Skip to main content

Part of the book series: Encyclopedia of Plant Physiology ((922,volume 14 / B))

Abstract

All RNA molecules have a primary structure which consists of a backbone of alternating ribose and phosphate residues with a purine (guanine or adenine) or pyrimidine (uracil or cytosine) base attached to each ribose (Fig. 1). Although these four bases (abbreviated as G, A, U and C respectively) predominate, some bases may be modified in the formation of the mature molecule. Also there is 2’-O-methylation of a few ribose residues. A comprehensive list of the structures of these modified residues and of the symbols used to denote them has been published (Dunn and Hall 1975).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

tRNA Meti :

initiator tRNA

References

  • Almalric F, Merkel C, Gefland R, Attardi G (1978) Fractionation of mitochondrial RNA from HeLa cells by high-resolution electrophoresis under strongly denaturing conditions. J Mol Biol 118: 1–25

    Article  Google Scholar 

  • Bartolf M, Price CA (1979) Synthesis of poly(A)-containing RNA by isolated spinach chloroplasts. Biochemistry 18: 1677–1680

    Article  PubMed  CAS  Google Scholar 

  • Bedbrook JR, Smith SM, Ellis RJ (1980) Molecular cloning and sequencing of cDNA encoding the precursor to the small subunit of the chloroplast enzyme ribulose-1,5-bisphosphate carboxylase. Nature (London) 287: 692–697

    Article  CAS  Google Scholar 

  • Blobel G, Dobberstein B (1975) Transfer of proteins across membranes 1. Presence of proteolytically processed and unprocessed nascent Immunoglobulin light chains on membrane-bound ribosomes of murine myeloma. J Cell Biol 67: 835–851

    Google Scholar 

  • Bönen L, Doolittle WF (1975) On the prokaryotic nature of red algal chloroplasts. Proc Natl Acad Sci USA 72: 2310–2314

    Article  PubMed  Google Scholar 

  • Bönen L, Doolittle WF (1976) Partial sequences of 16S RNA and the phylogeny of blue-green algae and chloroplasts. Nature (London) 261: 669–673

    Article  Google Scholar 

  • Bönen L, Cunningham RS, Gray MW, Doolittle WF (1977) Wheat embryo mitochondrial 18S ribosomal RNA: evidence for its prokaryotic nature. Nucl Acids Res 4: 663–671

    Article  PubMed  Google Scholar 

  • Brosius J, Palmer ML, Kennedy PJ, Noller HF (1978) Complete nucleotide sequence of a 16S ribosomal gene from Escherichia coli. Proc Natl Acad Sci USA 75: 4801–4805

    Article  PubMed  CAS  Google Scholar 

  • Burr B, Burr FA, Rubenstein I, Simon MN (1978) Puriflcation and translation of zein messenger RNA from maize endosperm protein bodies. Proc Natl Acad Sci USA 75: 696–700

    Article  PubMed  CAS  Google Scholar 

  • Burrows WJ (1975) Mechanisms of action of cytokinins. Curr Adv Plant Sci 7: 837–847

    Google Scholar 

  • Calagan JL, Pirtle RM, Pirtle IL, Kashdan MA, Vreman HJ, Dudock BS (1980) Homology between chloroplast and prokaryotic initiator tRNA. Nucleotide sequence of spinach chloroplast methionine initiator tRNA. J Biol Chem 255: 9981–9984

    Google Scholar 

  • Canaday J, Guillemaut P, Gloeckler R, Weil JH (1981) The nucleotide sequence of spinach chloroplast tryptophan transfer RNA. Nucl Acids Res 9: 47–53

    Article  PubMed  CAS  Google Scholar 

  • Carbon P, Ehresmann C, Ehresmann B, Ebel JP (1978) The sequence of Escherichiacoli ribosomal 16S RNA determined by new rapid gel sequencing methods. FEBS Lett 94: 152–156

    Article  PubMed  CAS  Google Scholar 

  • Chang SH, Hecker M, Silberklang M, Brum CK, Barnett WE, RajBhandary UL (1976) The first nucleotide sequence of an organeile transfer RNA: Chloroplastic tRNAphe. Cell 9: 717–724

    Article  PubMed  CAS  Google Scholar 

  • Chang SH, Brum CK, Schnabel JJ, Heckman JH, RajBhandary UL (1978) Similarities in nucleotide sequence between Euglena gracilis and mammalian cytoplasmic Phenylalanine tRNAs. Fed Proc 37: 1768

    Google Scholar 

  • Cunningham RS, Bönen L, Doolittle WF, Gray MW (1976) Unique species of 5S, 18S and 26S ribosomal RNA in wheat mitochondria. FEBS Lett 69: 116–122

    Article  PubMed  CAS  Google Scholar 

  • Darzynkiewicz E, Nakashima K, Shatkin AJ (1980) Base pairing in the conserved 3’end of 18S rRNA as determined by psoralen photoreaction and RNase sensitivity. J Biol Chem 255: 4973–4975

    PubMed  CAS  Google Scholar 

  • Delihas N, Andersen J, Sprouse HM, Kashdan M, Dudock BS (1981) The nucleotide sequence of spinach cytoplasmic 5S RNA. J Biol Chem 256: 7515–7517

    PubMed  CAS  Google Scholar 

  • Driesel AJ, Crouse EJ, Gordon K, Bohnert HJ, Herrmann RG, Steinmetz A, Mubumbila M, Keller M, Burkard G, Weil JH (1979) Fractionation and identification of spinach chloroplast transfer RNAs and mapping of their genes on the restriction map of chloroplast DNA. Gene 6: 285–306

    Article  PubMed  CAS  Google Scholar 

  • Dudock BS, Katz G (1969) Large oligonucleotide sequences in wheat germ Phenylalanine transfer ribonucleic acid. Derivation of total primary structure. J Biol Chem 244: 3069–3074

    Google Scholar 

  • Dunn DB, Hall RH (1975) Purines, pyrimidines, nucleosides and nucleotides: physical constants and spectral properties. In: Fasman GD (ed) Handbook of biochemistry and molecular biology Vol I. CRC Press, Cleveland, pp 65–215

    Google Scholar 

  • Dyer TA, Bowman CM (1979) Nucleotide sequences of chloroplast 5S ribosomal ribonucleic acid in flowering plants. Biochem J 183: 595–604

    PubMed  CAS  Google Scholar 

  • Dyer TA, Leech RM (1968) Chloroplast and cytoplasmic low-molecular-weight ribonucleic acid components of the leaf of Vicia faba L. Biochem J 106: 689–698

    PubMed  CAS  Google Scholar 

  • Dyer TA, Zalik S (1979) Analysis of a 5S RNA-protein complex isolated from ribosomes of rye embryos. Can J Biochem 57: 1400–1406

    Article  PubMed  CAS  Google Scholar 

  • Dyer TA, Bowman CM, Payne PI (1977) The low-molecular-weight RNAs of plant ribosomes: their structure, funetion and evolution. In: Bogorad L, Weil JH (eds) Nucleic acids and protein synthesis in plants. Plenum, New York, pp 121–133

    Google Scholar 

  • Eperon IC, Anderson S, Nierlich DP (1980) Distinctive sequence of human mitochondrial ribosomal RNA genes. Nature (London) 286: 460–466

    Article  CAS  Google Scholar 

  • Erdmann VA (1981) Collection of published 5S and 5.8S RNA sequences and their precursors. Nucl Acids Res 9: r25–r42

    Article  PubMed  CAS  Google Scholar 

  • Everett GA, Madison JT (1976) Nucleotide sequence of Phenylalanine transfer ribonucleic acid from pea (Pisum sativum, Alaska ). Biochemistry 15: 1016–1021

    Google Scholar 

  • Filipowitz W (1978) Function of the S’-terminal m7G cap in eukaryotic mRNA. FEBS Lett 96: 1–11

    Article  Google Scholar 

  • Gauss DH, Sprinzl M (1981) Compilation of tRNA sequences. Nucl Acids Res 9:rl–r23

    Google Scholar 

  • Guillemaut P, Keith G (1977) Primary structure on bean chloroplastic tRNAPhe. Comparison with Euglena chloroplastic tRNAphe. FEBS Lett 84: 351–356

    Article  PubMed  CAS  Google Scholar 

  • Hagenbüchle O, Santer M, Steitz JA, Mans RJ (1978) Conservation of the primary structure at the 3’ end of 18S rRNA from eukaryotic cells. Cell 13: 551–563

    Article  PubMed  Google Scholar 

  • Hall BD (1979) Mitochondria spring surprises. Nature (London) 282: 129–130

    Article  CAS  Google Scholar 

  • Hartley MR (1979) The synthesis and origin of chloroplast low molecular weight ribosomal ribonucleic acid in spinach. Eur J Biochem 96: 311–320

    Article  PubMed  CAS  Google Scholar 

  • Haugland RA, Cline MG (1978) Capping structures at the 5/-terminus of polyadenylated ribonucleic acid in Avena coleoptiles. Plant Physiol 62: 838–840

    Article  PubMed  CAS  Google Scholar 

  • Heckman JE, Alzner-Deweerd B, RajBhandary UL (1979) Interesting and unusual features in the sequence of Neurospora crassa mitochondrial tyrosine transfer RNA. Proc Natl Acad Sci USA 76: 717–721

    Article  PubMed  CAS  Google Scholar 

  • Higgins TJV, Spencer D (1980) Biosynthesis of pea seed proteins: evidence for precursor forms from in vivo and in vitro studies. In: Leaver CJ ( 1980 ) Genome Organization and expression in plants. Plenum, New York, pp 245–258

    Google Scholar 

  • Janowicz Z, Wower JM, Augustyniak J (1979) Primary structure of barley embryo tRNAPhe and its identity with wheat germ tRNAPhe. Plant Sei Lett 14: 177–183

    Article  CAS  Google Scholar 

  • Jordan BR, Galling G, Jourdan R (1974) Sequence and conformation of 5S RNA from Chlorella cytoplasmic ribosomes: comparison with other 5S RNA molecules. J Mol Biol 87: 205–225

    Article  PubMed  CAS  Google Scholar 

  • Jukes TH (1977) How many anticodons? Science 198: 319–320

    Article  PubMed  CAS  Google Scholar 

  • Kashdan MA, Pirtle RM, Pirtle IL, Calagan JL, Vreman HJ, Dudock BS (1980) Nucleotide sequence of a spinach chloroplast threonine tRNA. J Biol Chem 255: 8831–8835

    Google Scholar 

  • Kurland CG (1960) Molecular characterization of ribonucleic acid from Escherichia coli ribosomes. I. Isolation and molecular weight. J Mol Biol 2: 83–91

    Article  CAS  Google Scholar 

  • Lagerkvist U (1978) “Two out of three”: an alternative method for codon reading. Proc Natl Acad Sci USA 75:1759–1762

    Google Scholar 

  • Larkins BA, Hurkman WJ (1978) Synthesis and deposition of zein in protein bodies of maize endosperm. Plant Physiol 62: 256–263

    Article  PubMed  CAS  Google Scholar 

  • Leaver CJ (1975) The biogenesis of plant mitochondria, In: Harborne JB, van Sumere CF (eds) The chemistry and biochemistry of plant proteins. Academic Press, London New York, pp 137–166

    Google Scholar 

  • Leaver CJ, Harmey MA (1976) Higher-plant mitochondria contain a 5S ribosomal ribonucleic acid component. Biochem J 157: 275–277

    PubMed  CAS  Google Scholar 

  • Loening UE (1968) Molecular weight of ribosomal RNA in relation to evolution. J Mol Biol 38: 355–365

    Article  PubMed  CAS  Google Scholar 

  • Loening UE, Ingle J (1967) Diversity of RNA components in green plant tissues. Nature (London) 215: 363–367

    Article  CAS  Google Scholar 

  • Luoma GA, Marshall AG (1978) Laser Raman evidence for new cloverleaf secondary structures for eukaryotic 5.8S RNA and prokaryotic 5S RNA. Proc Natl Acad Sci USA 75: 4901–4905

    Article  PubMed  CAS  Google Scholar 

  • Mackay RM (1981) The origin of plant chloroplast 4.5S ribsosomal RNA. FEBS Lett 123: 17–18

    Article  CAS  Google Scholar 

  • Mackay RM, Spencer DF, Doolittle WF, Gray WM (1980) Nucleotide sequences of wheat embryo cytosol 5S and 5.8S ribosomal ribonucleic acids. Eur J Biochem 112: 561–576

    Article  PubMed  CAS  Google Scholar 

  • Marcu KB, Mignery RE, Dudock B (1977) Complete nucleotide sequence and properties of the major species of glycine transfer RNA from wheat germ. Biochemistry 16: 797–806

    Article  PubMed  CAS  Google Scholar 

  • Marcu K, Marcu D, Dudock B (1978) Wheat germ rRNAs containing uridine in place of ribothymidine: a characterization of an unusual class of eukaryotic tRNAs. Nucl Acids Res 5: 1075–1092

    Article  PubMed  CAS  Google Scholar 

  • Moorman AFM, Van Ommen GJB, Grivell LA (1978) Transcription in yeast mitochondria: isolation and physical mapping of messenger RNAs for subunits of cytochrome C oxidase and ATPase. Mol Gen Genet 160: 13–24

    PubMed  CAS  Google Scholar 

  • Nichols JL (1979) N6-methyladenosine in maize poly(A)-containing RNA. Plant Sci Lett 15: 357–361

    Article  CAS  Google Scholar 

  • Olins PO, Jones DS (1980) Nucleotide sequence of Scenedesmus obliquus cytoplasmic initiator tRNA. Nucl Acids Res 8: 715–729

    PubMed  CAS  Google Scholar 

  • Osorio-Almeida ML, Guillemaut P, Keith G, Canaday J, Weil JH (1980) Primary structure of three leucine transfer RNAs from bean chloroplast. Biochem Biophys Res Commun 92: 102–108

    Article  PubMed  CAS  Google Scholar 

  • Payne PI, Dyer TA (1971) Characterization of cytoplasmic and chloroplast 5S ribosomal ribonucleic acid from broad-bean leaves. Biochem J 124: 83–89

    PubMed  CAS  Google Scholar 

  • Payne PI, Dyer TA (1972) Plant 5.8S RNA is a components of 80S but not 70S ribosomes. Nature New Biology 235: 145–147

    PubMed  CAS  Google Scholar 

  • Payne PI, Dyer TA (1976) Evidence for the sequence of 5-S rRNA from the flowering plant Seeale eereale ( Rye ). Eur J Biochem 71: 33–38

    Google Scholar 

  • Phillips DO, Carr NG (1977) Nucleic acid analysis and the endosymbiont hypothesis. Taxon 26: 3–42

    Article  CAS  Google Scholar 

  • Pirtle RM, Pirtle IL, Kashdan MA, Vreman HJ, Dudock BS (1981) The nucleotide sequence of spinach chloroplast methionine elongator tRNA. Nucl Acids Res 9: 183–188

    Article  PubMed  CAS  Google Scholar 

  • Pring DR (1974) Maize mitochondria: puriflcation and characterization of ribosomes and ribosomal ribonucleic acid. Plant Physiol 53: 677–683

    Article  PubMed  CAS  Google Scholar 

  • Rafalski AJ, Barciszewski J, Gulewicz K, Twardowski T, Keith G (1977) Nucleotide sequence of tRNAphe from the seeds of lupin (Lupinus luteus). Comparison of the major species with wheat germ tRNA Phe. Acta Biochem Pol 24: 301–318

    Google Scholar 

  • Rieh A, Kim SH (1978) The three dimensional structure of transfer RNA. Sci Am 238: 52–62

    Google Scholar 

  • Rochaix JD, Malnoe P (1978) Anatomy of the chloroplast ribosomal DNA of Chlamydomonasreinhardii. Cell 15: 661–670

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg M, Patterson BM (1979) Efficient cap-dependent translation of polycistronic prokaryotic mRNAs is restricted to the first gene of the operon. Nature (London) 279: 696–701

    Article  CAS  Google Scholar 

  • Saini MS, Lane BG (1977) Wheat embryo ribonucleates VIII The presence of 7-methylguanosine ’cap structures’ in the RNA of imbibing wheat embryos. Can J Biochem 55: 819–824

    Article  PubMed  CAS  Google Scholar 

  • Sano H, Spaeth E, Burton WG (1979) Messenger RNA of the large subunit of ribulose-1,5-bisphosphate carboxylase from Chlamydomonas reinhardii. Eur J Biochem 93: 173–180

    Article  PubMed  CAS  Google Scholar 

  • Schwarz Zs, Kössel H (1980) The primary structure of 16S rDNA from Zea mays chloroplasts is homologous to E coli 16S rRNA. Nature (London) 283: 739–742

    Article  CAS  Google Scholar 

  • Shatkin AJ (1976) Capping of eukaryotic mRNAs. Cell 9: 645–653

    Article  PubMed  CAS  Google Scholar 

  • Shine J, Dalgarno L (1974) The 3/-terminal sequence of Escherichia coli 16S ribosomal RNA: complementary to nonsense triplets and ribosome binding sites. Proc Natl Acad Sci USA 71: 1342–1346

    Article  PubMed  CAS  Google Scholar 

  • Smith SM, Ellis RJ (1979) Processing of small subunit precursor of ribulose bisphosphate carboxylase and its assembly into whole enzyme are stromal events. Nature (London) 278: 662–664

    Article  CAS  Google Scholar 

  • Steiner DF (1979) Processing of protein precursors. Nature (London) 279: 674–675

    Article  CAS  Google Scholar 

  • Sun SM, Slightom JL, Hall TC (1981) Intervening sequences in a plant gene–comparison of the partial sequence of cDNA and genomic DNA of French bean phaseolin. Nature (London) 289: 37–41

    Article  CAS  Google Scholar 

  • Tanaka Y, Dyer TA, Brownlee GG (1980) An improved direct RNA sequence method; its application to Vicia faba 5.8S ribosomal RNA. Nucl Acids Res 86: 1259–1272

    Article  Google Scholar 

  • Van Holde KE, Hill WE (1974) General physical properties of ribosomes. In: Nomura M, Tissieres A, Lengyel P (eds) Ribosomes. Cold Spring Harbor Lab, New York, pp 53–91

    Google Scholar 

  • Verdier G (1979 a) Poly(adenylic acid)-containing RNA of Euglena gracilis during chloroplast development. I Analysis of their complexity by hybridisation to complementary DNA. Eur J Biochem 93:573–580

    Google Scholar 

  • Verdier G (1979 b) Poly(adenylic acid)-containing RNA of Euglena gracilis during chloroplast development. 2 Transcriptional origin of the different RNA. Eur J Biochem 93:581–586

    Google Scholar 

  • Weil JH (1979) Cytoplasmic and organellar tRNAs in plants. In: Hall TC, Davies J (eds) Nucleic acids in plants Vol I. CRC Press, Boca Raton, pp 143–192

    Google Scholar 

  • Weinand U, Feix G (1978) Electrophoretic fractionation and translation in vitro of poly(rA)-containing RNA from maize endosperm. Eur J Biochem 92: 605–611

    Article  Google Scholar 

  • Wheeler AM, Hartley MR (1975) Spinach chloroplast messenger RNA does not contain poly(A). Nature (London) 257: 66–67

    Article  CAS  Google Scholar 

  • Whitfeld PR, Leaver CJ, Bottomley W, Atchison BA (1978) Low-molecular-weight (4.5S) ribonucleic acid in higher plant-chloroplast ribosomes. Biochem J 175: 1103–1112

    PubMed  CAS  Google Scholar 

  • Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sei USA 74: 5088–5090

    Article  CAS  Google Scholar 

  • Wollenzein P, Hearst JE, Thammana P, Cantor CR (1979) Base-pairing between distant regions of the Escherichia coli 16S ribosomal RNA in Solution. J Mol Biol 135: 255–269

    Article  Google Scholar 

  • Zahlen LB, Kissil MS, Woese CR, Buetow DE (1975) The phylogenetic origin of the chloroplasts and prokaryotic nature of its ribosomal RNA. Proc Natl Acad Sci USA 72: 2418–2422

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag Berlin-Heidelberg

About this chapter

Cite this chapter

Dyer, T.A. (1982). RNA Sequences. In: Parthier, B., Boulter, D. (eds) Nucleic Acids and Proteins in Plants II. Encyclopedia of Plant Physiology, vol 14 / B. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68347-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68347-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68349-7

  • Online ISBN: 978-3-642-68347-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics