Skip to main content

Ribonucleases and Ribonucleic Acid Breakdown

  • Chapter
Nucleic Acids and Proteins in Plants II

Part of the book series: Encyclopedia of Plant Physiology ((922,volume 14 / B))

Abstract

The RNA molecules are stable under physiological conditions, and can be broken down in vivo only by enzymatic hydrolysis. All RNA molecules are subject to hydrolytic breakdown; this makes their turnover possible. The hydrolytic breakdown of RNA, in addition to the regulation of RNA synthesis at the transcriptional level, plays a major role in the selection of those molecular

Classification of RNA-splitting enzymes

species of RNA which are needed by the cell at a given moment of its development. Therefore, a thorough knowledge of the RNA-splitting enzymes in pivotal for the understanding of a number of regulatory and developmental processes in which RNA molecules are involved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

ABA :

abscisic acid

ds:

double-stranded

ss DNA:

single-stranded DNA

References

  • Acton GJ (1974) Phytochrome controlled acid RNase: an “attached” protein of ribosomes. Phytochemistry 13: 1303–1310

    Article  CAS  Google Scholar 

  • Acton GJ (1978) Phytochrome-mediated loss of polyribosomes in etiolated mustard hypocotyls. Photochem Photobiol 28: 361–367

    Article  CAS  Google Scholar 

  • Acton GJ, Schopfer P (1974) Phytochrome induced synthesis of ribonuclease de novo in lupin hypocotyl sections. Biochem J 142: 449–455

    PubMed  CAS  Google Scholar 

  • Almgard G, Landergren U (1974) Isoenzymatic Variation used for the identification of barley cultivars. Z Pflanzenzuechtg 72: 63–73

    Google Scholar 

  • Anfinsen CB, Cuatrecasas P, Taniuchi H (1971) Staphylococcal nuclease, chemical properties and catalysis. In: Boyer PD, Lardy H, Myrbäck K (eds) The enzymes Vol 4, 3rd edn. Academic Press, London, New York, pp 177–204

    Google Scholar 

  • Arad S, Richmond AE (1976) Leaf cell water and ezyme activity. Plant Physiol 57: 656–658

    Article  PubMed  CAS  Google Scholar 

  • Arad S, Mizrahi Y, Richmond AE (1973) Leaf water content and hormone effects on ribonuclease activity. Plant Physiol 51: 817–824

    Article  Google Scholar 

  • Babcock DF, Morris RO (1973) Specific degradation of a plant leucyl transfer ribonucleic acid by a factor in the homologous synthetase preparations. Plant Physiol 52: 292–297

    Article  PubMed  CAS  Google Scholar 

  • Bagi G, Farkas GL (1967) On the nature of increase in ribonuclease activity in mechanically damaged tobacco leaf tissue. Phytochemistry 6: 161–169

    Article  CAS  Google Scholar 

  • Barker GR, Hollinshead JA (1964) Nucleotide metabolism in germinating seeds. The ribonucleic acid of Pisum arvense. Biochem J 93: 78–83

    PubMed  CAS  Google Scholar 

  • Barker GR, Bray CM, Walter TJ (1974) The development of ribonuclease and acid Phosphatase during germination of Pisum arvense. Biochem J 142: 211–219

    PubMed  CAS  Google Scholar 

  • Baumgartner B, Matile P (1976) Immunochemical localization of acid ribonuclease in morning glory flower tissue. Biochem Physiol Pflanz 170: 279–285

    CAS  Google Scholar 

  • Baumgartner B, Matile P (1977) Isoenzymes of RNase in senescing morning glory petals. Z Pflanzenphysiol 82: 371–374

    CAS  Google Scholar 

  • Baumgartner B, Kende H, Matile P (1975) Ribonuclease in senescing morning glory. Puriflcation and demonstration of de novo synthesis. Plant Physiol 55: 734–737

    Article  PubMed  CAS  Google Scholar 

  • Beevers L, Guernsey FS (1966) Changes in some nitrogenous components during the germination of pea seeds. Plant Physiol 41: 1455–1458

    Article  PubMed  CAS  Google Scholar 

  • Beevers L, Splittstoesser WE (1968) Protein and nucleic acid metabolism in germinating peas. J Exp Bot 19: 698–771

    Article  CAS  Google Scholar 

  • Beopoulos N, Esnault R, Buri JF (1978) Study on plant RNases. Isolation and properties of several activities from Vicia faba root cells. Biochim Biophys Acta 517: 216–227

    PubMed  CAS  Google Scholar 

  • Bernardi A, Bernardi G (1971) Spleen acid exonuclease. In: Boyer PD, Lardy H, Myrbäck K (eds) The enzymes Vol 4, 3rd edn. Academic Press, London, New York, pp 329–336

    Google Scholar 

  • Bex JHN (1972) Effects of abscisic acid on the soluble RNA Polymerase activity in maize coleoptiles. Planta 103: 11–17

    Article  CAS  Google Scholar 

  • Bick MD, Liebke A, Cherry JH, Strehler BL (1970) Changes in leucyl- and tyrosyl-tRNA of soybean cotyledons during plant growth. Biochim Biophys Acta 204: 175–182

    PubMed  CAS  Google Scholar 

  • Blekhman Gl (1977 a) Quaternary structure of a cytoplasmic protein with ribonuclease activity from wheat seedling leaves: kinetic manifestation of its native, dissociated and reassociated forms. (in Russian) Biokhimija 42:815–822

    Google Scholar 

  • Blekhman Gl (1977 b) Possible mechanism of changes in cytoplasmic ribonuclease activity in leaves of wheat seedlings during dehydration and rehydration. (in Russian) Fiziol Rast 24:507–512

    Google Scholar 

  • Boller T, Kende H (1979) Hydrolytic enzymes in the central vacuole of plant cells. Plant Physiol 63: 1123–1132

    Article  PubMed  CAS  Google Scholar 

  • Borucka-Mankiewicz M, Szarkowski JW (1977) Puriflcation and some properties of a nuclease from rye germ nuclei. Acta Biochim Pol 24: 289–299

    PubMed  CAS  Google Scholar 

  • Bray CM, Chow TY (1976) Lesion in the ribosomes of non-viable pea (Pisum arvense) embryonic axis tissue. Biochim Biophys Acta 442: 14–23

    PubMed  CAS  Google Scholar 

  • Brown EG, Marshall AJ (1977) Properties and subcellular distribution of ribonuclease activity in Chlorella. Phytochemistry 16: 435–441

    Article  CAS  Google Scholar 

  • Caers LI, Penmans WJ, Carlier AR (1979) Preformed and newly synthesized messenger RNA in germinating wheat embryos. Planta 144: 491–496

    Article  CAS  Google Scholar 

  • Chakravorty AK, Shaw M, Scrubb LA ( 1974 b) Changes in ribonuclease activity during rust infection. II. Puriflcation and properties of ribonuclease from healthy and infected flax cotyledons. Physiol Plant Pathol 4: 355–358

    Google Scholar 

  • Chakravorty AK, Simpson RS, Scott KJ (1980) Messenger and ribosomal RNA hydrolysis by ribonucleases. II. Changes in ribonuclease activities and ribosomes of barley leaves during the early stages of powdery mildew infection. Plant Cell Physiol 21: 425–432

    Google Scholar 

  • Cherry JH (1963) Nucleic acid, mitochondria, and enzyme changes in cotyledons of peanut seed during germination. Plant Physiol 38: 440–446

    Article  PubMed  CAS  Google Scholar 

  • Chevrier N, Sarhan F (1980) Partial puriflcation and characterization of two RNAases and one nuclease from wheat leaves. Plant Sei Lett 19: 21–31

    Article  CAS  Google Scholar 

  • Chroboczek H, Cherry JH (1966) Characterization of nucleic acids in peanut cotyledons. J Mol Biol 19: 28–37

    Article  PubMed  CAS  Google Scholar 

  • Clapham D (1980) Properties of plant nuclease 1 purified from Tradescantia leaves by binding to Concanavalin A-Sepharose. Hereditas 93: 137–146

    Article  CAS  Google Scholar 

  • Dalby A, Cagampang GB (1970) Ribonuclease activity in normal, opaque-2, and floury-2 maize endosperm during development. Plant Physiol 46: 142–144

    Article  PubMed  CAS  Google Scholar 

  • Dalby A, Davies I ab I (1967) Ribonuclease activity in the developing seeds of normal and opaque-2 maize. Science 155: 1573–1575

    Article  PubMed  CAS  Google Scholar 

  • Davies E (1976) Polyribosomes from peas. VI. Auxin-stimulated recruitment of free monosomes into membrane-bound polysomes. Plant Physiol 57: 516–518

    Article  PubMed  CAS  Google Scholar 

  • Davies E, Larkins BA (1974) Polyribosome degradation as a sensitive assay for endolytic messenger-ribonuclease activity. Anal Biochem 61: 155–164

    Article  PubMed  CAS  Google Scholar 

  • De Leo P, Sacher JA (1970) Control of ribonuclease and acid phosphatase by auxin and abscisic acid during senescence of Rhoeo leaf sections. Plant Physiol 46: 806–811

    Article  PubMed  Google Scholar 

  • De Leo P, Sacher JA (1971) Effect of abscisic acid and auxin on ribonuclease during ageing of bean endocarp tissue sections. Plant Cell Physiol 12: 791–796

    Google Scholar 

  • Delseny M, Aspart L, Guitton Y (1977) Disappearance of stored polyadenylic acid and mRNA during early germination of radish (Raphanus sativus L.) embryo axes. Planta 135: 125–128

    Article  CAS  Google Scholar 

  • Dhindsa RR, Bewley JD (1978) Messenger RNA is conserved during drying of the drought-tolerant moss Tortula ruralis. Proc Natl Acad Sei USA 75: 842–846

    Article  CAS  Google Scholar 

  • Diener TO (1961) Virus infection and other factors affecting ribonuclease activity of plant leaves. Virology 14: 177 - 189

    Article  PubMed  CAS  Google Scholar 

  • Dove LD (1967) Ribonuclease activity of stressed tomato leaflets. Plant Physiol 42: 1176–1178

    Article  PubMed  CAS  Google Scholar 

  • Dove LD (1971) Short term response and chemical control of ribonuclease activity in tomato leaflets. New Phytol 70: 397–401

    Article  CAS  Google Scholar 

  • Dove LD (1973) Ribonucleases in vascular plants: cellular distribution and changes during development. Phytochemistry 12: 2561–2570

    Article  CAS  Google Scholar 

  • Dyer TA, Osborne DJ (1971) Leaf nucleic acids. II. Metabolism during senescence and the effect of kinetin. J Exp Bot 22: 552–560

    Google Scholar 

  • Dyer TA, Payne PI (1974) Catabolism of plant cytoplasmic ribosomes: A study of the interaction between ribosomes and ribonuclease. Planta 117: 259–268

    Google Scholar 

  • Enzyme Nomenclature (1979) Recommendations (1978) of the Nomenclature Committee of the International Union of Biochemistry, Academic Press, New York, London

    Google Scholar 

  • Erickson RO, Michelini FJ (1957) The plastochron index. Am J Bot 44: 297–305

    Article  Google Scholar 

  • Farkas GL (1978) Senescence and plant disease. In: Horsfall JG, Cowling EB (eds) Plant disease Vol III. 2nd edn. Academic Press, New York, London, pp 391–409

    Google Scholar 

  • Farkas GL, Dezsi L, Horväth M, Kisbän E, Udvardy J (1964) Common pattern of enzymatic changes in detached leaves and tissues attacked by parasites. Phytopathol Z 49: 343–354

    CAS  Google Scholar 

  • Fletcher RA (1969) Retardation of leaf senescence by benzyladenine in intact bean plants. Planta 98: 1–8

    Article  Google Scholar 

  • Fourcroy P, Lambert C, Rollin P (1979) Far-red mediated poly-ribosome formation in radish cotyledons. Effect of endogenous ribonucleases on polyribosome recovery. Planta 147: 1–5

    Google Scholar 

  • Fräser RSS, Gerwitz A (1980) Tobacco mosaic virus infection does not alter the polyadenylated messenger RNA content of tobacco leaves. J Gen Virol 46: 139–148

    Article  Google Scholar 

  • Fuchs Y, Galston AW (1976) Macromolecular synthesis in oat leaf protoplasts. Plant Cell Physiol 17: 475–482

    CAS  Google Scholar 

  • Galston AW, Altman A, Kaur-Sawhney R (1978) Polyamines, ribonuclease and the improvement of oat leaf protoplasts. Plant Sci Lett 11: 69–79

    Article  CAS  Google Scholar 

  • Grierson D, Chambers SE, Pennket LP (1977) Nucleic acid and protein synthesis in disks cut from mature leaves of Nicotiana tabacum L. and cultured on nutrient agar with and without kinetin. Planta 134: 29–34

    Article  CAS  Google Scholar 

  • Guerriero VJr, Dunham VL (1979) The presence of a ribonuclease of high molecular weight in sugar beet storage tissue. Plant Physiol 47: 15–18

    Article  CAS  Google Scholar 

  • Hadziyev D, Mehta SL, Zalik S (1969) Nucleic acids and ribonucleases of wheat leaves and chloroplasts. Can J Biochem 47: 273–282

    PubMed  CAS  Google Scholar 

  • Harvey CL, Olson KC, Wright R (1970) Further puriflcation and properties of Phosphodiesterase from carrot. Biochemistry 9: 921–925

    Article  PubMed  CAS  Google Scholar 

  • Hawthorne SB, Hillam RP, Kenefick DG (1980) Serological characterization ofa ribonuclease from Hordeum vulgare. Phytochemistry 19: 1587–1591

    Article  CAS  Google Scholar 

  • Heppel LA (1966) Pig liver nuclei ribonuclease. In: Cantoni GL, Davies DR (eds) Procedures in nucleic acid research. Harper and Row, New York, pp 31–36

    Google Scholar 

  • Higgins TJV, Zwar JA, Jacobsen JV (1976) Gibberellic acid enhances the level of translatable mRNA for a-amylase in barley aleurone layers. Nature (London) 260: 166–169

    Article  CAS  Google Scholar 

  • Hirai M, Asahi T (1973) Membranes carrying acid hydrolases in pea seedling roots. Plant Cell Physiol 14: 1019–1029

    CAS  Google Scholar 

  • Hirai M, Asahi T (1975) Puriflcation and properties of two ribonucleases in different intracellular compartments in pea root tissue. J Biochem 78: 485–492

    PubMed  CAS  Google Scholar 

  • Hirai M, Saito S, Asaki T (1975) Activities of RNases in different cell compartments in different regions of pea root. Plant Cell Physiol 16: 119–126

    CAS  Google Scholar 

  • Hiramaru M, Uchida T, Egami F (1969) Studies on two nucleases and a ribonuclease from Physarum polycephalum. Puriflcation and mode of action. J Biochem 5: 701–708

    Google Scholar 

  • Hodge ET, Sacher JA (1975) Effect of kinetin, auxin and abscisic acid on ribonuclease and acid phosphatase during senescence of leaf tissue. Biochem Physiol Pflanz 168: 433–441

    CAS  Google Scholar 

  • Holbrook J, Ortanderl F, Pfleiderer G (1966) Reinigung und Eigenschaften einer Exophosphodiesterase aus Malzkeimen. Biochem Z 345: 427–439

    CAS  Google Scholar 

  • Howe RC, Ursino DJ (1972) Ribonucleic acid degrading activity associated with ribosomes from spinach leaf chloroplasts. Can J Bot 50: 691–695

    Article  CAS  Google Scholar 

  • Hsiao TC (1968) Ribonuclease associated with ribosomes of Zea mays. Plant Physiol 43: 1355–1361

    Article  PubMed  CAS  Google Scholar 

  • Ingle J (1968) The effect of light and inhibitors on chloroplast and cytoplasmic RNA synthesis. Plant Physiol 48: 1850–1854

    Article  Google Scholar 

  • Ingle J, Hageman RH (1965) Metabolie changes associated with the germination of corn. II. Nucleic acid metabolism. Plant Physiol 40: 48–53

    Google Scholar 

  • Ingle J, Beevers L, Hageman RH (1964) Metabolie changes associated with the germination of corn I. Changes in weight and metabolites and their redistribution in the embryo axis, scutellum and endosperm. Plant Physiol 39: 735–740

    Google Scholar 

  • Ingle J, Beitz D, Hageman RH (1965) Changes in composition during development and maturation of maize seeds. Plant Physiol 40: 835–839

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen JV, Higgins TJV ( 1978 a) The influence of phytohormones on replication and transcription. In: Letham DS, Goodwin PB, Higgins TJV (eds) Phytohormones and related Compounds: a comprehensive treatise Vol I. Elsevier, North-Holland, Amsterdam, New York, pp 515–582

    Google Scholar 

  • Jacobsen JV, Higgins TJV ( 1978 b) Post-transcriptional translational and post-translational effects of plant hormones. In: Letham SD, Goodwin PB, Higgins TJV (eds) Phytohormones and and related Compounds: A comprehensive treatise Vol I. Elsevier, North-Holland, Amsterdam, New York, pp 583–621

    Google Scholar 

  • Jervis L (1974) Partial puriflcation and characterization of two Nicotiana tabacum ribonucleases. Phytochemistry 13: 709–714

    Article  CAS  Google Scholar 

  • Johari RR, Mehta SL, Naik MS (1977) Protein synthesis and changes in nucleic acids during grain development of Sorghum. Phytochemistry 16: 19–24

    Article  CAS  Google Scholar 

  • Johnson PH, Laskowski MSr (1968) Sugar un-speeifie mung bean nuclease I. J Biol Chem 243: 3421–3424

    PubMed  CAS  Google Scholar 

  • Kado CJ (1968) Puriflcation and properties of a ribonuclease isolated from etiolated cucumber seedlings. Arch Biochem Biophys 125: 86–93

    Article  PubMed  CAS  Google Scholar 

  • Kasai K, Uchida T, Egami F, Yoshida K, Nomoto M (1969) Puriflcation and crystallization of ribonuclease Nx from Neurospora crassa. J Biochem 66: 389–396

    PubMed  CAS  Google Scholar 

  • Kende H, Baumgartner B (1974) Regulation of ageing in flowers of Ipomoea tricolor by ethylene. Planta 116: 279–289

    Article  CAS  Google Scholar 

  • Kinoshita I, Katagiri K, Tsuyi H (1979) Effects of benzyladenine and light on changes in various RNA species in etiolated cucumber cotyledons. Plant Cell Physiol 20: 707–713

    CAS  Google Scholar 

  • Kowalski D, Kroeker WD, Laskowski MSr (1976) Mung bean nuclease I. Physical, chemical and catalytic properties. Biochemistry 15: 4457–4463

    Google Scholar 

  • Kroeker WD, Hanson DM, Fairley JL (1975) Activity of wheat seedling nuclease toward single-stranded nucleic acids. J Biol Chem 250: 3767–3772

    PubMed  CAS  Google Scholar 

  • Kuligowska E, Klarkowska D, Szarkowski JW (1976) Alkaline ribonuclease from rye germ cytosol. Acta Biochim Pol 23: 115–126

    PubMed  CAS  Google Scholar 

  • Kuligowska E, Klarkowska D, Szarkowski JW (1980) An acid ribonuclease from rye germ cytosol. Phytochemistry 19: 31–35

    Article  CAS  Google Scholar 

  • Lantero OJ, Klosterman HJ (1973) Puriflcation and properties of barley leaf ribonuclease. Phytochemistry 12: 775–784

    Article  CAS  Google Scholar 

  • Laskowski MSr (1966) Pancreatic deoxyribonuclease. In: Cantoni GL, Davies RD (eds) Procedures in nucleic acid research. Harper and Row, New York, pp 85–101

    Google Scholar 

  • Läzär G, Farkas GL (1970) Patterns of enzyme changes during leaf senescence. Acta Biol Acad Sci Hung 21: 389–396

    PubMed  Google Scholar 

  • Läzär G, Borbely G, Udvardy J, Premecz G, Farkas GL (1973) Osmotic shock triggers an increase in ribonuclease level in protoplasts isolated from tobacco leaves. Plant Sci Lett 1: 53 - 57

    Article  Google Scholar 

  • Lehmann J, Völkl W, Udvardy J, Borbely G, Sivök B, Farkas GL (1979) Characterization of a ribonuclease from Anacystis nidulans infected with eyanophage AS-1. Phytochemistry 18: 541–544

    Article  CAS  Google Scholar 

  • Lerch B, Wolf G (1972) Isolation of Phosphodiesterase from sugar beet leaves. Biochim Biophys Acta 258: 206 - 218

    PubMed  CAS  Google Scholar 

  • Lewington PJ, Talbot M, Simon EW (1967) The yellowing of attached and detached cucumber cotyledons. J Exp Bot 18: 526–534

    Article  Google Scholar 

  • Libonati M (1971) Degradation of poly A and double-stranded RNA by aggregates of pancreatic ribonuclease. Biochim Biophys Acta 228: 440–445

    PubMed  CAS  Google Scholar 

  • Locy RD, Cherry JH (1976) Evidence for a chloroplast specific tyrosyl tRNA degrading activity. Biochem Biophys Res Commun 72: 15–23

    Article  PubMed  CAS  Google Scholar 

  • Lontai I, van Loon LC, Bruinsma J (1972) Effects of auxin on the activity of RNAhydrolysing enzymes from senescing and ageing barley leaves. Z Pflanzenphysiol 67: 146–154

    CAS  Google Scholar 

  • Van Loon LC (1975) Polynucleotide-acrylamide gel electrophoresis of soluble nucleases from tobacco leaves. FEBS Lett 51: 266–269

    Article  PubMed  Google Scholar 

  • Lovrekovich L, Klement Z, Farkas GL (1964) Toxic effect of Pseudomonas tabaci on RNA metabolism in tobacco and its counteraction by kinetin. Science 145: 165

    Article  PubMed  CAS  Google Scholar 

  • Lyndon RF (1966) Intracellular distribution of ribonuclease activity in pea roots. Biochim Biophys Acta 113: 110–119

    PubMed  CAS  Google Scholar 

  • Markham R, Strominger JL (1956) The action of leaf ribonuclease. Biochem J 64: 46 P

    Google Scholar 

  • Matile P (1978) Biochemistry and funetion of vacuoles. Annu Rev Plant Physiol 29: 193–213

    Article  CAS  Google Scholar 

  • Matsushita S, Mori T, Hata T (1966) Enzyme activities associtated with ribosomes from soybean seedlings. Plant Cell Physiol 7: 535–545

    Google Scholar 

  • Matthews B, Dray S, Widholm J, Ostro M (1979) Liposome-mediated transfer of bacterial RNA into carrot protoplasts. Planta 145: 37–44

    Article  CAS  Google Scholar 

  • McHale JS, Dove LD (1968) Ribonuclease activity in tomato leaves as related to development and senescence. New Phytol 67: 305–313

    Article  Google Scholar 

  • Mehta SL, Srivastava KN, Mali PC, Naik MS (1972) Changes in the nucleic acid and protein fractions in opaque-2 maize kernels during development. Phytochemistry 11: 937–942

    Article  CAS  Google Scholar 

  • Mejnartowicz L, Bergmann F (1977) Variation and genetics of ribonucleases and phosphodiesterases in conifer seeds. Can J Bot 55: 711–717

    Article  CAS  Google Scholar 

  • Merola AJ, Davis FF (1962) Preparation and properties of soybean ribonuclease. Biochim Biophys Acta 55: 431–439

    Article  PubMed  CAS  Google Scholar 

  • Mettler LJ, Romani RJ (1976) Quantitative changes in tRNA during ethylene induced ripening (ageing) of tomato fruits. Phytochemistry 15: 25–28

    Article  CAS  Google Scholar 

  • Naito K, Iida A, Suzuki H, Tsui H (1979) The effect of benzyladenine on changes in nuclease and protease activities in intact bean leaves during ageing. Physiol Plant 46: 50–53

    Article  CAS  Google Scholar 

  • Nishimura M, Beevers H (1978) Hydrolases in vacuoles from castor bean endosperm. Plant Physiol 62: 44–48

    Article  PubMed  CAS  Google Scholar 

  • Nossal NG, Singer MF (1968) The processive degradation of individual polyribonucleotide chains. I. Escherichia coli ribonuclease II. J Biol Chem 243: 913–922

    PubMed  CAS  Google Scholar 

  • Odintsova MS, Rakovskaya MV, Sissakian NM (1963) Activity of some enzymes of phosphorus metabolism in chloroplasts isolated from a non-aqueous medium, (in Russian) Biokhimiya 28: 616–621

    CAS  Google Scholar 

  • Ohtaka Y, Uchida K, Sakai T (1963) Puriflcation and properties of ribonuclease from yeast. J Biochem 54: 322–327

    PubMed  CAS  Google Scholar 

  • Oleson AE (1976) Inhibition of plant nuclease I by ATP and other nucleotides. Phytochemistry 15: 1203–1205

    Article  CAS  Google Scholar 

  • Oleson AE, Janski AM, Clark ET (1974) An extracellular nuclease from suspension cultures of tobacco. Biochim Biophys Acta 366: 89–100

    PubMed  CAS  Google Scholar 

  • Osborne DJ (1962) Effect of kinetin on protein and nucleic acid metabolism in Xanthium leaves during senescence. Plant Physiol 37: 595–602

    Article  PubMed  CAS  Google Scholar 

  • Panigrahi PK, Biswal VC (1979) Ageing of chloroplasts in vitro I. Quantitative analysis of the degradation of pigments, protein and nucleic acids. Plant Cell Physiol 20: 775–779

    Google Scholar 

  • Paranjothy K, Wareing PF (1971) The effects of abscisic acid, kinetin and 5-fluorouracil on ribonucleic acid and protein synthesis in senescing radish leaf disks. Planta 99: 112–119

    Article  CAS  Google Scholar 

  • Payne PI (1977) Synthesis of polyA-rich RNA in embryos of rye during inbibition and early germination. Phytochemistry 16: 431–434

    Article  CAS  Google Scholar 

  • Phillips DR, Horton RF, Fletcher RA (1969) Ribonuclease and chlorophyllase activity in senescing leaves. Physiol Plant 22: 1050–1054

    Article  CAS  Google Scholar 

  • Pietrzak M, Cudny H, Maluszynski M (1980) Puriflcation and properties of two ribonucleases and a nuclease from barley seeds. Biochim Biophys Acta 614: 102–112

    PubMed  CAS  Google Scholar 

  • Pilet PE, Braun R (1970) Ribonuclease activity and auxin effects in the Lens root. Physiol Plant 23: 245–250

    Article  CAS  Google Scholar 

  • Pitt D (1971) Puriflcation of a ribonuclease from potato tubers and its use as an antigen in the immunochemical assay of this protein following tuber damage. Planta 101: 33–35

    Google Scholar 

  • Pitt D (1974) Activation and de novo synthesis of ribonuclease following mechanical damage to leaves of Solanum tuberosum L. Planta 117: 43–55

    Article  CAS  Google Scholar 

  • Pitt D (1975) Changes in activity of lysosomal ribonuclease following mechanical damage to leaves of Solanum tuberosum L. Planta 123: 125–136

    Article  CAS  Google Scholar 

  • Pitt D, Galpin M (1971) Increase in ribonuclease activity following mechanical damage to leaf and tuber tissues of Solanum tuberosum L. Planta 101: 317–332

    Article  CAS  Google Scholar 

  • Plischke W, Hess D (1980) Nucleases from Petunia hybrida: A sugar-unspecific nuclease isolated from leaves. Biochem Physiol Pflanz 175: 629–636

    Google Scholar 

  • Poulson R, Beevers L (1970) Nucleic acid metabolism during greening and unrolling of barley leaf segments. Plant Physiol 46: 315–319

    Article  PubMed  CAS  Google Scholar 

  • Premecz G, Oläh T, Gulyäs A, Nyitrai A, Pälfi G, Farkas GL (1977) Is the increase in ribonuclease level in isolated tobacco protoplasts due to osmotic stress? Plant Sci Lett 9: 195–200

    Article  CAS  Google Scholar 

  • Premecz G, Ruzicska P, Oläh T, Farkas GL (1978) Effect of “osmotic stress” on protein and nucleic acid synthesis in isolated tobacco protoplasts. Planta 141: 33–36

    Article  CAS  Google Scholar 

  • Randles JW (1968) Ribonuclease isozymes in Chinese cabbage systemically infected with turnip yellow mosaic virus. Virology 36: 556–563

    Article  PubMed  CAS  Google Scholar 

  • Rattanapanone N, Grierson D, Stein H (1977) Ribonucleic acid metabolism during the development and ripening of tomato fruits. Phytochemistry 16: 629–633

    Article  CAS  Google Scholar 

  • Reddi KK (1959) Tobacco leaf ribonuclease. III. Its role in the synthesis of tobacco mosaic virus nucleic acid. Biochim Biophys Acta 33: 164–167

    Article  PubMed  CAS  Google Scholar 

  • Reddi KK (1966) Ribonuclease induction in cells transformed by Agrobaeterium tumefaciens. Proc Natl Acad Sci USA 56: 1207–1214

    Article  PubMed  CAS  Google Scholar 

  • Reddi KK, Mauser LJ (1965) Studies on the formation of tobacco mosaic virus ribonucleic acid. VI. Mode of degradation of host ribonucleic acid to ribonucleosides and their conversion to ribonucleoside 5/-phosphates. Proc Natl Acad Sci USA 53: 607–613

    Article  PubMed  CAS  Google Scholar 

  • Rijven AHGC (1978) Ribosomal wash ribonucleases from fenugreek (Trigonella foenum graeeum L.) and soybean (Glycine max (L) Merr.) cotyledons and their interactions with poly(A) and some modified nucleosides. Plant Sci Lett 11: 293–303

    Article  CAS  Google Scholar 

  • Roberts LM, Lord JM (1979) Ribonucleic acid synthesis in germinating castor bean endosperm. J Exp Bot 117: 739–749

    Article  Google Scholar 

  • Robertson HD, Webster RE, Zinder ND (1968) Puriflcation and properties of ribonuclease III from Escherichia coli. J Biol Chem 243: 82–91

    PubMed  CAS  Google Scholar 

  • Robinson E, Cartwright PM (1958) Nucleolytic enzymes in growing root cells. J Exp Bot 9: 430–435

    Article  CAS  Google Scholar 

  • Robinson NE, Bryant JA (1975) Onset of nucleic acid synthesis during germination of Pisum sativum L. Planta 127: 63–68

    Article  CAS  Google Scholar 

  • Ruzicska P, Mettrie R, Dorokhov YuL, Premecz G, Oläh T, Farkas GL (1979) Polyribosomes in protoplasts isolated from tobacco leaves. Planta 145: 199–203

    Article  CAS  Google Scholar 

  • Sacher JA, Davies DD (1974) Demonstration of de novo synthesis of RNase in Rhoeo leaf sections by deuterium oxide labelling. Plant Cell Physiol 15: 157–161

    CAS  Google Scholar 

  • Sacher JA, De Leo P (1977) Wound-induced RNase in senescing bean pod tissue: posttranscriptional regulation of RNase. Plant Cell Physiol 18: 161–171

    CAS  Google Scholar 

  • Sacher JA, Morgan EJ, De La Rosa D (1975) Paradoxical effect of actinomycin D. Regulation of synthesis of wound RNase at translation in turnip tissue. Plant Physiol 56: 442–449

    Google Scholar 

  • Sacher JA, Engstrom D, Broomfield D (1979) Ethylene regulation of wound-induced ribonuclease in turnip root tissue. Planta 144: 413–418

    Article  CAS  Google Scholar 

  • Sahulka J (1971) Electrophoretic investigation of ribonuclease in roots and leaves of Viciafaba L. Biol Plant 13: 243–248

    Article  CAS  Google Scholar 

  • Sawai Y, Sugano N, Tsukada K (1978) Ribonuclease H activity in cultured plant cells. Biochim Biophys Acta 518: 181–185

    PubMed  CAS  Google Scholar 

  • Sen S, Osborne DJ (1977) Decline in ribonucleic acid and protein synthesis with loss of viability during early hours of inhibition of rye (Seeale eereale L) embryos. Biochem J 166: 33–38

    PubMed  CAS  Google Scholar 

  • Shuster L, Khorana HG, Heppel LA (1959) The mode of action of ryegrass ribonuclease. Biochim Biophys Acta 33: 452–461

    Article  PubMed  CAS  Google Scholar 

  • Silflow CD, Key JL (1979) Stability of polysome-associated polyadenylated RNA from soybean suspension culture cells. Biochemistry 18: 1013–1018

    Article  PubMed  CAS  Google Scholar 

  • Simpson RS, Chakravorty AK, Scott KJ (1979) Selective hydrolysis of barley leaf polysomal messenger RNA during the early stages of powdery mildew infection. Physiol Plant Pathol 14: 245–258

    Article  CAS  Google Scholar 

  • Simpson RS, Chakravorty AK, Scott KJ (1980) Messenger and ribosomal RNA hydrolysis by ribonucleases. I. The action of two barley leaf ribonucleases on the messenger and ribosomal RNA of isolated polysomes. Plant Cell Physiol 21: 413–423

    Google Scholar 

  • Sivok B, Udvardy J, Balogh A, Farkas GL (1977) Nuclease I in wheat root. Z Pflanzenphysiol 83: 327–333

    Google Scholar 

  • Siwecka MA, Szarkowski JW (1971) The distribution of nucleolytic activity in organelles of rye embryos and seedlings (Seeale eereale). Bull Acad Sei Pol 19: 445–449

    Google Scholar 

  • Smith GS, Schaffer SW (1979) Selective reduetion of seminal ribonuclease by glutathione. Arch Biochem Biophys 196: 102–108

    Article  PubMed  CAS  Google Scholar 

  • Smith H (1976) Phytochrome-mediated assembly of polyribosomes in etiolated bean leaves. Evidence for post-transcriptional regulation of development. Eur J Biochem 65: 161–170

    Article  PubMed  CAS  Google Scholar 

  • Sodek L, Wright STC (1969) The effect of kinetin on ribonuclease, acid phosphatase, lipase and esterase levels in detached wheat leaves. Phytochemistry 8: 1629–1640

    Article  CAS  Google Scholar 

  • Srivastava BIS (1968) Acceleration of senescence and of the increase of chromatin-associated nuclease in excised barley leaves by abscisin II and its reversal by kinetin. Biochim Biophys Acta 169: 534–536

    PubMed  CAS  Google Scholar 

  • Srivastava BIS, Matsumoto H, Chadha KC (1971) Studies on chromatin-associated nuclease from barley leaves. Plant Cell Physiol 12: 609–618

    CAS  Google Scholar 

  • Stavrianopoulos JG, Chargaff E (1973) Puriflcation and properties of ribonuclease H of calf thymus. Proc Natl Acad Sei USA 70: 1959–1963

    Article  CAS  Google Scholar 

  • Suno M, Nomura A, Mizumo Y (1973) Studies on 3/-nucleotidase-nuclease from potato tubers. II. Further studies on substrate specificity and mode of action. J Biochem 73: 1291–1297

    Google Scholar 

  • Sutcliffe JF, Baset QA (1973) Control of hydrolysis of reserve materials in the endosperm of germinating oat (Avena sativa) grains. Plant Sei Lett 1: 15–20

    Article  CAS  Google Scholar 

  • Takaiwa J, Tanifuji S (1978) Development of RNase activity in embryonic axes of germinating pea seeds. Plant Cell Physiol 19: 1507–1518

    CAS  Google Scholar 

  • Takegami T (1975) A study on senescence in tobacco leaf disks. II. Chloroplast and cytoplasmic rRNAs. Plant Cell Physiol 16: 417–425

    CAS  Google Scholar 

  • Takegami T, Yoshida K (1975) Remarkable retardation of the senescence of tobacco leaf disks by cordycepin, an inhibitor of RNA polyadenylation. Plant Cell Physiol 16: 1163–1166

    CAS  Google Scholar 

  • Tang WJ, Maretzki A (1970) Puriflcation and properties of leaf ribonuclease from sugar cane. Biochim Biophys Acta 212: 300–307

    PubMed  CAS  Google Scholar 

  • Tani T, Yoshikawa M, Naito N (1973) Effect of rust infection of oat leaves on cytoplasmic and chloroplast ribosomal nucleic acids. Phytopathology 63: 491–494

    Article  CAS  Google Scholar 

  • Tester CF (1977) Nucleic acid metabolism in the developing primary leaf and senescing coleoptile of germinating oats. Physiol Plant 41: 305–312

    Article  CAS  Google Scholar 

  • Thien W, Schopfer P (1975) Control by phytochrome of cytoplasmic and chloroplastic rRNA accumulation in cotyledons of mustard seedlings in the absence of photosynthesis. Plant Physiol 56: 660–664

    Article  PubMed  CAS  Google Scholar 

  • Torti G, Mapelli S, Soave C (1973) Acid ribonuclease from wheat germ: puriflcation, properties and specificity. Biochim Biophys Acta 324: 254–266

    PubMed  CAS  Google Scholar 

  • Trebal JP, Beopoulos N, Esnault R (1979) Ribonuclease activities in bean roots. Phytochemistry 19: 1635–1637

    Article  Google Scholar 

  • Trewavas A (1970) The turnover of nucleic acids in Lemna minor. Plant Physiol 45: 742–751

    Article  PubMed  CAS  Google Scholar 

  • Trewavas A (1976) Plant growth substances. In: Bryant JA (ed) Molecular aspects of gene expression in plants. Academic Press, London New York, pp 249–298

    Google Scholar 

  • Tuve TW, Anfinsen CB (1960) Preparation and properties of spinach ribonuclease. J Biol Chem 235: 3437–3441

    PubMed  CAS  Google Scholar 

  • Udvardy J, Farkas GL (1972) Abscisic acid Stimulation of the formation of an ageing specific nuclease in Avena leaves. J Exp Bot 23: 914–920

    Article  CAS  Google Scholar 

  • Udvardy J, Farkas GL, Marre E (1969) On RNase and other hydrolytic enzymes in excised Avena leaf tissues. Plant Cell Physiol 10: 375–396

    CAS  Google Scholar 

  • Udvardy J, Marre E, Farkas GL (1970) Puriflcation and properties of a Phosphodiesterase from Avena leaf tissues. Biochim Biophys Acta 206: 392–403

    PubMed  CAS  Google Scholar 

  • Varian A, Sacher JA (1978) Wound-induced RNase in bean pod tissue. II. Auxin regulation of RNase synthesis at transcription. Plant Cell Physiol 19: 1185–1193

    Google Scholar 

  • Verma DPS, McLachlan GA, Byrne H, Ewings D (1975) Regulation and in vitro translation of messenger RNA for cellulase from auxin-treated pea epicotyls. J Biol Chem 250: 1019–1026

    PubMed  CAS  Google Scholar 

  • Vogt VM (1973) Puriflcation and further properties of single-strand specific nuclease from Aspergillus oryzae. Eur J Biochem 33: 192–200

    Article  PubMed  CAS  Google Scholar 

  • Vold BS, Sypherd PS (1968) Changes in soluble RNA and ribonuclease activity during germination of wheat. Plant Physiol 43: 1221–1226

    Article  PubMed  CAS  Google Scholar 

  • Walbot V (1971) RNA metabolism during embryo development and germination of Phaseolus vulgaris. Dev Biol 26: 369–379

    Article  PubMed  CAS  Google Scholar 

  • Walters TL, Loring HS (1966) Enzymes of nucleic acid metabolism from mung bean sprouts. I. Fractionation and concentration of Phosphomonoesterase, ribonuclease Ml and M3, 3’-nucleotidase, and deoxyribonuclease. J Biol Chem 241: 2870–2875

    PubMed  CAS  Google Scholar 

  • van der Wilden W, Herman EM, Chrispeels MJ (1980) Protein bodies of mung bean cotyledons as autophagic organelles. Proc Natl Acad Sci USA 77: 428–432

    Article  PubMed  Google Scholar 

  • Wilson CM (1971) Plant nucleases. III. Polyacrylamide gel electrophoresis of corn ribonuclease isoenzymes. Plant Physiol 48: 64–68

    Article  PubMed  CAS  Google Scholar 

  • Wilson CM (1973) Plant nucleases. IV. Genetic control of ribonuclease activity in corn endosperm. Biochem Genet 9: 53–62

    Article  PubMed  CAS  Google Scholar 

  • Wilson CM (1975) Plant nucleases. Annu Rev Plant Physiol 26: 187–208

    Article  CAS  Google Scholar 

  • Wilson CM (1978) Plant nucleases. V. Survey of corn ribonuclease II isoenzymes. Plant Physiol 61: 861–863

    Article  PubMed  CAS  Google Scholar 

  • Wilson CM (1980) Plant nucleases. VI. Genetic and developmental variability in ribonuclease activity in inbred and hybrid corn endosperms. Plant Physiol 66: 119–125

    Article  PubMed  CAS  Google Scholar 

  • Wilson CM, Shannon JC (1963) The distribution of ribonucleases in corn, cucumber and soybean seedlings. Effects of isolation media. Biochim Biophys Acta 68: 311–313

    Google Scholar 

  • Wilson CM, Alexander DE (1967) Ribonuclease activity in normal and opaque-2 mutant endosperm of maize. Science 155: 1575–1576

    Article  PubMed  CAS  Google Scholar 

  • Wilson CM, Apel GA (1975) Effect of Helminthosporium maydis, race T, pathotoxin on growth and ribonuclease levels of corn roots. Crop Sei 15: 385–389

    Article  CAS  Google Scholar 

  • Wollgiehn R (1961) Untersuchungen über den Einfluß des Kinetins auf den Nucleinsäureund Proteinstoffwechsel isolierter Blätter. Flora 151: 411–437

    Google Scholar 

  • Wyen NV, Farkas GL (1971) On the ribonuclease associated with cytoplasmic ribosomes isolated from Avena leaves. Biochem Physiol Pflanz 162: 220–224

    CAS  Google Scholar 

  • Wyen NV, Udvardy J, Solymosy F, Marre E, Farkas GL (1969) Puriflcation and properties of a ribonuclease from Avena leaf tissues. Biochim Biophys Acta 191: 588–597

    PubMed  CAS  Google Scholar 

  • Wyen NV, Erdei S, Farkas GL (1971) Isolation from Avena leaf tissues of a nuclease with the same type of specificity towards RNA and DNA. Accumulation of the enzyme during leaf senescence. Biochim Biophys Acta 232: 472–483

    Google Scholar 

  • Wyen NV, Udvardy J, Erdei S, Farkas GL (1972a) The level of a relatively purine specific ribonuclease increases in virus-infected hypersensitive or mechanically injured tobacco leaves. Virology 48: 337–341

    Article  PubMed  CAS  Google Scholar 

  • Yi C, Todd GW (1979) Changes in ribonuclease activity of wheat plants during water stress. Physiol Plant 46: 13–18

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag Berlin-Heidelberg

About this chapter

Cite this chapter

Farkas, G.L. (1982). Ribonucleases and Ribonucleic Acid Breakdown. In: Parthier, B., Boulter, D. (eds) Nucleic Acids and Proteins in Plants II. Encyclopedia of Plant Physiology, vol 14 / B. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68347-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68347-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68349-7

  • Online ISBN: 978-3-642-68347-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics