Skip to main content

The Role of Cyclic Nucleotide Metabolism in the Eye

  • Chapter

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 58 / 2))

Overview

This chapter summarizes cyclic nucleotide involvement in the eye. While all areas of the eye are discussed, greatest emphasis will be on the retina. The levels of retinal cyclic nucleotides vary according to several factors, including age, type of predominant photoreceptor, conditions of light- or dark-adaptation, states of pathology, etc. The cyclic GMP system is most important in rod visual cells; its principal effector is light, but it responds also to ischemic conditions, free radicals, depolarizing agents, cations and fatty acids. Cyclic AMP metabolism is minimal in rod photoreceptors. In contrast, in cone visual cells, the cyclic AMP system predominates and is responsive to light, with minimal levels of cyclic GMP present.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aguirre GD, Rubin LF (1975) Pathology of hemeralopia in the Alaskan malamute dog. J Am Vet Med Assoc 166:257–259

    Google Scholar 

  • Aguirre G, Farber D, Lolley R, Fletcher RT, Chader GJ (1978) Rod-Cone dysplasia in Irish setters: a defect in cyclic GMP metabolism in visual cells. Science 201:1133–1134

    Article  CAS  Google Scholar 

  • Ambache N, Morgan RS, Wright GP (1948 a) The action of tetanus toxin on the rabbit’s iris. J Physiol (Lond) 107:45–53

    CAS  Google Scholar 

  • Ambache N, Morgan RS, Wright GP (1948 b) The action of tetanus toxin on the acetylcholine and Cholinesterase contents of the rabbit’s iris. Br J Exp Pathol 29:408–418

    PubMed  CAS  Google Scholar 

  • Ashton N (1951) Anatomical study of Schlemm’s canal and aqueous veins by means of neoprene casts. I. Aqueous veins. Br J Ophthalmol 35:291–303

    Article  PubMed  CAS  Google Scholar 

  • Ashton N (1952) Anatomical study of Schlemm’s canal and aqueous veins by means of neoprene casts. II. Aqueous veins. Br J Ophthalmol 36:265–267

    Article  PubMed  CAS  Google Scholar 

  • Baehr W, Devlin MJ, Applebury M (1979) Isolation and characterization of cGMP phosphodiesterase from bovine rod outer segments. J Biol Chem 254:11669–11677

    PubMed  CAS  Google Scholar 

  • Bárány EH (1966) The mode of action of miotics on outflow resistance. Trans Ophthalmol Soc UK 86:539–578

    PubMed  Google Scholar 

  • Baughman R, Bader C (1977) Biochemical characterization and cellular localization of the cholinergic system in the chicken retina. Brain Res 138:469–485

    Article  PubMed  CAS  Google Scholar 

  • Baylor DA, Fuortes MGF (1970) Electrical responses of single cones in the retina of the turtle. J Physiol (Lond) 207:77–92

    CAS  Google Scholar 

  • Beitch BR, Eakins KE (1969) The effects of prostaglandins on the intraocular pressure of the rabbit. Br J Pharmacol 37:158–167

    PubMed  CAS  Google Scholar 

  • Bengtsson E (1976) The effect of imidazole on the disruption of the blood-aqueous barrier in the rabbit eye. Invest Ophthalmol Vis Sci 15:315–320

    CAS  Google Scholar 

  • Bengtsson E (1977) The effect of theophylline on the breakdown of the blood-aqueous barrier in the rabbit eye. Invest Ophthalmol Vis Sci 16:636–640

    PubMed  CAS  Google Scholar 

  • Bensinger RE, Fletcher RT, Chader GJ (1974 a) “Piggyback” chromatography: assay for guanylate cyclase in retina and other neural tissue. J Neurochem 22:1131–1134

    Article  PubMed  CAS  Google Scholar 

  • Bensinger RE, Fletcher RT, Chader GJ (1974 b) Guanylate cyclase: inhibition by light in retinal photoreceptors. Science 183:86–87

    Article  PubMed  CAS  Google Scholar 

  • Berger SJ, De Vries GW, Carter JG, Schulz DW, Passoneau PW, Lowry OH, Ferrendelli JA (1980) The distribution of the components of the cyclic GMP cycle in retina. J Biol Chem 255:3128–3133

    PubMed  CAS  Google Scholar 

  • Berman AL, Usova AA (1978) Protein inhibitor of the retinal cyclic nucleotide phosphodiesterase: its localization in the outer segment of a photoreceptor (in Russian). Biokheimiia 43:486–490

    CAS  Google Scholar 

  • Berman MB, Cavanagh HD, Gage J (1976) Regulation of collagenase activity in the ulcerating cornea by cyclic AMP. Exp Eye Res 22:209–218

    Article  PubMed  CAS  Google Scholar 

  • Biernbaum MS, Bownds MD (1979) Influence of light and calcium on guanosine 5′-triphosphate in isolated frog rod outer segments. J Gen Physiol 74:649–669

    Article  PubMed  CAS  Google Scholar 

  • Bignetti E, Cavaggioni A, Sorbi RT (1978) Light-activated hydrolysis of GTP and cyclic GMP in the rod outer segments. J Physiol (Lond) 279:55–69

    CAS  Google Scholar 

  • Bill A (1970) Effects of norepinephrine, isoproterenol and sympathetic stimulation on aqueous humor dynamics in vervet monkeys. Exp Eye Res 10:31–46

    Article  PubMed  CAS  Google Scholar 

  • Bill A, Bárány EH (1966) Gross facility, facility of conventional routes, and pseudofacility of aqueous humor outflow in the Cynomolgus monkey. Arch Ophthalmol 75:665–673

    PubMed  CAS  Google Scholar 

  • Bitensky MW, Gorman RE, Miller WH (1971) Adenyl cyclase as a link between photon capture and changes in membrane permeability of frog photoreceptors. Proc Natl Acad Sci USA 68:561–562

    Article  PubMed  CAS  Google Scholar 

  • Bitensky MW, Miki N, Marcus FR, Keirns JJ (1973) The role of cyclic nucleotides in visual excitation. Life Sci 13:1451–1472

    Article  CAS  Google Scholar 

  • Bitensky MW, Miki N, Keirns JJ et al. (1975) Activation of photoreceptor disk membrane phosphodiesterase by light and ATP. Adv Cyclic Nucleotide Res 5:213–240

    PubMed  CAS  Google Scholar 

  • Bitensky MW, Wheeler GL, Aloni B, Vetury S, Matuo Y (1978) Light- and GTP-activated photoreceptor phosphodiesterase: regulation by a light-activated GTPase and identification of rhodopsin as the phosphodiesterase binding site. Adv Cyclic Nucleotide Res 9:553–572

    PubMed  CAS  Google Scholar 

  • Blanks JC, Adinolfi AM, Lolley RN (1974) Photoreceptor degeneration and synaptogenesis in retinal-degenerative (rd) mice. J Comp Neurol 156:95–106

    Article  PubMed  CAS  Google Scholar 

  • Bok D, Hall MD (1971) The role of the pigment epithelium in the etiology of inherited retinal dystrophy in the rat. J Cell Biol 49:664–682

    Article  PubMed  CAS  Google Scholar 

  • Bonomi L, Appiani S (1975) Comportamento dell AMP cyclico nei tessuti e fluidi oculari sotto vari stimoli farmacologici. Atti 54° Congr Soc Ital Oftalmol, pp 196–200

    Google Scholar 

  • Bonomi L, Fregona I, Tomazzoli L (1977) Cyclic guanosine monophosphate (GMP) levels in ocular tissues. Albrecht Von Graefes Arch Klin Exp Ophthalmol 205:23–27

    Article  PubMed  CAS  Google Scholar 

  • Bourne MC, Campbell DA, Tansley K (1938) Hereditary degeneration of the rat retina. Br J Ophthalmol 22:613–623

    Article  PubMed  CAS  Google Scholar 

  • Bownds D, Brodie AE (1975) Light-sensitive swelling of isolated frog rod outer segments as an in vitro assay for visual transduction and dark adaptation. J Gen Physiol 66:407–425

    Article  PubMed  CAS  Google Scholar 

  • Bownds D, Dawes L, Miller J, Stahlman M (1972) Phosphorylation of frog photoreceptor membranes induced by light. Nature New Biol 237:125–127

    PubMed  CAS  Google Scholar 

  • Brodie AE, Bownds D (1976) Biochemical correlates of adaptation processes in isolated frog photoreceptor membranes. J Gen Physiol 63:1–11

    Article  Google Scholar 

  • Bromberg BB, Gregory DS, Sears ML (1980) Beta-adrenergic receptors in ciliary processes of the rabbit. Invest Ophthalmol Vis Sci 19:203–207

    PubMed  CAS  Google Scholar 

  • Brown JE, Coles JA, Pinto LH (1977) Effects of injections of calcium and EGTA into the outer segments of retinal rods of Bufo marinus. J Physiol (Lond) 269:707–722

    CAS  Google Scholar 

  • Brown JH, Makman MH (1972) Stimulation by dopamine of adenylate cyclase in retinal homogenates and of adenosine-3′:5′-cyclic monophosphate formation in intact retina. Proc Natl Acad Sci USA 69:539–543

    Article  PubMed  CAS  Google Scholar 

  • Brown JH, Makman MH (1973) Influence of neuroleptic drugs and apomorphine on dopamine-sensitive adenylate cyclase of retina. J Neurochem 21:477–479

    Article  PubMed  CAS  Google Scholar 

  • Brown JH, Makman MH, Opler LA (1973) Development and localization of dopamine-sensitive adenylate cyclase of mammalian retina. Fed Proc 32:679

    Google Scholar 

  • Brown SI, Weller CA (1970) Pathogenesis and treatment of collagenase induced diseases of the cornea. Trans Am Acad Ophthalmol Otolaryngol 74:375–383

    PubMed  CAS  Google Scholar 

  • Brückner R (1951) Spaltlampenmikroskopie und Ophthalmoskopie am Auge von Ratte und Maus. Doc Ophthalmol 5–6:452–554

    Google Scholar 

  • Bucher MB, Schorderet M (1974) Apomorphine-induced accumulation of cyclic AMP in isolated retinas of the rabbit. Biochem Pharmacol 23:3079–3082

    Article  PubMed  CAS  Google Scholar 

  • Bucher MB, Schorderet M (1975) Dopamine- and apomorphine-sensitive adenylate cyclase in homogenates of rabbit retina. Naunyn Schmiedebergs Arch Pharmacol 288:103–107

    Article  PubMed  CAS  Google Scholar 

  • Butterfield LC, Neufeld AH (1977) Cyclic nucleotides and mitosis in the rabbit cornea following superior cervical ganglionectomy. Exp Eye Res 25:427–433

    Article  PubMed  CAS  Google Scholar 

  • Byzov AL, Trifonov YA (1968) The response to electric stimulation of horizontal cells in the carp retina. Vision Res 8:817–822

    Article  PubMed  CAS  Google Scholar 

  • Caretta A, Cavaggioni A, Sorbi RT (1979). Cyclic GMP and the permeability of the disks of the frog photoreceptors. J Physiol (Lond) 295:171–178

    CAS  Google Scholar 

  • Carter-Dawson LD, LaVail MM, Sidman RL (1978) Differential effect of the rd mutation on rods and cones in the mouse retina. Invest Ophthalmol Vis Sci 7:489–498

    Google Scholar 

  • Casey WJ (1974) Prostaglandin E2 and aqueous humor dynamics in the rhesus monkey eye. Prostaglandins 8:327–337

    Article  PubMed  CAS  Google Scholar 

  • Cavanagh HD (1975) Herpetic ocular disease: therapy of persistent epithelial defects. Int Ophthalmol Clin 15:67–88

    Article  PubMed  CAS  Google Scholar 

  • Cervetto L, Piccolino M (1974) Synaptic transmission between photoreceptors and horizontal cells in the turtle retina. Science 183:417–419

    Article  PubMed  CAS  Google Scholar 

  • Chader GJ (1971) Hormonal effects on the neural retina: induction of glutamine synthetase by cyclic-3′,5′-AMP. Biochem Biophys Res Commun 43:1102–1105

    Article  PubMed  CAS  Google Scholar 

  • Chader G, Johnson M, Fletcher R, Besinger R (1974 a) Cyclic nucleotide phosphodiesterase of the bovine retina: activity, subcellular distribution and kinetic parameters. J Neurochem 22:93–99

    Article  PubMed  CAS  Google Scholar 

  • Chader G, Fletcher R, Johnson M, Bensinger R (1974 b) Rod outer segment phosphodiesterase: factors affecting the hydrolysis of cyclic-AMP and cyclic-GMP. Exp Eye Res 18:509–515

    Article  PubMed  CAS  Google Scholar 

  • Chader GJ, Herz LR, Fletcher RT (1974 c) Light activation of phosphodiesterase activity in retinal rod outer segments. Biochim Biophys Acta 347–491–493

    Google Scholar 

  • Chader GJ, Herz L, Fletcher RT (1974d) Cyclic nucleotide hydrolysis: some possible natural regulators in retina and rod outer segments. J Neurochem 23:873–874

    Article  PubMed  CAS  Google Scholar 

  • Chader GJ, Fletcher RT, O’Brien PJ, Krishna G (1976) Differential phosphorylation by GTP and ATP in isolated rod outer segments of the retina. Biochemistry 15:1615–1620

    Article  PubMed  CAS  Google Scholar 

  • Chader G, Liu Y, O’Brien P, Fletcher R, Krishna G, Aguirre G, Farber D, Lolley R (1980) Cyclic GMP phosphodiesterase activator: involvement in a hereditary retinal degeneration. In: Bazán NG, Lolley RN (eds) Neurochemistry of the retina. Pergamon, Oxford New York Paris Toronto Frankfurt Sydney, pp 441–458

    Google Scholar 

  • Chalfie M, Neufeld AH, Zadunaisky JA (1972) Action of epinephrine and other cyclic AMP-mediated agents on the chloride transport of the frog cornea. Invest Ophthalmol 11:644–650

    PubMed  CAS  Google Scholar 

  • Cheung WY (1970) Cyclic 3′,5′-nucleotide phosphodiesterase. Evidence for and properties of a protein activator. J Biol Chem 246:2859–2869

    Google Scholar 

  • Clement-Cormier YC, Redburn DA (1978) Dopamine-sensitive adenylate cyclase in retina — subcellular distribution. Biochem Pharmacol 27:2281–2282

    Article  PubMed  CAS  Google Scholar 

  • Cohen AI, Hall IA, Ferrendelli JA (1978) Calcium and cyclic nucleotide regulation in incubated mouse retinas. J Gen Physiol 71:595–612

    Article  PubMed  CAS  Google Scholar 

  • Cone RA (1973) The internal transmitter model for visual excitation: some quantitative implications. In: Langer H (ed) Biochemistry and physiology of visual pigments. Springer, Berlin Heidelberg New York, pp 275–282

    Google Scholar 

  • Cools AR, van Rossum JM (1976) Excitation and inhibition mediating dopamine receptors. Psychopharmacology (Berlin) 45:243–254

    Article  CAS  Google Scholar 

  • Coquil JF, Virmaux N, Mandel P, Goridis C (1975) Cyclic nucleotide phosphodiesterase of retinal photoreceptors. Partial purification and some properties of the enzyme. Biochim Biophys Acta 403:425–437

    PubMed  CAS  Google Scholar 

  • Corbin JD, Keely S, Park CR (1975) Distribution and dissociation of cyclic adenosine 3′:5′-monophosphate-dependent protein kinases in adipose, cardiac and other tissues. J Biol Chem 250:218–225

    PubMed  CAS  Google Scholar 

  • Corrodi H, Fuxe K, Ungerstedt U (1971) Evidence for a new type of dopamine receptor stimulating agent. J Pharm Pharmacol 23:989–991

    Article  PubMed  CAS  Google Scholar 

  • Crabb CV (1977) Endocrine influences on ulceration and regeneration in the alkali-burned cornea. Arch Ophthalmol 95:1866–1870

    PubMed  CAS  Google Scholar 

  • Da Prada M (1977) Dopamine content and synthesis in retina and N. accumbens septi: pharmacological and light-induced modifications. Adv Biochem Psychopharmacol 16:311–319

    PubMed  Google Scholar 

  • De Azeredo FA, Lust WD, Passonneau JV (1978) Guanine nucleotide concentrations in vivo in outer segments of dark and light adapted frog retina. Biochem Biophys Res Commun 85:293–300

    Article  PubMed  Google Scholar 

  • De Mello FG (1978) The ontogeny of dopamine-dependent increase of adenosine 3′,5′-cyclic monophosphate in the chick retina. J Neurochem 31:1049–1053

    Article  PubMed  Google Scholar 

  • De Vries GW, Cohen AI, Hall IA, Ferrendelli JA (1978) Cyclic nucleotide levels in normal and biologically fractionated mouse retina: effects of light and dark adaptation. J Neurochem 31:1345–1351

    Article  Google Scholar 

  • De Vries GW, Cohen AI, Lowry OH, Ferrendelli JA (1979) Cyclic nucleotides in the conedominant ground squirrel retina. Exp Eye Res 29:315–321

    Article  PubMed  Google Scholar 

  • Dewar AJ, Barron G, Richmond J (1975a) Adenosine 3′:5′-cyclic monophosphate phosphodiesterase activity in the dystrophic rat retina. Biochem Soc Trans 3:265–268

    PubMed  CAS  Google Scholar 

  • Dewar AJ, Barron G, Richmond J (1975 b) Retinal cyclic-AMP phosphodiesterase activity in two strains of dystrophic rat. Exp Eye Res 21:299–306

    Article  PubMed  CAS  Google Scholar 

  • Dewar AJ, Barron G, Reading HW (1977) The effect of anti-inflammatory drugs on retinal dystrophy in the rat. Toxicol Appl Pharmacol 42:65–74

    Article  PubMed  CAS  Google Scholar 

  • Dickstein S, Maurice DM (1972) The metabolic basis of the fluid pump in the cornea. J Physiol (Lond) 221:29–41

    Google Scholar 

  • Dohlman CH (1971) The function of the corneal epithelium in health and disease. Invest Ophthalmol 10:383–407

    PubMed  CAS  Google Scholar 

  • Donn H, Maurice DM, Mills NL (1959) Studies on the living cornea in vitro. II. The active transport of sodium across the epithelium. Arch Ophthalmol 62:748–757

    PubMed  CAS  Google Scholar 

  • Dowling JE, Ripps H (1973) Effect of magnesium on horizontal cell activity in the skate retina. Nature 242:101–103

    Article  PubMed  CAS  Google Scholar 

  • Dowling JE, Sidman RL (1962) Inherited retinal dystrophy in the rat. J Cell Biol 14:73–109

    Article  PubMed  CAS  Google Scholar 

  • Dumler IL, Etingof RN (1973) The effect of cyclic 3′,5′-adenosine monophosphoric acid on release of Na and K from the external segments of retinal rods (in Russian). Biokhimiia 38:408–411

    PubMed  CAS  Google Scholar 

  • Dumler IL, Etingof RN (1976) Protein inhibitor of cyclic adenosine 3′:5′-monophosphate phosphodiesterase in retina. Biochim Biophys Acta 429:474–478

    PubMed  CAS  Google Scholar 

  • Dutton JJ, Krupin T, Becker B (1979) Uptake and metabolism of cyclic-AMP in isolated rabbit ciliary body-iris preparations. ARVO Abstracts, Supplement to Invest Ophthalmol Vis Sci, p 21

    Google Scholar 

  • Eakins KE (1970) Increased intraocular pressure produced by prostaglandins E1 and E2 in the cat eye. Exp Eye Res 10:87

    Article  PubMed  CAS  Google Scholar 

  • Ebrey TG, Hood DC (1973) The effects of cyclic nucleotide phosphodiesterase inhibitors on the frog rod receptor potential. In: Langer H (ed) Biochemistry and physiology of visual pigments. Springer, Berlin Heidelberg New York, pp 341–350

    Google Scholar 

  • Edwards RB, Szamier RB (1977) Defective phagocytosis of isolated rod outer segments by RCS rat retinal pigment epithelium in culture. Science 197:1001–1003

    Article  PubMed  CAS  Google Scholar 

  • Ehinger B (1976) Biogenic monoamines as transmitters in the retina. In: Bonting SL (ed) Transmitters in the visual process. Pergamon, Oxford New York Toronto Sydney Paris Frankfurt, pp 145–163

    Google Scholar 

  • Ehinger B (1978) Biogenic monoamines and amino acids as retinal neurotransmitters. In: Cool SJ, Smith EL III (eds), Frontiers in visual science. Springer, Berlin Heidelberg New York, pp 42–53

    Google Scholar 

  • Etingof RN (1978) Enzymes of the outer segments of the retinal rods: the problem of localization and coupling with rhodopsin (in Russian). Tsitologiia 20:5–17

    PubMed  CAS  Google Scholar 

  • Etingof RN, Ostapenko IA (1978) Changes in the proteins of the outer segments of retinal rods in rats with tapeto-retinal dystrophies (in Russian). Vestn Akad Med Nauk SSSR 10:3–8

    PubMed  Google Scholar 

  • Farber DB, Lolley RN (1973) Proteins in the degenerative retina of C3H mice: deficiency of a cyclic-nucleotide phosphodiesterase and opsin. J Neurochem 21:817–828

    Article  PubMed  CAS  Google Scholar 

  • Farber DB, Lolley RN (1974) Cyclic guanosine monophosphate: Elevation in degenerating photoreceptor cells of the C3H mouse retina. Science 186:449–451

    Article  PubMed  CAS  Google Scholar 

  • Farber DB, Lolley RN (1976) Enzymic basis for cyclic GMP accumulation in degenerative photoreceptor cells of mouse retina. J Cyclic Nucleotide Res 2:139–148

    PubMed  CAS  Google Scholar 

  • Farber DB, Lolley RN (1977 a) Light-induced reduction in cyclic GMP of retinal photoreceptor cells in vivo: abnormalities in the degenerative diseases of RCS rats and rd mice. J Neurochem 28:1089–1095

    Article  PubMed  CAS  Google Scholar 

  • Farber DB, Lolley RN (1977 b) Influence of visual cell maturation or degeneration on cyclic AMP content of retinal neurons. J Neurochem 29:167–170

    Article  PubMed  CAS  Google Scholar 

  • Farber DB, Lolley RN (1978) Cyclic-AMP and cyclic-GMP content of cone-dominant retinas of ground squirrel. ARVO Abstracts, Supplement to Invest Ophthalmol Vis Sci, p 255

    Google Scholar 

  • Farber DB, Lolley RN (1979) Phosphoproteins as proposed modulators of visual function. Adv Exp Med Biol 116:103–115

    PubMed  CAS  Google Scholar 

  • Farber DB, Brown BM, Lolley RN (1978) Cyclic GMP: proposed role in visual cell function. Vision Res 18:497–499

    Article  PubMed  CAS  Google Scholar 

  • Farber DB, Brown BM, Lolley RN (1979 a) Cyclic nucleotide dependent protein kinase and the phosphorylation of endogenous protein of retinal rod outer segments. Biochemistry 18:370–378

    Article  PubMed  CAS  Google Scholar 

  • Farber DB, Souza D, Lolley RN (1979 b) Cyclic nucleotides in the cone-dominant retina of ground squirrel. Trans Am Soc Neurochem 10:105

    Google Scholar 

  • Farber DB, Chase D, Souza D, Lolley RN (1979 c) Cyclic nucleotides in the cone-dominant retina of hibernating ground squirrel. Society for Neuroscience, Abstracts 9th Annual Meeting, p 402

    Google Scholar 

  • Farber DB, Lolley RN, Rayborn ME, Hollyfield JG (1979d) Cyclic nucleotide modulation of visual cell morphology. ARVO Abstracts, Supplement to Invest Ophthalmol Vis Sci, p 260

    Google Scholar 

  • Farber D, Chase DG, Lolley RN (1980) Cyclic nucleotides in rod- and cone-dominant retinas. In: Bazán NG, Lolley RN (eds) Neurochemistry of the retina. Pergamon, Oxford New York Paris Toronto Frankfurt Sydney, pp 327–336

    Google Scholar 

  • Farber DB, Souza DW, Chase DG, Lolley RN (1981) Cyclic nucleotides of cone-dominant retinas: reduction of cyclic AMP levels by light and by cone degeneration. Invest Ophthalmol Vis Sci 20:24–31

    PubMed  CAS  Google Scholar 

  • Fedinec AA (1975) Tetanospasmin spreading, metabolism and possibilities of neutralization. In: Proceedings of the Fourth International Conference on Tetanus, vol 1. Fondation Merieux, Lyon, p 123

    Google Scholar 

  • Fedinec AA, King LE Jr (1969) Glycine’s reversal of tetanus toxin induced mydriasis in rabbit eyes. Physiologist 12:331–333

    Google Scholar 

  • Fedinec AA, King LE Jr, Latham WC (1976) Glycine, theophylline and antitoxin effects on rabbit sphincter pupillae muscle paralyzed by tetanus toxin. In: Ohsaka A, Hayashi K, Sawai Y (eds) Animal, plant and microbiology toxins, vol 2. Plenum, New York, p 351

    Google Scholar 

  • Feeney L, Mixon RN (1976) An in vitro model of phagocytosis in bovine and human retinal pigment epithelium. Exp Eye Res 22:533–548

    Article  PubMed  CAS  Google Scholar 

  • Ferrendelli JA (1978) Distribution and regulation of cyclic GMP in the central nervous system. Adv Cyclic Nucleotide Res 9:453–464

    PubMed  CAS  Google Scholar 

  • Ferrendelli JA, Cohen AI (1976) The effects of light and dark adaptation on the levels of cyclic nucleotides in retinas of mice heterozygous for a gene for photoreceptor dystrophy. Biochem Biophys Res Commun 74:421–427

    Article  Google Scholar 

  • Ferrendelli JA, Rubin EH, Kinscherf DA (1976) Influence of divalent cations on the regulation of cyclic GMP and cyclic AMP levels in brain tissue. J Neurochem 26:741–748

    Article  PubMed  CAS  Google Scholar 

  • Ferrendelli JA, DeVries GW, Cohen AI, Lowry OH (1980) Localization and roles of cyclic nucleotide systems in retina. In: Bazán NG, Lolley RN (eds) Neurochemistry of the retina. Pergamon, Oxford New York Paris Toronto Frankfurt Sydney, pp 311–326

    Google Scholar 

  • Fischer FH, Schmitz L, Hoff W, Schartl S, Liegl O, Wiederholt M (1978) Sodium and chloride transport in the isolated human cornea. Pfluegers Arch 373:179–188

    Article  CAS  Google Scholar 

  • Fleischman D, Denisevich M (1979) Guanylate cyclase of isolated bovine retinal rod axonemes. Biochemistry 18:5060–5066

    Article  PubMed  CAS  Google Scholar 

  • Fletcher RT, Chader GJ (1976) Cyclic GMP: control of concentration by light in retinal photoreceptors. Biochem Biophys Res Commun 70:1297–1302

    Article  PubMed  CAS  Google Scholar 

  • Forn J, Valdecasas FG (1971) Effects of lithium on brain adenyl cyclase activity. Biochem Pharmacol 20:2773–2779

    Article  PubMed  CAS  Google Scholar 

  • Frank RN, Cavanagh HD, Kenyon KR (1973) Light stimulated phosphorylation of bovine visual pigments by ATP. J Biol Chem 218:596–609

    Google Scholar 

  • Frati L, Daniele S, Delogu A, Covelli I (1972) Selective binding of the epidermal growth factor and its specific effects on the epithelial cells of the cornea. Exp Eye Res 14:135

    Article  PubMed  CAS  Google Scholar 

  • Frati L, D’Armiento M, Gulletta E, Verna R, Covelli I (1977) The control of epidermis proliferation by epidermal growth factor (EGF). Relationship with cyclic nucleotides systems. Pharmacol Res Commun 9:815–822

    Article  PubMed  CAS  Google Scholar 

  • Friedenwald JS, Buschke W (1944 a) Influence of some experimental values on epithelial movements in healing of corneal wounds. J Comp Cell Physiol 23:95–107

    Article  Google Scholar 

  • Friedenwald JS, Buschke W (1944 b) The effects of excitement, of epinephrine and of sympathectomy on the mitotic activity of the corneal epithelium in rats. Am J Physiol 141:689–694

    CAS  Google Scholar 

  • Gilmour-Buck M, Zadunaisky JA (1975) Stimulation of ion transport by ascorbic acid through inhibition of 3′:5′-cyclic-AMP phosphodiesterase in the corneal epithelium and other tissues. Biochim Biophys Acta 389:251–260

    Article  Google Scholar 

  • Godchaux W III, Zimmerman WF (1979) Membrane-dependent guanine nucleotide binding and GTPase activities of a soluble protein from bovine rod outer segments. ARVO Abstracts, Supplement to Invest Ophthalmol Vis Sci, p 269

    Google Scholar 

  • Goldberg ND, Haddox MK (1977) Cyclic GMP metabolism and involvement in biological regulation. Annu Rev Biochem 46:823–896

    Article  PubMed  CAS  Google Scholar 

  • Goldman AI, O’Brien PJ (1978) Phagocytosis in the retinal pigment epithelium of the RCS rat. Science 201:1023–1025

    Article  PubMed  CAS  Google Scholar 

  • Goridis C, Virmaux N (1974) Light-regulated guanosine 3′,5′-monophosphate phosphodiesterase of bovine retina. Nature 248:57–58

    Article  PubMed  CAS  Google Scholar 

  • Goridis C, Weiler M (1976) A role for cyclic nucleotides and protein kinase in vertebrate photoreception. Adv Biochem Psychopharmacol 15:391–412

    PubMed  CAS  Google Scholar 

  • Goridis C, Virmaux N, Urban PF, Mandel P (1973) Guanyl cyclase in a mammalian photoreceptor. FEBS Lett 30:163–166

    Article  PubMed  CAS  Google Scholar 

  • Goridis C, Virmaux N, Cailla HL, DeLaage MA (1974) Rapid, light-induced changes of retinal cyclic GMP levels. FEBS Lett 49:167–169

    Article  PubMed  CAS  Google Scholar 

  • Goridis C, Virmaux N, Weiler M, Coquil JF, Mandel P (1975) Guanylate cyclase and cyclic GMP phosphodiesterase in vertebrate photoreceptor organelles. In: Boissier JR, Hippius H, Pichot P (eds) Proceedings of the IXth Congress of the Collegium Internationale Neuropsychopharmacologicum, Paris 1974. Excerpta Medica, Amsterdam London New York, pp 920–931

    Google Scholar 

  • Goridis C, Virmaux N, Weiler M, Urban PF (1976) Role of cyclic nucleotides in photoreceptor function. In: Bonting SL (ed) Transmitters in the visual process. Pergamon, Oxford New York Toronto Sydney Paris Frankfurt, pp 27–58

    Google Scholar 

  • Goridis C, Urban PF, Mandel P (1977) The effect of flash illumination on the endogenous cyclic GMP content in isolated frog retinae. Exp Eye Res 24:171–177

    Article  PubMed  CAS  Google Scholar 

  • Govardovskii I, Berman AL (1977) Mechanism of vertebrate photoreceptor excitation: possible role of cyclic nucleotides, (in Russian). Dokl Akad Nauk SSSR 237:739–742

    PubMed  CAS  Google Scholar 

  • Govardovskii VI, Ostapenko IA, Shabanova ME, Fuks BB, Etingof RN (1977) Changes in the electroretinogram and in the content of rhodopsin of Hunter rats during the development of retinal degeneration (in Russian). Neirofiziologiia 9:527–531

    PubMed  CAS  Google Scholar 

  • Govoni S, Loddo P, Spano PF, Trabucchi M (1977) Dopamine receptor sensitivity in brain and retina of rats during aging. Brain Res 138:565–570

    Article  PubMed  CAS  Google Scholar 

  • Greengard P (1976) Possible role for cyclic nucleotides and phosphorylated membrane proteins in postsynaptic actions of neurotransmitters. Nature 260:101–108

    Article  PubMed  CAS  Google Scholar 

  • Hagins WA (1972) The visual process: excitatory mechanisms in the primary photoreceptor cells. Annu Rev Biophys Bioeng 1:131–158

    Article  PubMed  CAS  Google Scholar 

  • Hagins WA, Yoshikami S (1974) A role for calcium in excitation of retinal rods and cones. Exp Eye Res 18:299–305

    Article  PubMed  CAS  Google Scholar 

  • Hall MO (1978) Phagocytosis of light- and dark-adapted rod outer segments by cultured pigment epithelium. Science 202:526–528

    Article  PubMed  CAS  Google Scholar 

  • Hart R (1972) Theory of neural mediation of intraocular dynamics. Bull Math Biophys 34:113–140

    Article  PubMed  CAS  Google Scholar 

  • Hayasaka S, Hara S, Mizuno K (1977) In vitro effect of prostaglandins and cyclic nucleotides on differential release of enzyme from lysosomes of the bovine retinal pigment epithelium. Exp Eye Res 24:633–639

    Article  PubMed  CAS  Google Scholar 

  • Hedden WL, Dowling JE (1978) The interplexiform cell system. II. Effects of dopamine on goldfish retinal neurons. Proc R Soc Lond [Biol] 201:27–55

    Article  CAS  Google Scholar 

  • Hendriks T, De Pont JJ, Daemen FJ, Bonting SL (1973) Biochemical aspects of the visual process. XXIV. Adenylate cyclase and rod photoreceptor membranes: a critical appraisal. Biochim Biophys Acta 330:156–166

    Article  PubMed  CAS  Google Scholar 

  • Herron WL Jr, Riegel BW, Meyers OE, Rubin ML (1969) Retinal dystrophy in the rat: a pigment epithelial disease. Invest Ophthalmol 8:595–604

    PubMed  CAS  Google Scholar 

  • Herron WL Jr, Riegel BW, Rubin ML (1971) Outer segment production and removal in the degenerating retina of the dystrophic rat. Invest Ophthalmol 10:54–63

    PubMed  Google Scholar 

  • Hesketh JE, Virmaux N, Mandel P (1978) Evidence for a cyclic nucleotide-dependent phosphorylation of retinal myosin. FEBS Lett 94:357–360

    Article  PubMed  CAS  Google Scholar 

  • Hollyfield JG, Mottow LS, Ward A (1975) Autoradiographic study of [3H] glucosamine incorporation by the developing retina of the clawed toad, Xenopus laevis. Exp Eye Res 20:383–391

    Article  PubMed  CAS  Google Scholar 

  • Hood DC, Ebrey TG (1974) On the possible role of cyclic AMP in receptor dark adaptation. Vision Res 14:437–439

    Article  PubMed  CAS  Google Scholar 

  • Hubbell WL, Bownds MD (1979) Visual transduction in vertebrate photoreceptors. Annu Rev Neurosci 2:17–34

    Article  PubMed  CAS  Google Scholar 

  • Hurley JB, Ebrey TG (1979) Regulation of rod outer segment phosphodiesterase. Biophys J 25:314a

    Google Scholar 

  • Itoi M, Gnadinger MC, Slansky HH et al. (1969) Collagenase in the cornea. Exp Eye Res 8:369–373

    Article  PubMed  CAS  Google Scholar 

  • Iversen LL (1975) Dopamine Receptors in the brain. Science 188:1084–1089

    Article  PubMed  CAS  Google Scholar 

  • Kass MA, Podos SM, Moses RA, Becker B (1972) Prostaglandin E1 and aqueous humor dynamics. Invest Ophthalmol 11:1022–1027

    CAS  Google Scholar 

  • Kass MA, Palmberg P, Becker B (1977) The ocular anti-inflammatory action of imidazole. Invest Ophthalmol Vis Sci 16:66–69

    PubMed  CAS  Google Scholar 

  • Katsuki S, Arnold W, Mittal C, Murad F (1977) Stimulation of guanylate cyclase by sodium nitroprusside, nitroglycerin and nitric oxide in various tissue preparations and comparison to the effects of sodium azide and hydroxylamine. J Cyclic Nucleotide Res 3:23–35

    PubMed  CAS  Google Scholar 

  • Kebabian JW, Calne DB (1979) Multiple receptors for dopamine. Nature 277:93–96

    Article  PubMed  CAS  Google Scholar 

  • Keirns JJ, Wheeler MA, Bitensky MW (1974) Isolation of cyclic AMP and cyclic GMP by thin-layer chromatography. Application to assay of adenylate cyclase, guanylate cyclase, and cyclic nucleotide phosphodiesterase. Anal Biochem 61:336–348

    Article  PubMed  CAS  Google Scholar 

  • Keirns JJ, Miki N, Bitensky MW, Keirns M (1975) A link between rhodopsin and disc membrane cyclic nucleotide phosphodiesterase. Action spectrum and sensitivity to illumination. Biochemistry 14:2760–2766

    Article  PubMed  CAS  Google Scholar 

  • Kelly RG, Starr MS (1971) Effects of prostaglandins and a prostaglandin antagonist on intraocular pressure and protein in the monkey eye. Can J Ophthalmol 6:205–211

    PubMed  CAS  Google Scholar 

  • Kilbride P, Ebrey TG (1979) Light initiated changes of cyclic GMP levels in the frog retina measured with quick freezing techniques. J Gen Physiol 74:415–426

    Article  PubMed  CAS  Google Scholar 

  • Kimura H, Murad F (1974) Evidence for two different forms of guanylate cyclase in rat heart. J Biol Chem 249:6910–6916

    PubMed  CAS  Google Scholar 

  • Kimura H, Mittal CK, Murad F (1975) Increases in cyclic GMP levels in brain and liver with sodium azide, an activator of guanylate cyclase. Nature 257:700–702

    Article  PubMed  CAS  Google Scholar 

  • King LE Jr, Fedinec AA, Latham WC (1978) Effects of cyclic nucleotides on tetanus toxin paralyzed rabbit sphincter pupillae muscles. Toxicon 16:625–631

    Article  PubMed  CAS  Google Scholar 

  • Klyce SD, Neufeld AH, Zadunaisky JA (1973) The activation of chloride transport by epinephrine and Db-cyclic AMP in the cornea of the rabbit. Invest Ophthalmol 12:127–139

    PubMed  CAS  Google Scholar 

  • Kramer SG (1976) Dopamine in retinal neurotransmission. In: Bonting SL (ed) Transmitters in the visual process. Pergamon, Oxford New York Toronto Sydney Paris Frankfurt, pp 165–198

    Google Scholar 

  • Krishna G, Krishnan N, Fletcher RT, Chader G (1976) Effects of light on cyclic GMP metabolism in retinal photoreceptors. J Neurochem 27:717–722

    Article  PubMed  CAS  Google Scholar 

  • Krishnan N, Fletcher RT, Chader GJ, Krishna G (1978) Characterization of guanylate cyclase of rod outer segments of the bovine retina. Biochim Biophys Acta 523:506–515

    PubMed  CAS  Google Scholar 

  • Krupin T, Weiss A, Becker B, Holmberg N, Fritz C (1977) Increased intraocular pressure following topical azide or nitroprusside. Invest Ophthalmol Vis Sci 16:1002–1007

    PubMed  CAS  Google Scholar 

  • Kühn H (1978) Light-regulated binding of rhodopsin kinase and other proteins to cattle photoreceptor membranes. Biochemistry 17:4389–4395

    Article  PubMed  Google Scholar 

  • Kühn H (1980 a) Light-induced reversible binding of proteins to bovine photoreceptor membranes. Influence of nucleotides. In: Bazán N, Lolley RN (eds) Neurochemistry of the retina. Pergamon, Oxford New York Paris Toronto Frankfurt Sydney, pp 269–286

    Google Scholar 

  • Kühn H (1980 b) Light- and GTP-regulated interaction of GTPase and other proteins with bovine photoreceptor membranes. Nature 283:587–589

    Article  PubMed  Google Scholar 

  • Kühn H, Dreyer WJ (1972) Light-dependent phosphorylation of rhodopsin by ATP. FEBS Lett 20:1–6

    Article  PubMed  Google Scholar 

  • Kühn H, Cook JH, Dreyer WJ (1973) Phosphorylation of rhodopsin in bovine photoreceptor membranes: a dark reaction after illumination. Biochemistry 12:2495–2502

    Article  PubMed  Google Scholar 

  • Kuwabara T (1975) Cytologic changes of the retina and pigment epithelium during hibernation. Invest Ophthalmol 14:457–467

    PubMed  CAS  Google Scholar 

  • Laduron PM, Leysen JE (1979) Domperidone, a specific in vitro dopamine antagonist devoid of in vivo central dopaminergic activity. Biochem Pharmacol 28:2161–2165

    Article  PubMed  CAS  Google Scholar 

  • Lahav M, Melamed E, Dafna Z, Atlas D (1978) Localization of beta receptors in the anterior segment of the rat eye by a fluorescent analogue of propranolol. Invest Ophthalmol Vis Sci 17:645–651

    PubMed  CAS  Google Scholar 

  • Langham ME (1959) Influence of the intraocular pressure on the formation of the aqueous humor and the outflow resistance in the living eye. Br J Ophthalmol 43:705–732

    Article  PubMed  CAS  Google Scholar 

  • Langham ME (1963) A new procedure for the analysis of intraocular dynamics in human subjects. Exp Eye Res 2:314–324

    Article  PubMed  CAS  Google Scholar 

  • Langham ME (1977) The aqueous outflow system and its response to autonomic receptor agonists. Exp Eye Res [Suppl] 311–322

    Google Scholar 

  • Langham ME, Diggs E (1974) Beta-adrenergic responses in the eyes of rabbits, primates and man. Exp Eye Res 19:281–295

    Article  PubMed  CAS  Google Scholar 

  • Lasansky A, DeFisch FW (1966) Potential, current and ionic fluxes across the isolated retinal pigment epithelium and choroid. J Gen Physiol 49:913–924

    Article  PubMed  CAS  Google Scholar 

  • LaVail MM (1976) Rod outer segment disk shedding in rat retina: relationship to cyclic lighting. Science 194:1071–1074

    Article  PubMed  CAS  Google Scholar 

  • LaVail MM, Batteile BA (1975) Influence of eye pigmentation and light deprivation on inherited retinal dystrophy in the rat. Exp Eye Res 21:167–192

    Article  PubMed  CAS  Google Scholar 

  • LaVail MM, Sidman RL (1974) Retinal degeneration in the mouse. Arch Ophthalmol 91:394–400

    PubMed  CAS  Google Scholar 

  • LaVail MM, Sidman RL, O’Neil D (1972) Photoreceptor-pigment epithelial cell relationships in rats with inherited retinal degeneration: ratio-autographic and electron microscope evidence for a dual source of extra lamellar material. J Cell Biol 53:185–209

    Article  PubMed  CAS  Google Scholar 

  • Liebman PA, Pugh EN Jr (1979) The control of phosphodiesterase in rod disk membranes — kinetics, possible mechanisms and significance for vision. Vision Res 19:375–380

    Article  PubMed  CAS  Google Scholar 

  • Lipton SA, Ostroy SE, Dowling JE (1977 a) Electrical and adaptive properties of rod photoreceptors in Bufo marinus. I. Effects of altered extracellular Ca2+ levels. J Gen Physiol 70:747–770

    Article  PubMed  CAS  Google Scholar 

  • Lipton SA, Rasmussen H, Dowling JE (1977 b) Electrical and adaptive properties of rod photoreceptors in Bufo marinus. II. Effects of cyclic nucleotides and prostaglandins. J Gen Physiol 70:771–791

    Article  PubMed  CAS  Google Scholar 

  • Liu YP, Schwartz HS (1978) Protein activator of cyclic AMP phosphodiesterase and cyclic nucleotide phosphodiesterase in bovine retina and bovine lens. Activity, subcellular distribution and kinetic parameters. Biochim Biophys Acta 526:186–193

    PubMed  CAS  Google Scholar 

  • Liu YP, Krishna G, Aguirre G, Ghader GJ (1979) Involvement of cyclic GMP phosphodiesterase activator in an hereditary retinal degeneration. Nature 280:62–64

    Article  PubMed  CAS  Google Scholar 

  • Lolley RN, Farber DB (1975) Cyclic nucleotide phosphodiesterase in dystrophic rat retinas: Guanosine 3′,5′-cyclic monophosphate anomalies during photoreceptor cell degeneration. Exp Eye Res 20:585–597

    Article  PubMed  CAS  Google Scholar 

  • Lolley RN, Farber DB (1976) A proposed link between debris accumulation, guanosine 3′,5′-cyclic monophosphate changes and photoreceptor cell degeneration in retina of RCS rats. Exp Eye Res 22:477–486

    Article  PubMed  CAS  Google Scholar 

  • Lolley RN, Farber DB (1978) An endogenous cyclic nucleotide phosphodiesterase inhibitor of bovine rod outer segment. ARVO Abstracts, p 255

    Google Scholar 

  • Lolley RN, Farber DB (1980) Cyclic GMP metabolic defects in inherited disorders of rd mice and RCS rats. In: Bazán NG, Lolley RN (eds) Neurochemistry of the retina. Pergamon, Oxford New York Paris Toronto Frankfurt Sydney, pp 427–441

    Google Scholar 

  • Lolley RN, Schmidt SY, Farber DB (1974) Alterations in cyclic AMP metabolism associated with photoreceptor cell degeneration in the C3H mouse. J Neurochem 22:701–707

    Article  PubMed  CAS  Google Scholar 

  • Lolley RN, Brown BM, Farber DB (1977 a) Protein phosphorylation in rod outer segments from bovine retina: cyclic nucleotide-activated protein kinase and its endogenous substrate. Biochem Biophys Res Commun 78:572–578

    Article  PubMed  CAS  Google Scholar 

  • Lolley RN, Farber DB, Rayborn ME, Hollyfield JG (1977 b) Cyclic GMP accumulation causes degeneration of photoreceptor cells: Simulation of an inherited disease. Science 196:664–666

    Article  PubMed  CAS  Google Scholar 

  • Lolley RN, Racz E, Farber DB (1979 a) Recovery of retinal cyclic GMP content after light or drug treatment. ARVO Abstracts, Supplement to Invest Ophthalmol Vis Sci, p 21

    Google Scholar 

  • Lolley RN, Racz E, Farber DB (1979 b) Modulation of retinal cyclic GMP levels by light. Trans Am Soc Neurochem 10:87

    Google Scholar 

  • Lolley RN, Rayborn ME, Hollyfield JG, Farber DB (1980) Cyclic GMP and visual cell degeneration in the inherited disorder of rd mice: a progress report. Vision Res 20:1157–1161

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH (1964) Biochemical studies on layered structures. In: Cohen MM, Snider RS (eds) Morphological and biochemical correlates of neural activity. Harper & Row, New York, pp 178–191

    Google Scholar 

  • Magistretti P, Schorderet M (1978) Differential effects of benzamides and thioxanthenes on dopamine-elicited accumulation of cyclic AMP in isolated rabbit retina. Naunyn Schmiedebergs Arch Pharmacol 303:189–191

    Article  PubMed  CAS  Google Scholar 

  • Makman MH, Brown JH, Mishra RK (1975 a) Cyclic AMP in retina and caudate nucleus: influence of dopamine and other agents. Adv Cyclic Nucleotide Res 5:661–679

    PubMed  CAS  Google Scholar 

  • Makman MH, Mishra RK, Brown JH (1975 b) Drug interactions with dopamine-stimulated adenylate cyclases of caudate nucleus and retina: direct agonist effect of a piribedil metabolite. Adv Neurol 9:213–222

    PubMed  CAS  Google Scholar 

  • Manthorpe M, McConnell DG (1974) Adenylate cyclase in vertebrate retina. Relationship to specific fractions and to rhodopsin. J Biol Chem 249:4608–4613

    PubMed  CAS  Google Scholar 

  • Manthorpe M, McConnell DG (1975) Cyclic nucleotide phosphodiesterases associated with bovine retinal outer-segment fragments. Biochim Biophys Acta 403:438–445

    PubMed  CAS  Google Scholar 

  • Masland RH, Livingstone CJ (1976) Effect of stimulation with light on synthesis and release of acetylcholine by an isolated mammalian retina. Neurophysiology 39:1210–1219

    PubMed  CAS  Google Scholar 

  • Massey SC, Neal MJ (1979) The light evoked release of acetylcholine from the rabbit retina in vivo and its inhibition by gamma-aminobutyric acid. J Neurochem 132:1327–1329

    Article  Google Scholar 

  • Matschinsky FM (1970) Energy metabolism of the microscopic structures of the cochlea, the retina and the cerebellum. Adv Biochem Psychopharmacol 2:217–243

    PubMed  CAS  Google Scholar 

  • Maurice DM (1969) The cornea and sclera. In: Davson H (ed) The eye, vol 1. Academic Press, New York London, pp 489–600

    Google Scholar 

  • Miki N, Keirns JJ, Marcus FR, Freeman J, Bitensky MW (1973) Regulation of cyclic nucleotide concentrations in photoreceptors: an ATP-dependent stimulation of cyclic nucleotide phosphodiesterase by light. Proc Natl Acad Sci USA 70:3820–3824

    Article  PubMed  CAS  Google Scholar 

  • Miki N, Baraban JM, Keirns JJ, Boyce JJ, Bitensky MW (1975) Purification and properties of the light-activated cyclic nucleotide phosphodiesterase of rod outer segments. J Biol Chem 250:6320–6327

    PubMed  CAS  Google Scholar 

  • Miller SS, Steinberg RH (1976) Transport of taurine, L-methionine and 3-O-methyl-D glucose across frog retinal pigment epithelium. Exp Eye Res 23:177–189

    Article  PubMed  CAS  Google Scholar 

  • Miller SS, Steinberg RH (1977 a) Active transport of ions across frog retinal pigment epithelium. Exp Eye Res 25:235–248

    Article  PubMed  CAS  Google Scholar 

  • Miller SS, Steinberg RH (1977 b) Passive ionic properties of frog pigment epithelium. J Membr Biol 36:337–372

    Article  PubMed  CAS  Google Scholar 

  • Miller WH, Nicol GD (1979) Evidence that cyclic GMP regulates membrane potential in rod photoreceptors. Nature 280:64–66

    Article  CAS  Google Scholar 

  • Mishima S (1957) The effects of the denervation and the stimulation of the sympathetic and the trigeminal nerve on the mitotic rate of the corneal epithelium in the rabbit. Jpn J Ophthalmol 1:65–74

    Google Scholar 

  • Mishra RK, Katzman R, Makman MH (1974) Dopamine-stimulated adenylate cyclase of corpus striatum and retina: activity in the cebus monkey and other species. Fed Proc 33:494

    Google Scholar 

  • Mitzel DL, Hall IA, DeVries GW, Cohen AI, Ferrendelli JA (1978) Comparison of cyclic nucleotide and energy metabolism of intact mouse retina in situ and in vitro. Exp Eye Res 27:27–37

    Article  PubMed  CAS  Google Scholar 

  • Mullen RJ, LaVail MM (1976) Inherited retinal dystrophy: a primary defect in pigment epithelium determined with experimental rat chimeras. Science 192:799–801

    Article  PubMed  CAS  Google Scholar 

  • Nathanson JA (1977) Cyclic nucleotides and nervous system function. Physiol Rev 57:157–256

    PubMed  CAS  Google Scholar 

  • Nathanson JA (1980) Adrenergic regulation of intraocular pressure: identification of beta2-adrenergic-stimulated adenylate cyclase in ciliary process epithelium. Proc Natl Acad Sci USA 77:7420–7424

    Article  PubMed  CAS  Google Scholar 

  • Neal MJ (1976) Acetylcholine as a retinal transmitter substance. In: Bonting SL (ed) Transmitters in the visual process. Pergamon, Oxford New York Toronto Sydney Paris Frankfurt, pp 127–143

    Google Scholar 

  • Neufeld AH (1978) Influences of cyclic nucleotides on outflow facility in the Vervet monkey. Exp Eye Res 27:387–397

    Article  PubMed  CAS  Google Scholar 

  • Neufeld AH, Page ED (1977) In vitro determination of the ability of drugs to bind to adrenergic receptors. Invest Ophthalmol Vis Sci 16:1118–1124

    PubMed  CAS  Google Scholar 

  • Neufeld AH, Sears ML (1974) Cyclic AMP in ocular tissues of the rabbit, monkey and human. Invest Ophthalmol 13:475–477

    PubMed  CAS  Google Scholar 

  • Neufeld AH, Sears ML (1975) Adenosine 3′,5′-monophosphate increases the outflow facility of the primate eye. Invest Ophthalmol 14:688–689

    PubMed  CAS  Google Scholar 

  • Neufeld AH, Jampol LM, Sears ML (1972) Cyclic AMP in the aqueous humor: the effects of adrenergic agents. Exp Eye Res 14:242–250

    Article  PubMed  CAS  Google Scholar 

  • Neufeld AH, Chavis RM, Sears ML (1973) Cyclic AMP in the aqueous humor: the effects of repeated topical epinephrine administration and sympathetic denervation. Exp Eye Res 16:265–272

    Article  PubMed  CAS  Google Scholar 

  • Neufeld AH, Dueker DK, Vegge T, Sears ML (1975) Adenosine 3′,5′-monophosphate increases the outflow of aqueous humor from the rabbit eye. Invest Ophthalmol 14:40–42

    PubMed  CAS  Google Scholar 

  • Neufeld AH, Zawistowski KA, Page ED, Bromberg BB (1978) Influences on the intensity of beta-adrenergic receptors in the cornea and iris — ciliary body of the rabbit. Invest Ophthalmol Vis Sci 17:1069–1075

    PubMed  CAS  Google Scholar 

  • Newsome DA, Fletcher RT, Robison WG Jr, Kenyon KR, Chader GJ (1974) Effects of cyclic AMP and Sephadex fractions of chick embryo extract on cloned retinal pigmented epithelium in tissue culture. J Cell Biol 61:369–382

    Article  PubMed  CAS  Google Scholar 

  • Newsome DA, Fletcher RT, Chader GJ (1980) Cyclic nucleotides vary by area in the human retina and pigmented epithelium of the human and monkey. Invest Ophthalmol Vis Sci 19:864–869

    PubMed  CAS  Google Scholar 

  • Nicol GD, Miller WH (1978) Cyclic GMP injected into retinal rod outer segments increases latency and amplitude of response to illumination. Proc Natl Acad Sci USA 75:5217–5220

    Article  PubMed  CAS  Google Scholar 

  • Nöell WK (1952 a) The impairment of visual cell structure by iodoacetate. J Cell Comp Physiol 40:25–55

    Article  Google Scholar 

  • Nöell WK (1952 b) Azide sensitive potential differences across the eye bulb. Am J Physiol 170:217–238

    PubMed  Google Scholar 

  • Nöell WK (1963) Cellular physiology of the retina. J Opt Soc Am 53:36–48

    Article  Google Scholar 

  • Nöell WK (1965) Aspects of experimental and hereditary retinal degeneration. In: Graymore CN (ed) Biochemistry of the retina. Academic Press, New York London, pp 51–72

    Google Scholar 

  • Orr HT, Lowry OH, Cohen AI, Ferrendelli JA (1976) Distribution of 3′:5′-cyclic AMP and 3′:5′-cyclic GMP in rabbit retina in vivo: selective effects of dark and light adaptation and ischemia. Proc Natl Acad Sci USA 73:4442–4445

    Article  PubMed  CAS  Google Scholar 

  • Ortiz JR, Yamada J, Hsie AW (1973) Induction of the stellate configuration in cultured iris epithelial cells by adenosine and compounds related to adenosine 3′:5′-cyclic monophosphate. Proc Natl Acad Sci USA 70:2286–2290

    Article  PubMed  CAS  Google Scholar 

  • Pannbacker RG (1973 a) Control of guanylate cyclase activity in the rod outer segment. Science 182:1138–1140

    Article  PubMed  CAS  Google Scholar 

  • Pannbacker RG (1973 b) Protein kinases and protein phosphorylation in the rod outer segment. In: Kahn RH, Lands WE (eds) Prostaglandins and cyclic AMP. Academic Press, New York London, pp 251–252

    Google Scholar 

  • Pannbacker RG (1974) Cyclic nucleotide metabolism in human photoreceptors. Invest Ophthalmol 13:535–538

    PubMed  CAS  Google Scholar 

  • Pannbacker RG, Lovett K (1977) Localization of cyclic nucleotide phosphodiesterase activity within the bovine photoreceptor cell. Invest Ophthalmol Vis Sci 16:166–168

    PubMed  CAS  Google Scholar 

  • Pannbacker RG, Fleischman DE, Reed DW (1972) Cyclic nucleotide phosphodiesterase: high activity in a mammalian photoreceptor. Science 175:757–758

    Article  PubMed  CAS  Google Scholar 

  • Parry H (1953) Degenerations of dog retina, generalized progressive atrophy of hereditary origin. Br J Ophthalmol 37:487–502

    Article  PubMed  CAS  Google Scholar 

  • Pasantes-Morales H, Klethi J, Urban PF, Mandel P (1972) The physiological role of taurine in retina uptake and effect on electroretinogram (ERG). Physiol Chem Phys 4:339–348

    PubMed  CAS  Google Scholar 

  • Penn RD, Hagins WA (1969) Signal transmission along retinal rods and the origin of the electroretinographic a-wave. Nature 223:201–205

    Article  PubMed  CAS  Google Scholar 

  • Perkins JP, Moore MM (1973) Characterization of the adrenergic receptors mediating a rise of cyclic 3′–5′-adenosine monophosphate in rat cerebral cortex. J Pharmacol Exp Ther 185:371–378

    PubMed  CAS  Google Scholar 

  • Podos SM (1976) Prostaglandins, nonsteroidal anti-inflammatory agents and eye disease. Trans Am Ophthalmol Soc 74:637–660

    PubMed  CAS  Google Scholar 

  • Polans AS, Hermolin J, Bownds MD (1979) Light-induced dephosphorylation of two proteins in frog rod outer segments. Influence of cyclic nucleotides and calcium. J Gen Physiol 74:595–613

    Article  PubMed  CAS  Google Scholar 

  • Radius R, Langham ME (1973) Cyclic-AMP and the ocular responses to norepinephrine. Exp Eye Res 17:219–229

    Article  PubMed  CAS  Google Scholar 

  • Redfern N, Israel P, Bergsma D, Robison WG Jr, Whikehart D, Chader G (1976) Neural retinal and pigment epithelial cells in culture: patterns of differentiation and effects of prostaglandins and cyclic AMP on pigmentation. Exp Eye Res 22:559–568

    Article  PubMed  CAS  Google Scholar 

  • Remé C, Young RW (1977) The effect of hibernation on cone visual cells in the ground squirrel. Invest Ophthalmol Vis Sci 16:815–840

    PubMed  Google Scholar 

  • Robb RM (1974 a) Histochemical evidence of cyclic nucleotide phosphodiesterase in photoreceptor outer segments. Invest Ophthalmol 13:740–747

    PubMed  CAS  Google Scholar 

  • Robb RM (1974b) Electron microscopic histochemical studies of cyclic 3′,5′-nucleotide phosphodiesterase in the developing retina of normal mice and mice with hereditary retinal degeneration. Trans Am Ophthalmol Soc 72:650–669

    PubMed  CAS  Google Scholar 

  • Robb RM (1978) Histochemical demonstration of cyclic guanosine 3′,5′-monophosphate phosphodiesterase activity in retinal photoreceptor outer segments. Invest Ophthalmol Vis Sci 17:476–480

    PubMed  CAS  Google Scholar 

  • Robinson WE, Hagins WA (1977) A light-activated GTPase in retinal rod outer segments. Biophys J 17:196a

    Article  Google Scholar 

  • Robinson WE, Hagins WA (1979) GTP hydrolysis: a possible source of free energy for the transmitter cycle in visual excitation. Biophys J 25:318a

    Google Scholar 

  • Ruskell GL (1961) Aqueous drainage paths in the rabbit. A neoprene latex cast study. Arch Ophthalmol 66:861–870

    PubMed  CAS  Google Scholar 

  • Savage CR Jr, Cohen S (1973) Proliferations of corneal epithelium induced by epidermal growth factor. Exp Eye Res 15:361–366

    Article  PubMed  CAS  Google Scholar 

  • Schmidt SY, Lolley RN (1973) Cyclic-nucleotide phosphodiesterase: an early defect in inherited retinal degeneration of C3H mice. J Cell Biol 57:117–123

    Article  PubMed  CAS  Google Scholar 

  • Schorderet M (1975) The effects of dopamine, piribedil (ET-495) and its metabolite S-584 on retinal adenylate cyclase. Experientia 31:1325–1327

    Article  PubMed  CAS  Google Scholar 

  • Schorderet M (1976) Direct evidence for the stimulation of rabbit retina dopamine receptors by ergot alkaloids. Neurosci Lett 2:87–91

    Article  PubMed  CAS  Google Scholar 

  • Schorderet M (1977 a) Lithium inhibition of cyclic AMP accumulation induced by dopamine in isolated retinae of the rabbit. Biochem Pharmacol 26:167–170

    Article  PubMed  CAS  Google Scholar 

  • Schorderet M (1977 b) Pharmacological characterization of the dopamine-mediated accumulation of cyclic AMP in intact retina of rabbit. Life Sci 20:1741–1747

    Article  PubMed  CAS  Google Scholar 

  • Schorderet M (1978 a) The interrelationship between dopamine receptors and cyclic AMP metabolism in rabbit retina and its importance for the mechanism of action of centrally active drugs. In: Folco G, Paoletti R (eds) Molecular biology and pharmacology of cyclic nucleotides. Elsevier/North-Holland, Amsterdam Oxford New York, pp 259–263

    Google Scholar 

  • Schorderet M (1978 b) Dopamine-mimetic activity of ergot derivatives, as measured by the production of cyclic AMP in isolated retinae of the rabbit. Gerontology 24:86–93

    Article  PubMed  CAS  Google Scholar 

  • Schorderet M, Magistretti PJ (1980) The isolated retina of mammals: a useful preparation for enzymatic-(adenylyl cyclase) and/or binding studies of dopamine receptors. In: Bazán NG, Lolley RN (eds) Neurochemistry of the retina. Pergamon, Oxford New York Paris Toronto Frankfurt Sydney, pp 337–354

    Google Scholar 

  • Schorderet M, McDermod J, Magistretti P (1978) Dopamine receptors and cyclic AMP in rabbit retina: a pharmacological and stereochemical analysis using semi-rigid analogs of dopamine (aminotetralins) and thioxanthene isomers. J Physiol (Paris) 74:509–513

    CAS  Google Scholar 

  • Schubert G, Bornschein H (1951) Specific damage to retinal elements by iodine acetate. Experientia 7:461–462

    Article  PubMed  CAS  Google Scholar 

  • Schwarcz R, Coyle JT (1976) Adenylate cyclase activity in chick retina. Gen Pharmacol 7:349–354

    Article  PubMed  CAS  Google Scholar 

  • Scott WN, Friedenthal DF (1973) A proposed role of ascorbate in the transport of amino acids and ions in the cornea. Exp Eye Res 15:683–689

    Article  PubMed  CAS  Google Scholar 

  • Sears ML (1975) The aqueous. In: Moses RA (ed) Adler’s physiology of the eye. Mosby, St. Louis, pp 232–252

    Google Scholar 

  • Shanta TR, Woods WD, Waitzman MB, Bourne GM (1966) Histochemical method for localization of cyclic 3′,5′-nucleotide phosphodiesterase. Histochemie 7:177–190

    Article  PubMed  CAS  Google Scholar 

  • Shimizu H, Creveling CR, Daly J (1970) Stimulated formation of adenosine 3′,5′-cyclic phosphate in cerebral cortex: synergism between electrical activity and biogenic amines. Proc Natl Acad Sci USA 65:1033–1040

    Article  PubMed  CAS  Google Scholar 

  • Sidman RL, Green MC (1965) Retinal degeneration in the mouse; location of the rd locus in linkage group XVII. J Hered 56:23–29

    PubMed  CAS  Google Scholar 

  • Sillman AJ, Ito H, Tomita T (1969) Studies on the mass receptor potential of isolated frog retina. I. General properties. Vision Res 9:1435–1448

    Article  PubMed  CAS  Google Scholar 

  • Sitaramayya A, Virmaux N, Mandel P (1977 a) On a soluble system for studying light activation of rod outer segment cyclic GMP phosphodiesterase. Neurochem Res 2:1–10

    Article  CAS  Google Scholar 

  • Sitaramayya A, Virmaux N, Mandel P (1977 b) On the mechanism of light activation of retinal rod outer segments cyclic GMP phosphodiesterase (light activation-influence of bleached rhodopsin and KF-deinhibition). Exp Eye Res 25:163–169

    Article  PubMed  CAS  Google Scholar 

  • Smith DF (1976) Antagonistic effect of lithium chloride on l-dopa-induced locomotor activity in rats. Pharmacol Res Commun 8:575–579

    Article  PubMed  CAS  Google Scholar 

  • Sonohara O, Shiose Y (1968) Electron microscopic study of the visual cell of inherited retinal dystrophic mice. Folia Ophthalmol Jpn 19:77–86

    CAS  Google Scholar 

  • Sorsby A, Koller PC, Airfield M (1954) Retinal dystrophy in the mouse: histological and genetic aspects. J Exp Zool 125:171–197

    Article  Google Scholar 

  • Spano PF, Kumakura K, Trabucchi M (1976) Dopamine-sensitive adenylate cyclase in the retina: a point of action for D-LSD. Adv Biochem Psychopharmacol 15:357–365

    PubMed  CAS  Google Scholar 

  • Spano PF, Govoni S, Hofmann M, Kumakura K, Trabucchi M (1977) Physiological and pharmacological influences on dopaminergic receptors in the retina. Adv Biochem Psychopharmacol 16:307–310

    PubMed  CAS  Google Scholar 

  • Steinberg RH, Miller SS (1973) Aspects of electrolyte transport in frog pigment epithelium. Exp Eye Res 16:365–372

    Article  PubMed  CAS  Google Scholar 

  • Steiner AL, Ferrendelli JA, Kipnis DM (1972) Radioimmunoassay for cyclic nucleotides. J Biol Chem 247:1121–1124

    PubMed  CAS  Google Scholar 

  • Stell WK (1972) The morphological organization of the vertebrate retina. In: Fuortes MFG (ed) Handbook of sensory physiology, vol 7/2. Springer, Berlin Heidelberg New York, pp 111–213

    Google Scholar 

  • Suzuki O, Noguchi E, Yagi K (1978) Uptake of 5-hydroxytryptamine by chick retina. J Neurochem 30:295–296

    Article  PubMed  CAS  Google Scholar 

  • Takáts A, Antoni F, Faragó A, Kertész P (1978) Some properties of the cyclic AMP dependent protein kinase of epithelial cells and cortical fibers of bovine eye lens. Exp Eye Res 26:389–397

    Article  PubMed  Google Scholar 

  • Takeuchi YK, Kajishima T (1976) Inhibitory effects of dibutyryl cyclic AMP and theophylline on the melanosome transformation in the embryonic chick pigmented retina cultured in vitro. Dev Biol 53:178–189

    Article  PubMed  CAS  Google Scholar 

  • Tamura T, Osada E, Ueno K (1978) Effect of bupranolol hydrochloride (KL 255) on cyclic AMP level of aqueous humor, iris and ciliary body of albino rabbit. Nippon Ganka Gakkai Zasshi 82:517–521

    PubMed  CAS  Google Scholar 

  • Tansley K (1951) Hereditary degeneration of the mouse retina. Br J Ophthalmol 35:573–582

    Article  PubMed  CAS  Google Scholar 

  • Thompson WJ, Johnson DG, Lavis VR, Williams RH (1974) Effects of secretin on guanyl cyclase of various tissues. Endocrinology 94:276–278

    Article  PubMed  CAS  Google Scholar 

  • Trabucchi M, Govoni S, Tonon GC, Spano PF (1976) Dopamine receptor supersensitivity in rat retina after light deprivation. In: Usdin E (ed) Catecholamines and stress. Pergamon, Oxford New York Toronto Sydney Paris Frankfurt, pp 225–234

    Google Scholar 

  • Troyer EW, Hall IA, Ferrendelli JA (1978) Guanylate cyclases in CNS: enzymatic characteristics of soluble and particulate enzymes from mouse cerebellum and retina. J Neurochem 31:825–833

    Article  PubMed  CAS  Google Scholar 

  • Tsukahara S, Maezawa N (1978) Cytochemical localization of adenyl cyclase in the rabbit ciliary body. Exp Eye Res 26:99–106

    Article  PubMed  CAS  Google Scholar 

  • Tunnicliff G (1977) Increase in the tyrosine hydroxylase activity of the chick retina by an apparent phosphorylation. Union Med Can 106:472–474

    PubMed  CAS  Google Scholar 

  • Usova AA, Ostapenko IA, Etingof RN (1978) Protein inhibitor of cyclic nucleotide phosphodiesterase in the retina in hereditary degeneration (in Russian). Vopr Med Khim 2:227–232

    Google Scholar 

  • Virmaux N, Nullans G, Goridis C (1976) Guanylate cyclase in vertebrate retina: evidence for specific association with rod outer segments. J Neurochem 26:233–235

    Article  PubMed  CAS  Google Scholar 

  • Voaden M (1976) Gamma aminobutyric acid and glycine as retinal neurotransmitters. In: Bonting SL (ed) Transmitters in the visual process. Pergamon, Oxford New York Toronto Sydney Paris Frankfurt, pp 107–126

    Google Scholar 

  • Waitzman MB (1978) Effects of cervical sympathetic ganglionectomy on cyclic AMP and prostaglandins in brain and eye tissues and fluids. Prostaglandins Med 1:139–150

    Article  PubMed  CAS  Google Scholar 

  • Waitzman MB, King CD (1967) Prostaglandin influences on intraocular pressure and pupil size. Am J Physiol 212:329–334

    PubMed  CAS  Google Scholar 

  • Waitzman MB, Woods WD (1971) Some characteristics of an adenyl cyclase preparation from rabbit ciliary process tissue. Exp Eye Res 12:99–111

    Article  PubMed  CAS  Google Scholar 

  • Walls GL (1942) The vertebrate eye and its adaptive radiation. Cranbrook Inst Sci, Bull 19. Cranbrook Press, Bloomfield Hills, Michigan

    Google Scholar 

  • Waloga G, Brown JE (1979) Effects of cyclic nucleotides and calcium ions on Bufo rods. Supplement to Invest Ophthalmol Vis Sci 18:5

    Google Scholar 

  • Wassenaar JS, Korf J (1976) Characterization of catecholamine receptors in rat retina. In: Bonting SL (ed) Transmitters in the visual process. Pergamon, Oxford New York Toronto Sydney Paris Frankfurt, pp 199–218

    Google Scholar 

  • Wassenaar JS, Roelse H (1980) The action of psychotropic drugs on adenylate cyclases and phosphodiesterases in the rat retina. In: Bazán NG, Lolley RN (eds) Neurochemistry of the retina. Pergamon, Oxford New York Paris Toronto Frankfurt Sydney, pp 367–380

    Google Scholar 

  • Watling KJ, Dowling JE, Iversen LL (1979) Dopamine receptors in the retina may all be linked to adenylate cyclase. Nature 281:578–580

    Article  PubMed  CAS  Google Scholar 

  • Watling KJ, Dowling JE, Iversen LL (1980) Dopaminergic mechanisms in the carp retina: effects of dopamine, K+ and light on cyclic AMP synthesis. In: Bazán NG, Lolley RN (eds) Neurochemistry of the retina. Pergamon, Oxford New York Paris Toronto Frankfurt Sydney, pp 519–537

    Google Scholar 

  • Weiler M, Virmaux N, Mandel P (1975) Light-stimulated phosphorylation of rhodopsin in the retina: the presence of a protein kinase that is specific for photobleached rhodopsin. Proc Natl Acad Sci USA 72:381–385

    Article  Google Scholar 

  • Weiler M, Virmaux N, Mandel P (1976) The relative specificity of opsin kinase towards ATP and GTP and the lack of effect of cyclic nucleotides on the activity of the enzyme. Exp Eye Res 23:65–67

    Article  Google Scholar 

  • Werblin FS (1974) Organization of the vertebrate retina: receptive fields and sensitivity control. In: Davson H, Graham LT Jr (eds) The eye, vol 6. Academic Press, New York London, pp 257–281

    Google Scholar 

  • Wheeler GL, Bitensky MW (1977) A light-activated GTPase in vertebrate photoreceptors: regulation of light-activated cyclic GMP phosphodiesterase. Proc Natl Acad Sci USA 74:4238–4242

    Article  PubMed  CAS  Google Scholar 

  • Wheeler GL, Matuo Y, Bitensky MW (1977) Light-activated GTPase in vertebrate photoreceptors. Nature 269:822–824

    Article  PubMed  CAS  Google Scholar 

  • Wiglusz Z (1973) Investigations on the role of cyclic 3′,5′-AMP and active sodium transport in generation of action potential in vivo (in Polish). Acta Biol Med Soc Sci Gedan 17:7–63

    CAS  Google Scholar 

  • Wiglusz Z (1975 a) The influence of pharmacological agents acting by lowering the membrane potential difference on the amplitude of b wave in ERG of frog isolated eye (in Polish). Klin Oczna 45:1297–1304

    PubMed  CAS  Google Scholar 

  • Wiglusz Z (1975 b) Investigations of the role of cyclic AMP in generation of action potential of frog isolated retina, (in Polish). Klin Oczna 45:765–771

    PubMed  CAS  Google Scholar 

  • Woodruff ML, Bownds MD (1979) Amplitude, kinetics, and reversibility of a light-induced decrease in guanosine 3′,5′-cyclic monophosphate in frog photoreceptor membranes. J Gen Physiol 73:629–653

    Article  PubMed  CAS  Google Scholar 

  • Woodruff ML, Bownds D, Green SH, Morrisey JL, Shedlovsky A (1977) Guanosine 3′,5′-cyclic monophosphate and the in vitro physiology of frog photoreceptor membranes. J Gen Physiol 69:667–679

    Article  PubMed  CAS  Google Scholar 

  • Yamada T (1977) Control mechanisms in cell-type conversion in newt lens regeneration. Monogr Dev Biol 13:1–126

    Article  PubMed  CAS  Google Scholar 

  • Yee R, Liebman PA (1978) Light-activated phosphodiesterase of the rod outer segment. Kinetics and parameters of activation and deactivation. J Biol Chem 253:8902–8909

    PubMed  CAS  Google Scholar 

  • Young RW (1967) The renewal of photoreceptor cell outer segments. J Cell Biol 33:61–72

    Article  PubMed  CAS  Google Scholar 

  • Young RW (1969 a) The organization of vertebrate photoreceptor cells. In: Straatsma BR, Hall MO, Allen RA, Crescitelli F (eds) The retina: morphology, function and clinical characteristics. University of California Press, Los Angeles, pp 177–210

    Google Scholar 

  • Young RW (1969 b) A difference between rods and cones in the renewal of outer segment protein. Invest Ophthalmol 8:222–231

    PubMed  CAS  Google Scholar 

  • Young RW, Bok D (1969) Participation of the retinal pigment epithelium in the rod outer segment renewal process. J Cell Biol 42:392–403

    Article  PubMed  CAS  Google Scholar 

  • Zadunaisky JA (1966) Active transport of chloride in frog cornea. Am J Physiol 211:506–512

    PubMed  CAS  Google Scholar 

  • Zadunaisky JA, Lande MA (1971) Active chloride transport and control of corneal transparency. Am J Physiol 221:1837–1844

    PubMed  CAS  Google Scholar 

  • Zimmerman WF, Daemen FJ, Bonting SL (1976) Distribution of enzyme activities in subcellular fractions of bovine retina. J Biol Chem 251:4700–4705

    PubMed  CAS  Google Scholar 

  • Zink HA, Podos SM, Becker B (1975) Modification by imidazoles of ocular inflammatory and pressure responses. Invest Ophthalmol 14:280–285

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Farber, D.B. (1982). The Role of Cyclic Nucleotide Metabolism in the Eye. In: Kebabian, J.W., Nathanson, J.A. (eds) Cyclic Nucleotides. Handbook of Experimental Pharmacology, vol 58 / 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68393-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68393-0_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68395-4

  • Online ISBN: 978-3-642-68393-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics