAS  Google Scholar 

  • Horenstein et al. (1976) Protein Phosphokinase activities of resting and proliferating human lymphocytes. Changes upon phytohemagglutinin stimulation are in acute lymphoblastic leukemia cells. Exp Cell Res 101:260–266

    Article  Google Scholar 

  • Jegasothy BV, Pacher AR, Waksman BH (1976) Cytokine inhibition of DNA synthesis: effect on cyclic adenosine monophosphate in lymphocytes. Science 193:1260–1262

    Article  PubMed  CAS  Google Scholar 

  • Jegasothy BV, Namba Y, Waksman BH (1978) Regulatory substances produced by lymphocytes VII IDS (inhibitor of DNA synthesis) inhibits stimulated lymphocyte proliferation by activation of membrane adenylate cyclase at a restriction point in late G1. Immunochemistry 15:551–555

    Article  PubMed  CAS  Google Scholar 

  • Juhl H, Esmann V (1979) Purification and properties of cAMP dependent and independent histone kinases from human leukocytes. Mol Cell Biochem 26:3–18

    PubMed  CAS  Google Scholar 

  • Kemp BE, Froscio M, Rogers A, Murray AW (1975) Multitude protein kinases from human lymphocyte: identification enzymes phosphorylating exogenous histone and casein. Biochem J 145:241–249

    PubMed  CAS  Google Scholar 

  • Kish VM, Kleinsmith LJ (1974) Nuclear protein kinases: evidence for their heterogeneity, tissue specificity, substrate specificity and differentiate responses to cyclic adenosine 3′,5′-monophosphate. J Biol Chem 249:750–760

    PubMed  CAS  Google Scholar 

  • Klimpel GR, Byos CV, Russel DH, Lucas DO (1976) Cyclic-AMP-dependent protein kinase activation and the induction of ornithine decarboxylase during lymphocyte mitogenesis. J Immunol 123:817–824

    Google Scholar 

  • Krishnaraj R, Talwar GP (1973) Role of cyclic AMP in mitogen induced transformation of human peripheral leukocytes. J Immunol 111:1010–1017

    PubMed  CAS  Google Scholar 

  • Lagarde A, Colobert L (1972) Cyclic 3′,5′-AMP phosphodiesterase of human blood lymphocytes. Biochim Biophys Acta 276:444–453

    PubMed  CAS  Google Scholar 

  • MacManus JP, Whitfield JF, Boynton AL, Rixon RH (1975) Role of cyclic nucleotides and calcium in the positive control of cell proliferation. Adv Cyclic Nuc Res 5:719–734

    CAS  Google Scholar 

  • Menahan LA, Kemp RG (1976) Cyclic 3′,5′adenosine monophosphate phosphodiesterase in the thymus of normal and leukemic mice. J Cyclic Nucleotide Res 2:417–425

    PubMed  CAS  Google Scholar 

  • Mendelsohn J, Nordberg J (1979) Adenylate cyclase in thymus-derived and bone marrowderived lymphocytes from normal donors and patients with chronic lymphocytic leukemia. J Clin Invest 63:1124–1132

    Article  PubMed  CAS  Google Scholar 

  • Monahan TM, Marchand NW, Fritz RR, Abell CW (1975) Cyclic adenosine 3′,5′-monophosphate levels and activities of related enzymes in normal and leukemic lymphocytes. Cancer Res 35:2540–2547

    PubMed  CAS  Google Scholar 

  • Murray AW, Froscio M, Kemp BE (1972) Histone phosphatase and cyclic nucleotide stimulated protein kinase from human lymphocytes. Biochem J 129:995–1002

    PubMed  CAS  Google Scholar 

  • Murray AW, Froscio M, Rogers A (1974) Dissociation of rabbit muscle cyclic AMP dependent protein kinase into catalytic and regulatory subunits by p-chloromercuribenzoate and methylmercuric. FEBS Letters 48:238–240

    Article  PubMed  CAS  Google Scholar 

  • Niaudet PG, Beaurain, Bach MA (1976) Differences in effect of isoproterenol stimulation on levels of cyclic AMP in human B and T lymphocytes. Eur J Immunol 6:834–836

    Article  PubMed  CAS  Google Scholar 

  • O’Farrell PH (1975) High resolution 2-dimensional electrophoresis of proteins. J Biol Chem 250:4007–4021

    PubMed  Google Scholar 

  • Oppenheim JJ, Rosenstreich DL (1976) In Progress in Allergy. Signals regulating in vitro activation of lymphocytes, pp 65–194

    Google Scholar 

  • Parker CW (1974) Correlation between mitogenicity and stimulation of calcium uptake in human lymphocytes. Biochem Biophys Res Commun 61:1180–1186

    Article  PubMed  CAS  Google Scholar 

  • Parker CW (1979) Role of cyclic nucleotides in regulating lymphocytes. Annals New York Academy Science 332:255–261

    Article  CAS  Google Scholar 

  • Parker CW, Sillivan TJ, Wedner HJ (1974) In Advances in Cyclic Nucleotide research. Cyclic AMP and the immune response. Greengard P, Robinson A (eds) Raven Press, New York, 4:1–79

    Google Scholar 

  • Piras MM, Horenstein A, Piras R (1977) Identification of multiple protein kinases in normal human lymphocytes. Enzyme 22:219–229

    PubMed  CAS  Google Scholar 

  • Polgar P, Vera JC, Kelley PR, Rutenberg AM (1973) Adenylate cyclase activity in normal and leukemic human leukocytes as determined by a radioimmunoassay for cyclic AMP. Biochim Biophys Acta 297:378–383

    Article  PubMed  CAS  Google Scholar 

  • Polgar P, Vera JC, Rutenberg AM (1977) An altered response to cyclic AMP stimulation hormones in intact human leukemic lymphocytes (39701). Proc Soc Exp Biol Med 154:493–495

    PubMed  CAS  Google Scholar 

  • Rikans LE, Ruddon RW (1973) The role of 3′,5′-cyclic AMP in the control of nuclear protein kinase activity. Biochim Biophys Res Comm 54:387–394

    Article  CAS  Google Scholar 

  • Scher NS, Quagliata F, Malathi VG, Faig D, Melton A, Silber R (1976) Cyclic adenosine 3′,5′-monophosphate phosphodiesterase activity in normal and chronic lymphocytic leukemia lymphocytes. Cancer Res 36:3958–3962

    PubMed  CAS  Google Scholar 

  • Schumm DE, Morris HP, Webb TE (1974) Early biochemical changes in phytohemag-glutenin-stimulated peripheral blood lymphocytes from normal and tumor bearing rats. Eur J Cancer 10:107–113

    Article  PubMed  CAS  Google Scholar 

  • Segel GB, Lichtman MA, Hollander MM, Gordon BR, Klemperer MR (1976) Human lymphocyte potassium content during the initiation of phytohemagglutinin-induced mitogenesis. J Cell Physiol 88:43–48

    Article  PubMed  CAS  Google Scholar 

  • Sell S, Sheppard HW (1974) Studies on rabbit lymphocytes in vitro: kinetics of reversible Con A stimulation and restimulation of blast transformation after blocking with anti-Con A. Exp Cell Res 84:153–158

    Article  PubMed  CAS  Google Scholar 

  • Smith JW, Steiner AL, Newberry WM, Parker CW (1971 a) Cyclic adenosine 3′,5′-monophosphate in human lymphocytes. Alterations after phytohemagglutinin stimulation. J Clin Invest 50:432–441

    Article  PubMed  CAS  Google Scholar 

  • Smith JW, Steiner AL, Parker CW (1971 b) Human lymphocyte metabolism. J Clin Invest 50:442–448

    Article  PubMed  CAS  Google Scholar 

  • Snider DR, Parker CW (1977) Adenylate cyclase activity in lymphocyte subcellular fractions. Characterization of non-nuclear adenylate cyclase. Biochem J 162:473–482

    PubMed  CAS  Google Scholar 

  • Steiner AL, Ong S, Wedner HJ (1976) Cyclic nucleotide immunochemistry. Adv Cyclic Nucleotide Res 7:115–155

    PubMed  CAS  Google Scholar 

  • Steiner AL, Parker CW, Kipnis DM (1972) Radioimmunoassay for cyclic nucleotides. I. Preparation of antibodies and iodinated cyclic nucleotides. J Biol Chem 247:1106–1113

    PubMed  CAS  Google Scholar 

  • Strom TB, Carpenter CB (1980) Cyclic nucleotides in immunosuppression — neuroendocrine pharmacologic manipulation and in vivo immunoregulation of immunity acting via second messenger systems. Transplantation Proceedings 12:304–310

    PubMed  CAS  Google Scholar 

  • Thompson WJ, Ross CP, Pledger WJ, Strada SJ, Banner RL, Hersh EM (1976) Cyclic adenosine 3′,5′-monophosphate phosphodiesterase distinct forms in human lymphocytes and monocytes. J Biol Chem 251:4922

    PubMed  CAS  Google Scholar 

  • Udey MC, Chaplin DD, Wedner HJ, Parker CW (1980) Early activation events in lectinstimulated human lymphocytes. Evidence that wheat germ agglutinin and mitogenic lectins cause similar early changes in lymphocyte metabolism. J Immunol 125:1544–1550

    PubMed  CAS  Google Scholar 

  • Wagshal AB, Jegasothy BV, Waksman BH (1978) Regulatory substances produced by lymphocytes IV cell cycle specificity of inhibitor of DNA synthesis. J Exp Med 147:171–181

    Article  PubMed  CAS  Google Scholar 

  • Wang T, Sheppard JR, Foker JE (1978) Rise and fall of cyclic AMP required for onset of lymphocyte DNA synthesis. Science 201:155–157

    Article  PubMed  CAS  Google Scholar 

  • Watson J (1976) The involvement of cyclic nucleotide metabolism in the initiation of lymphocyte proliferation induced by mitogens. J Immunol 117:1656–1663

    PubMed  CAS  Google Scholar 

  • Webb DR, Stites DP, Perlman JD, Austin KR, Fudenberg HH (1974) Control of mitogen-induced lymphocyte activation. Clin Immunol Immunopath 2:322–332

    Article  CAS  Google Scholar 

  • Wedner HJ (1980) The effect of diamide on cyclic AMP levels and cyclic nucleotide phosphodiesterase in human peripheral blood lymphocytes. Biochim Biophys Acta 628:407–481

    Article  PubMed  CAS  Google Scholar 

  • Wedner HJ, Chan BY, Parker CS, Parker CW (1979) Cyclic nucleotide phosphodiesterase activity in human peripheral blood lymphocytes and monocytes. J Immunol 123:725–732

    PubMed  CAS  Google Scholar 

  • Wedner HJ, Dankner R, Parker CW (1975) Cyclic GMP and lectin induced lymphocyte activation. J Immunol 115:1682–1687

    PubMed  CAS  Google Scholar 

  • Wedner HJ, Hoffer BJ, Battenberg R, Steiner AL, Parker CW (1972) A method for detecting intracellular cyclic adenosine monophosphate by immunofluorescence. J Histochem and Cytochem 20:293–295

    Article  CAS  Google Scholar 

  • Wedner HJ, Parker CW (1975) Protein phosphorylation in human peripheral lymphocytes — stimulation by phytohemagglutinin and N6 monobutryl cyclic AMP. Biochem Biophys Res Comm 62:808–815

    Article  PubMed  CAS  Google Scholar 

  • Wedner HJ, Parker CW (1976) Lymphocyte activation. In: Kallos P, Waksman BH, de-Weck A (eds) Progress in Allergy. S. Karger, Basel, 20:195–300

    Google Scholar 

  • Wedner HJ, Parker CW (1977) Adenylate cyclase activity in lymphocyte subcellular fractions. Biochem J 162:483–491

    PubMed  CAS  Google Scholar 

  • Whitfield JF, Boynton AL, MacManus JP, Sikorska M (1979) The regulation of cell proliferation by calcium and cyclic AMP. Molecular and Cellular Biochemistry 27:155–179

    Article  PubMed  CAS  Google Scholar 

  • Whitfield JF, MacManus JP, Boynton AL, Gillan DJ, Isaacs RJ (1974) Concanavalin A and the initiation of thymic lymphoblast DNA synthesis and proliferation by calcium-dependent increase in cyclic GMP level. J Cell Physiol 84:455–458

    Article  Google Scholar 

  • Winchurch R, Actor P (1972) The effects of an immunoenhancing bacterial product on the adenyl cyclase activity of mouse spleen cells. J Immunol 108:1305–1311

    PubMed  CAS  Google Scholar 

  • Yahara I, Edelman GM ((1975) Modulation of lymphocyte receptor mobility by concanavalin A and colchicine. Ann NY Acad Sci 253:455–469

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wedner, H.J. (1982). Cyclic Nucleotides in the Immune Response. In: Kebabian, J.W., Nathanson, J.A. (eds) Cyclic Nucleotides. Handbook of Experimental Pharmacology, vol 58 / 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68393-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68393-0_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68395-4

  • Online ISBN: 978-3-642-68393-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics