Skip to main content

Adrenal Steroids and Behavioral Adaptation: Relationship to Brain Corticoid Receptors

  • Conference paper
Adrenal Actions on Brain

Part of the book series: Current Topics in Neuroendocrinology ((CT NEUROENDOCRI,volume 2))

Abstract

The words adrenocortical hormones and adaptation have been linked for almost 40 years. The concept as formulated by Selye (1950) related the adrenal Steroids to physiological, primarily peripheral adaptive processes. It has, however, become evident that the brain is an important target organ for corticosteroids. Psychological changes, such as mood alterations and psychotic reactions, have been frequently observed in patients receiving corticosteroid therapy (see von Zerssen 1976). Although the majority of reports hardly exceeded anecdotal level, therapeutic hopes were stirred for the mentally ill. The hopes and wishes of the early 1950s remained unfulfilled. Regulär basic research concerning the pituitary-adrenal system and behavior was not started until the 1960s. Concepts which stemmed from this research led to the endocrine view of brain function and dysfunction held today. In this paper we want to review the past (not seeking completeness), to describe the present State of research, and to provide our view of the future of corticosteroid-brain interactions in understanding the endocrine modulation of behavioral adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

ACTH:

adrenocorticotropic hormone

ADX:

adrenalectomy

Aldo:

aldosterone

B:

corticosterone

B max:

maximal binding capacity

Dex:

dexamethasone

Doc:

deoxy-corticosterone

DRL:

differential reinforcement of low rate response

F:

cortisol

hypox:

hypophysectomy

Kd:

dissociation constant

Prog:

progesterone

RBA:

relative binding affinites

SAX:

sham adrenalectomy

TL:

transcortin-like

References

  • Ader R (1968) Effects of early experience on emotional and physiological reactivity in the rat. J Comp Physiol Psychol 66: 264–268

    PubMed  CAS  Google Scholar 

  • Agawal MK (1978) Physical characterization of cytoplasmic gluco- and mineralocorticoid receptors. FEBS Lett 85: 1–8

    Google Scholar 

  • Allen RG, Herbert E, Hinman M, Shibuya H, Pert CB (1978) Coordinate control of corticotropin, ß-lipotropin and ß-endorphin release in mouse pituitary cell-cultures. Proc Natl Acad Sci USA 75: 4972–4976

    PubMed  CAS  Google Scholar 

  • Altman G, Bayer S (1975) Postnatal development of the hippocampal dentate gyrus under experimental conditions. In: Isaacson RL, Pribram KH (eds) The hippocampus, vol I. Plenum Press, New York, pp 95–122

    Google Scholar 

  • Anderson NS, Fanestil DD (1976) Corticoid receptors in rat brain: evidence for an aldosterone receptor. Endocrinology 98: 676–684

    PubMed  CAS  Google Scholar 

  • Angelucci L, Valeri P, Palmery M, Patacchioli FR, Catalani A (1980) Brain glucocorticoid receptor: correlation of in vivo uptake of corticosterone with behavioral, endocrine and neuropharmacological events. In: Pepeu G, Kuhar MJ, Enna SJ (eds) Receptors for neurotransmitters and peptide hormones. Raven Press, New York, pp 391–406

    Google Scholar 

  • Azmitia EC Jr, McEwen BS (1969) Corticosterone regulation of tryptophan hydroxylase in midbrain of the rat. Science 166: 1274–1276

    PubMed  CAS  Google Scholar 

  • Azmitia EC Jr, McEwen BS (1974) Adrenocortical influence on rat tryptophan hydroxylase activity. Brain Res 78: 291–302

    PubMed  CAS  Google Scholar 

  • Azmitia EC Jr, Algeri S, Costa E (1970) Turnover rate of in vivo conversion of tryptophan into Serotonin in brain areas of adrenalectomized rats. Science 196: 201–203

    Google Scholar 

  • Ballard PL, Ballard RA (1974) Cytoplasmic receptor for glucocorticoids in lung of human fetus and neonate. J Clin Invest 53: 477–486

    PubMed  CAS  Google Scholar 

  • Barlow JW Kraft N, Stockigt JR, Funder JW (1979) Predominant high affinity binding of [H]-dexamethasone in bovine tissues is not to classical glucocorticoid receptors. Endocrinology 105: 827–834

    Google Scholar 

  • Baxter JD, Rousseau GG (1979) Glucocorticoid hormone action. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Beatty PA, Beatty WW, Bowman RE, Gilchrist JC (1970) The effects of ACTH, adrenalectomy and dexamethasone on the acquisition of an avoidance response in rats. Physiol Behav 5: 939–944

    PubMed  CAS  Google Scholar 

  • Berthold K, Arimura A, Schally AV (1970) In vivo studies on the mechanism of action of 6-dehydro-16-methylene-hydrocortisone (STC 407) on the hypothalamo-pituitary-adrenal axis in the rat. Neuroendocrinology 6: 301–310

    PubMed  CAS  Google Scholar 

  • Bohus B (1968) Pituitary ACTH release and avoidance behaviour of rats with cortisol implants in mesencephalic reticular formation and median eminence. Neuroendocrinology 3: 355–365

    PubMed  CAS  Google Scholar 

  • Bohus B (1970a) Central nervous structures and the effect of ACTH and corticosteroids on avoidance behaviour: a study with intracerebral implantation of corticosteroids in the rat. Prog Brain Res 32:171 –184

    Google Scholar 

  • Bohus B (1970b) The medial thalamus and the opposite effect of corticosteroids and adrenocorticotrophic hormone on avoidance extinction in the rat. Acta Physiol Acad Sci Hung 38: 217–223

    PubMed  CAS  Google Scholar 

  • Bohus B (1971) Adrenocortical hormones and central nervous function: The site and mode of their behavioural action in the rat. In: James VHT, Martini L (eds) Hormonal steroids. Proc Third Int Congr Hormonal Steroids, Series no 219. Excerpta Medica, Amsterdam, pp 752–758

    Google Scholar 

  • Bohus B (1973) Pituitary-adrenal influences on avoidance and approach behavior of the rat. Prog Brain Res 39: 407–420

    CAS  Google Scholar 

  • Bohus B (1974) Pituitary-adrenal hormones and the forced extinction of a passive avoidance response in the rat. Brain Res 66: 366–367

    Google Scholar 

  • Bohus B (1975) The hippocampus and the pituitary-adrenal system hormones. In: Isaacson RL, Pribram KH (eds) The hippocampus, vol 1. Plenum Press, New York, pp 323–353

    Google Scholar 

  • Bohus B (1979) Effects of ACTH-like neuropeptides on animal behavior and man. Pharmacology 18: 113–122

    PubMed  CAS  Google Scholar 

  • Bohus B, De Kloet ER (1977) Behavioural effects of corticosterone related to putative glucocorticoid receptor properties in the rat brain. J Endocrinol 72: 64P–65 P

    Google Scholar 

  • Bohus B, De Kloet ER (1981) Adrenal steroids and extinction behavior: Antagonism by progesterone deoxycorticosterone, and dexamethasone of a specific effect of corticosterone. Life Sci 28: 433–440

    Google Scholar 

  • Bohus B, De Wied D (1966) Inhibitory and facilitatory effect of two related peptides on extinction of avoidance behavior. Science 153: 318–320

    PubMed  CAS  Google Scholar 

  • Bohus B, De Wied D (1967) Failure of a-MSH to delay extinction of conditioned avoidance behavior in rats with lesions in the parafascicular nuclei of the thalamus. Physiol Behav 2:221–2 2 3

    Google Scholar 

  • Bohus B, De Wied D (1980) Pituitary-adrenal system hormones and adaptive behaviour. In: Chester-Jones I, Henderson IW (eds) General, comparative and clinical endocrinology of the adrenal cortex, vol 3. Academic Press, London, pp 256–347

    Google Scholar 

  • Bohus B, Endröczi E (1965) The influence of pituitary-adrenocortical function on the avoiding conditioned reflex activity in rats. Acta Physiol Acad SciHung 26: 183–189

    PubMed  CAS  Google Scholar 

  • Bohus B, Lissak K (1968) Adrenocortical hormones and avoidance behaviour of rats. Int J Neuropharmacol 7: 301–306

    PubMed  CAS  Google Scholar 

  • Bohus B, Strashimirov D (1970) Localization and specificity of corticosteroid “feedback receptors” at the hypothalamo-hypophyseal level; comparative effect of various steroids implanted in the median eminence or the anterior pituitary of the rat. Neuroendocrinology 6: 197–209

    PubMed  CAS  Google Scholar 

  • Bohus B, Nyakas Cs, Endröczi E (1968) Effects of adrenocorticotropic hormone on avoidance behaviour of intact and adrenalectomized rats. Int J Neuropharmacol 7: 307–314

    PubMed  CAS  Google Scholar 

  • Bohus B, Grubits J, Kovacs G, Lissak K (1970) Effect of corticosteroids on passive avoidance behaviour of the rat. Acta Physiol Acad Sci Hung 38: 381–391

    PubMed  CAS  Google Scholar 

  • Bohus B, Van Wimersma Greidanus TjB, De Wied D (1975) Behavioral and endocrine responses of rats with hereditary hypothalamic diabetes insipidus ( Brattleboro strain ). Physiol Behav 14: 609–615

    Google Scholar 

  • Bookin HB, Pfeiffer WD (1978) Adrenaleetomy attenuates electroconvulsive shockinduced retrograd amnesia in rat. Behav Biol 24: 527–532

    PubMed  CAS  Google Scholar 

  • Buckingham JC, Hodges JR (1974) Interrelationships of pituitary plasma corticosterone in adrenalectomized and stressed, adrenalectomized rats. J Endocrinol 63: 213–222

    PubMed  CAS  Google Scholar 

  • Butte JC, Kakihana R, Noble EP (1976) Circadian rhythm of corticosterone levels in rat brain. J Endocrinol 68: 235–239

    PubMed  CAS  Google Scholar 

  • Carroll BJ, Heath B, Jarrett DB (1975) Corticosteroids in brain tissue. Endocrinology 97: 290 - 300

    PubMed  CAS  Google Scholar 

  • Clayton CJ, Grosser BI, Stevens W (1977) The ontogeny of corticosterone and dexamethasone receptors in rat brain. Brain Res 134: 445–453

    PubMed  CAS  Google Scholar 

  • Conner RL, Levine S (1969) The effects of adrenal hormones on the acquisition of signaled avoidance behavior. Horm Behav 1: 73–83

    CAS  Google Scholar 

  • Dallman MF, Yates FE (1969) Dynamic asymetrics in the corticosteroid feedback path and distribution-metabolism-binding elements of the adrenocortical system. Ann NY Acad Sci 156: 696–721

    PubMed  CAS  Google Scholar 

  • Dallman MF, Demanineor D, Shinsako J (1974) Diminishing corticotrope eapaeity to release ACTH during sustained Stimulation: the twenty-four hours after bilateral adrenalectomy in the rat. Endocrinology 95: 65–73

    PubMed  CAS  Google Scholar 

  • De Kloet ER, Burbach JPH (1978) Selective purification of a Single population of glucocorticoid receptors from rat brain. J Neurochem 30: 1505–1507

    PubMed  Google Scholar 

  • De Kloet ER, De Wied D (1980) The brain as target tissue for hormones of pituitary origin: Behavioural and biochemical studies. Front Neuroendocrinol 6: 157–201

    Google Scholar 

  • De Kloet ER, McEwen BS (1976) Differences between cytosol receptor complexes with corticosterone and dexamethasone in hippocampal tissue from rat brain. Biochim Biophys Acta (Amst) 421: 124–132

    Google Scholar 

  • De Kloet ER, Veldhuis HD (1980) The hippocampal corticosterone receptor system of the homozygous diabetes insipidus (Brattleboro) rat. Neurosci Lett 16:187 –192

    Google Scholar 

  • De Kloet ER, Van der Vies J, De Wied D (1974) The site of suppressive action of dexamethasone on pituitary-ad renal activity. Endocrinology 94: 61–73

    PubMed  Google Scholar 

  • De Kloet ER, Wallach G, McEwen BS (1975) Differences in corticosterone and dexamethasone binding to rat brain and pituitary. Endocrinology 96: 598–609

    PubMed  Google Scholar 

  • De Kloet ER, Burbach P, Mulder GH (1977a) Localization and role of transcortin-like molecules in the anterior pituitary. Mol Cell Endocrinol 7: 261–273

    PubMed  Google Scholar 

  • De Kloet ER, Dam CW, Bohus B (1977b) Multiplicity of binding systems specific for glucocorticoids in rat brain and pituitary. In: Agarwal MK (ed) Multiple molecular forms of Steroid hormone receptors. Elsevier/North Holland, Amsterdam, pp 65–79

    Google Scholar 

  • De Kloet ER, Veldhuis HD, Bohus B (1980) Significance of neuropeptides in the control of corticosterone receptor activity in rat brain. In: PepeuG, KuharMJ, EnnaSJ (eds) Receptors for neurotransmitters and peptide hormones. Raven Press, New York, pp 373–382

    Google Scholar 

  • De Vellis J, McEwen BS, Cole R, Inglish D (1974) Relations between glucocorticoid nuclear binding, cytosol receptor activity and enzyme induction in a rat glial cell line. J Steroid Biochem 5: 392–393

    Google Scholar 

  • De Wied D (1967) Opposite effects of ACTH and glucocorticosteroids on extinction of conditioned avoidance behavior. Exerpta Medica Int Congr Series 132: 945–951

    Google Scholar 

  • De Wied D (1979) Schizophrenia as an inborn error in the degradation of ß-endorphin - a hypothesis. Trends in Neurosci 2: 79–82

    Google Scholar 

  • De Wied D, Bohus B, Van Wimersma Greidanus TjB (1975) Memory deficit in rats with hereditary diabetes insipidus. Brain Res 85: 152–156

    Google Scholar 

  • Di Sorbo D, Rosen F, McPhartland RP, Milholland RJ (1977) Glucocorticoid activity of various progesterone analogs: correlations between specific binding in thymus and liver and biological activity. Ann NY Acad Sci 286: 355–368

    Google Scholar 

  • Do YS, Loose DS, Feldman D (1979) Heterogeneity of glucocorticoid binders: A unique and a classical dexamethasone-binding site in bovine tissue. Endocrinology 105: 1055–1063

    Google Scholar 

  • Dokas LA (1979) Corticosterone and RNA metabolism in the rat hippocampus. Soc Neurose (Abstr) 5: 443

    Google Scholar 

  • Douglas RJ (1967) The hippocampus and behavior. Psychol Bull 67: 416–422

    PubMed  CAS  Google Scholar 

  • Duncan MR, Duncan GR (1979) An in vivo study of the action of antiglucocorticoids on thymus weight ratio, antibody titre and the adrenal-pituitary-hypothalamus axis. J Steroid Biochem 10: 245–259

    PubMed  CAS  Google Scholar 

  • Dunn AJ (1980) Neurochemistry of learning and memory: an evaluation of recent data. Annu Rev Psychol 31: 343–390

    PubMed  CAS  Google Scholar 

  • Eipper BA, Mains RE (1978) Existence of a common precursor to ACTH and endorphin in the anterior and intermediate lobes of the rat pituitary. J Supramol Struct 8: 247–262

    PubMed  CAS  Google Scholar 

  • Endröczi E (1972) Limbic system, learning and pituitary-adrenal function. Akademiai Kiado, Budapest

    Google Scholar 

  • Ermisch A, Rühl H-J (1978) Autoradiographic demonstration of aldosterone-concentrating neuron populations in rat brain. Brain Res 147: 154–158

    PubMed  CAS  Google Scholar 

  • Etgen AM, Martin M, Gilbert R, Lynch G (1980) Characterization of corticosterone induced protein synthesis in hippocampal slices. J Neurochem 35: 598–602

    PubMed  CAS  Google Scholar 

  • Flexner JB, Flexner LB (1970) Adrenalectomy and the suppression of memory by, puromycin. Proc Natl Acad Sci USA 66: 48–52

    PubMed  CAS  Google Scholar 

  • Flood JF, Vidal D, Bennet EL, Orme AE, Vasquez S, Jarvik ME (1978) Memory facilitating and anti-amnesic effects of corticosteroids. Pharmacol Biochem Behav 8: 81–87

    PubMed  CAS  Google Scholar 

  • Füller JL, Chambers RM, Füller RP (1956) Effects of Cortisone and of adrenalectomy on activity and emotional behavior of mice. Psychosom Med 29: 323–328

    Google Scholar 

  • Funder JW (1977) Multip licity of Steroid-hormone receptors: a physiological role003 In: Agarwal MK (ed) Multiple molecular forms of Steroid hormone receptors. Elsevier/North Holland Biomedical Press, Amsterdam, pp 263–279

    Google Scholar 

  • Funder JW, Feldman D, Edelman IS (1973a) The roles of plasma binding and receptor specificity in the mineralocorticoid action of aldosterone. Endocrinology 92: 994–1004

    PubMed  CAS  Google Scholar 

  • Funder JW, Feldman D, Edelman IS (1973b) Glucocorticoid receptors in rat kidney: the binding of tritiated-dexamethasone. Endocrinology 92:1005 –1013

    Google Scholar 

  • Gerlach JL, McEwen BS (1972) Rat brain binds adrenal Steroid hormone: radioautography of hippocampus with corticosterone. Science 175: 1133–1136

    PubMed  CAS  Google Scholar 

  • Gerlach JL, McEwen BS, Pfaff DW, Moskovitz S, Ferin M, Carmel PW, Zimmerman EA (1976) Cells in regions of rhesus monkey brain and pituitary retain radioactive estradiol, corticosterone and cortisol differentially. Brain Res 103: 603–612

    PubMed  CAS  Google Scholar 

  • Gray P (1971) Pituitary-adrenal response to stress in the neonatal rat. Endocrinology 89: 1126–1128

    PubMed  CAS  Google Scholar 

  • Grosser BI, Stevens W, Reed PJ (1973) Properties of corticosteroid-binding macromolecules from rat brain cytosol. Brain Res 57: 387–396

    PubMed  CAS  Google Scholar 

  • Guillemin R, Vargo T, Rossier J, Minick S, Ling N, Rivier C, Vale W, Bloom F (1977) ß-endorphin and adrenocortieotropin are secreted concomitantly by the pituitary gland. Science 197: 1367–1369

    PubMed  CAS  Google Scholar 

  • Gyermek L, Genther G, Fleming N (1967) Some effects of progesterone and related steroids on the central nervous system. Int J Neuropharmaeol 6:191 –198

    Google Scholar 

  • Harrison RW, Fairfield S, Orth DN (1977) The effect of membrane alteration on glucocorticoid uptake by the AtT-20 target cell. Biochim Biophys Acta 466:357 –364

    Google Scholar 

  • Hennessy JW, Cohen ME, Rosen AJ (1973) Adrenocortical influences upon the extinction of an appetitive runway response. Physiol Behav 11: 767–770

    PubMed  CAS  Google Scholar 

  • Hennessy JW, Smotherman WP, Levine S (1976) Conditioned taste aversion and the pituitary-adrenal system. Behav Biol 16: 413–424

    PubMed  CAS  Google Scholar 

  • Hennessy JW, Smotherman WP, Levine S (1980) Investigations into the nature of the dexamethasone and ACTH effects upon learned taste aversion. Physiol Behav 24: 645–649

    PubMed  CAS  Google Scholar 

  • Heybach JP, Coover GD, Lints CE (1978) Behavioral effects of neurotoxic lesions of the ascending monoamine pathways in the rat brain. J Comp Physiol Psychol 92: 58–70

    PubMed  CAS  Google Scholar 

  • Hiroshige T, Sato T (1970) Circadian rhythm and stress-induced changes in hypothalamic content of corticotrophin releasing activity during postnatal development in the rat. Endocrinology 86: 1184–1186

    PubMed  CAS  Google Scholar 

  • Joffe JM, Muück JA, Rawson RA (1972) Effects of adrenalectomy on open-field behavior in rats. Horm Behav 3: 87–96

    PubMed  CAS  Google Scholar 

  • Jones MT, Tiptaft EM, Brush FR, Fergusson DAN, Neame RLB (1974) Evidence for dual corticosteroid-receptor mechanisms in the feedback control of adrenocorticotrophin secretion. J Endocrinol 60: 223–233

    PubMed  CAS  Google Scholar 

  • Jones MT, Hillhouse E, Bürden J (1976) Secretion of eortieotropin-releasing hormone in vitro. Front Neuroendocrinol 4: 195–226

    CAS  Google Scholar 

  • Jones MT, Hillhouse EW, Bürden JL (1977) Structure-activity relationships of corticosteroid feedback at the hypothalamic level. J Endocrinol 74: 415–424

    PubMed  CAS  Google Scholar 

  • Kimble DP (1968) Hippocampus and internal inhibition. Psychol Bull 70: 285–295

    PubMed  CAS  Google Scholar 

  • Koch B, Lutz B, Briaud B, Mialhe C (1976) Heterogeneity of pituitary glucocorticoid binding. Evidence for a transcortin-like Compound. Biochim Biophys Acta (Amst) 444: 497–507

    Google Scholar 

  • Koch B, Lutz-Bucher B, Briaud B, Mialhe C (1977) Glucocorticoid binding to plasma membranes of the adenohypophysis. J Endocrinol 73: 399–400

    PubMed  CAS  Google Scholar 

  • Koch B, Lutz-Bucher B, Briaud B, Mialhe C (1978) Inverse effects of corticosterone and thyroxine on glucocorticoid binding sites in the anterior pituitary gland. Acta Endocrinol 88: 29–37

    PubMed  CAS  Google Scholar 

  • Kovacs GL, Telegdy G (1978) Indolamines and behavior: The possible role of serotonergic mechanisms in the pituitary-adrenocortical hormone induced behavioral action. In: Lissak K (ed) Results in neuroendocrinology, neurochemistry and sleep research, vol 7. Akademiai Kiado, Budapest, pp 31–97

    Google Scholar 

  • Kraulis I, Foldes G, Traikov H, Dubrovsky B, Birmingham MK (1975) Distribution, metabolism and biological activity of deoxycorticosterone in the central nervous system. Brain Res 88: 1–14

    PubMed  CAS  Google Scholar 

  • Krieger DT, Liotta A, SudaT, Palkovits M, Brownstein MJ (1977) Presence of immunoassayable /3-lipotropin in bovine brain and spinal cord: lack of concordance with ACTH concentration. Biochim Biophys Res Comm 16: 930–936

    Google Scholar 

  • Landfield PW, Waymire JC, Lynch G (1978) Hippocampal aging and adrenocorticoids: Quantitative correlation. Science 202: 1098–1101

    PubMed  CAS  Google Scholar 

  • Larsson L-I (1978) Distribution of ACTH-like immunoreactivity in rat brain and gastro-intestinal tract. Histochemistry 55: 225–233

    PubMed  CAS  Google Scholar 

  • Levine S (1968) Hormones and conditioning. In: Arnold WJ (ed) Nebraska symposium on motivation. University of Nebraska Press, Lincoln, Nebraska, pp 85 –101

    Google Scholar 

  • Levine S (1970) The pituitary-adrenal system and the developing brain. Progr Brain Res 32: 79–85

    CAS  Google Scholar 

  • Levine S, Haltmeyer GC, Kara GC, Denenberg VH (1967) Physiological and behavioral effects of infantile Stimulation. Physiol Behav 2: 55–59

    CAS  Google Scholar 

  • MacLusky NJ, Turner BB, McEwen BS (1977) Corticosteroid binding in rat brain and pituitary cytosols: resolution of multiple binding components by Polyacrylamide gel based isoelectric focusing. Brain Res 130: 564–571

    PubMed  CAS  Google Scholar 

  • Makman MH, Dworkin B, White A (1971) Evidence for induction by cortisol in vitro of a protein inhibitor of transport and phosphorylation processes in rat thymocytes. Proc Natl Acad Sci USA 68: 1269–1273

    PubMed  CAS  Google Scholar 

  • Marver D (1980) Aldosterone receptors in rabbit renal cortex and rat medulla. Endocrinology 106: 611–618

    PubMed  CAS  Google Scholar 

  • McEwen BS, Luine VN (1978) Speeificity, mechanism and functional significance of Steroid-reeeptor interactions in the brain and pituitary. Coli Intern CNRS 280: 239–267

    Google Scholar 

  • McEwen BS, Wallach G (1973) Corticosterone binding to hippocampus: nuclear and cytosol binding in vivo. Brain Res 57: 373–386

    PubMed  CAS  Google Scholar 

  • McEwen BS, Weiss JM, Schwartz LS (1969) Uptake of corticosterone by rat brain and its concentration by certain limbic structures. Brain Res 16: 227–241

    PubMed  CAS  Google Scholar 

  • McEwen BS, Zigmond RE, Azmitia EC Jr, Weiss JM (1970) Steroid hormone interaction with specific brain regions. In: Bowman RE, Datta SP (eds) Biochemistry of brain and behavior. Plenum Press, New York pp 123–167

    Google Scholar 

  • McEwen BS, Wallach G, Magnus C (1974) Corticosterone binding to hippocampus: immediate and delayed influence of the absence of adrenal secretion. Brain Res 70: 321–334

    PubMed  CAS  Google Scholar 

  • McEwen BS, De Kloet ER, Wallach G (1976) Interactions in vivo and in vitro of corticoids and progesterone with cell nuclei and soluble macromolecules from rat brain regions and pituitary. Brain Res 105: 129–136

    PubMed  CAS  Google Scholar 

  • McEwen BS, Krey LC, Luine VN (1978) Steroid hormone action in the neuroendocrine system: When is the genome involved. In: Reichlin S, Baldessarini RJ, Martin JB (eds) The hypothalamus. Raven Press, New York, pp 255–266

    Google Scholar 

  • McEwen BS, Stephenson BS, Krey LC (1980) Radioimmunoassay of brain tissue and cell nuclear corticosterone. J Neurol Sci Meth 3: 57–65

    CAS  Google Scholar 

  • McGaugh JL, Zornetzer SF, Gold PE, Landfield PW (1972) Modification of memory systems: some neurobiological aspects. Q Rev Biophys 5: 163–186

    PubMed  CAS  Google Scholar 

  • McGinnis JF, De Vellis J (1978) Glucocorticoid regulation in rat brain cell cultures. J Biol Chem 253: 8483–8492

    Google Scholar 

  • Mclntyre DC (1976) Adrenalectomy: protection from kindled convulsion induced amnesia in rats. Physiol Behav 17: 789–795

    Google Scholar 

  • Mclntyre DC, Wann PD (1978) Adrenalectomy: protection from kindled convulsion induced dissociation in rats. Physiol Behav 20: 469–474

    Google Scholar 

  • McWilliams R, Lynch G (1980) Terminal proliferation in the partially deafferentiated dentate gyrus: time courses for the appearance and removal of degeneration and the replacement of lost terminals. J Comp Neurol 187:191–198

    Google Scholar 

  • Micco DJ Jr, McEwen BS, Shein W (1979) Modulation of behavioural inhibition in appetitive extinction following manipulation of adrenal steroids in rats: implications for involvement of the hippocampus. J Comp Physiol Psychol 93: 323–329

    PubMed  Google Scholar 

  • Miliard SA, Costa E, Gal EM (1972) On the control of brain Serotonin and turnover rate by end product inhibition. Brain Res 40: 545–551

    Google Scholar 

  • Moguilevsky M, Raynaud JP (1980) Evidence for a specific mineralocorticoid receptor in rat pituitary and brain. J Steroid Biochem 12: 309–314

    Google Scholar 

  • Moyer KE (1958) Effect of adrenalectomy on anxiety motivated behavior. J Genet Psychol 92: 11–16

    PubMed  CAS  Google Scholar 

  • Moyer KE (1966) Effect of ACTH on open-field behavior, avoidance, startle, and food and water consumption. J Genet Psychol 108: 297–302

    PubMed  CAS  Google Scholar 

  • Moyer KE, Moshein P (1963) Effect of adrenalectomy on the attenuation of a conditioned avoidance response by ECS in the rat. J Comp Physiol Psychol 56:163 –166

    Google Scholar 

  • Nakajima S (1975) Amnesie effect of cycloheximide in the mouse mediated by adrenocortical hormones. J Comp Physiol Psychol 88: 378–385

    PubMed  CAS  Google Scholar 

  • McEwen BS, Wallach G (1973) Corticosterone binding to hippocampus: nuclear and cytosol binding in vivo. Brain Res 57: 373–386

    PubMed  CAS  Google Scholar 

  • McEwen BS, Weiss JM, Schwartz LS (1969) Uptake of corticosterone by rat brain and its concentration by certain limbic structures. Brain Res 16: 227–241

    PubMed  CAS  Google Scholar 

  • McEwen BS, Zigmond RE, Azmitia EC Jr, Weiss JM (1970) Steroid hormone interaction with specific brain regions. In: Bowman RE, Datta SP (eds) Biochemistry of brain and behavior. Plenum Press, New York pp 123–167

    Google Scholar 

  • McEwen BS, Wallach G, Magnus C (1974) Corticosterone binding to hippocampus: immediate and delayed influence of the absence of adrenal secretion. Brain Res 70: 321–334

    PubMed  CAS  Google Scholar 

  • McEwen BS, De Kloet ER, Wallach G (1976) Interactions in vivo and in vitro of corticoids and progesterone with cell nuclei and soluble macromolecules from rat brain regions and pituitary. Brain Res 105: 129–136

    PubMed  CAS  Google Scholar 

  • McEwen BS, Krey LC, Luine VN (1978) Steroid hormone action in the neuroendocrine system: When is the genome involved. In: Reichlin S, Baldessarini RJ, Martin JB (eds) The hypothalamus. Raven Press, New York, pp 255–266

    Google Scholar 

  • McEwen BS, Stephenson BS, Krey LC (1980) Radioimmunoassay of brain tissue and cell nuclear corticosterone. J Neurol Sci Meth 3: 57–65

    CAS  Google Scholar 

  • McGaugh JL, Zornetzer SF, Gold PE, Landfield PW (1972) Modification of memory systems: some neurobiological aspects. Q Rev Biophys 5: 163–186

    PubMed  CAS  Google Scholar 

  • McGinnis JF, De Vellis J (1978) Glucocorticoid regulation in rat brain cell cultures. J Biol Chem 253: 8483–8492

    Google Scholar 

  • Mclntyre DC (1976) Adrenalectomy: protection from kindled convulsion induced amnesia in rats. Physiol Behav 17: 789–795

    Google Scholar 

  • Mclntyre DC, Wann PD (1978) Adrenalectomy: protection from kindled convulsion induced dissociation in rats. Physiol Behav 20: 469–474

    Google Scholar 

  • McWilliams R, Lynch G (1980) Terminal proliferation in the partially deafferentiated dentate gyrus: time courses for the appearance and removal of degeneration and the replacement of lost terminals. J Comp Neurol 187:191–198

    Google Scholar 

  • Micco DJ Jr, McEwen BS, Shein W (1979) Modulation of behavioural inhibition in appetitive extinction following manipulation of adrenal steroids in rats: implications for involvement of the hippocampus. J Comp Physiol Psychol 93: 323–329

    PubMed  Google Scholar 

  • Miliard SA, Costa E, Gal EM (1972) On the control of brain Serotonin and turnover rate by end produet inhibition. Brain Res 40: 545–551

    Google Scholar 

  • Miller AL, Chaptal C, McEwen BS, Peck EJ Jr (1978) Modulation of high affinity GABA uptake into hippocampal synaptosomes by glucocorticoids. Psychoneuroendocrinology 3:15 5 –164

    Google Scholar 

  • Moguilevsky M, Raynaud JP (1980) Evidence for a specific mineralocorticoid receptor in rat pituitary and brain. J Steroid Biochem 12: 309–314

    Google Scholar 

  • Moyer KE (1958) Effect of adrenalectomy on anxiety motivated behavior. J Genet Psychol 92: 11–16

    PubMed  CAS  Google Scholar 

  • Moyer KE (1966) Effect of ACTH on open-field behavior, avoidance, startle, and food and water consumption. J Genet Psychol 108: 297–302

    PubMed  CAS  Google Scholar 

  • Moyer KE, Moshein P (1963) Effect of adrenalectomy on the attenuation of a conditioned avoidance response by ECS in the rat. J Comp Physiol Psychol 56:163 –166

    Google Scholar 

  • Nakajima S (1975) Amnesie effect of cycloheximide in the mouse mediated by adrenocortical hormones. J Comp Physiol Psychol 88: 378–385

    PubMed  CAS  Google Scholar 

  • Nakajima S (1978) Attenuation of amnesia by hydroeortisone in the mouse. Physiol Behav 20: 607–611

    PubMed  CAS  Google Scholar 

  • Nakanishi S, Kita T, Taii S, Imura H, Numa S (1977) Glucocorticoid effect on the level of corticotropin messenger RNA activity in rat pituitary. Proc Natl Acad Sci USA 74: 3283–3286

    PubMed  CAS  Google Scholar 

  • Neckers L, Sze PY (1975) Regulation of 5-hydroxytryptamine metabolism in mouse brain by adrenal glucocorticoids. Brain Res 93: 123–132

    PubMed  CAS  Google Scholar 

  • Nyakas C, De Kloet ER, Bohus B (1979) Hippocampal function and putative corticosterone receptors: Effect of septal lesions. Neuroendocrinology 29: 301–312

    Google Scholar 

  • Nyakas Cs, De Kloet ER, Veldhuis HD, Bohus B (1981) Corticosterone binding eapacity increases in contralateral hippocampus after partial unilateral hippocampectomy. Neurosci Lett 21: 339–343

    Google Scholar 

  • Olpe H-R, McEwen BS (1976) Glucocorticoid binding to receptor-like proteins in rat brain and pituitary: ontogenetic and experimentally induced changes. Brain Res 105: 121–128

    PubMed  CAS  Google Scholar 

  • Papez JW (1937) A proposed mechanism of emotion. Arch Neurol Psychiatr 38:725–744

    Google Scholar 

  • Pappas BA, Gray P (1971) Cue value of dexamethasone for fearmotivated behavior. Physiol Behav 6: 127–130

    PubMed  CAS  Google Scholar 

  • Pardridge WM, Mietus LJ (1979) Transport of Steroid hormones through the rat blood brain barrier. J Clin Invest 64:145 –154

    Google Scholar 

  • Pietras RJ, Szego CM (1977) Specific binding sites for oestrogen at the outer surface of isolated endometrial cells. Nature 265: 69–72

    PubMed  CAS  Google Scholar 

  • Rees HD, Gray HF (1982) Glucocorticoids and mineraloeortieoids: Actions on brain and behavior. In: Nemeroff CB, Dunn AJ (eds) Behavioral endocrinolgy. Spectrum Publ, New York, in press

    Google Scholar 

  • Rees HD, Stumpf WE, Sar M (1975) Autoradiographie studies with 3H-dexamethasone in the rat brain and pituitary. In: Stumpf WE, Grant LD (eds) Anatomical neuroendocrinology. Karger, Basel, pp 262–269

    Google Scholar 

  • Rees HD, Stumpf WE, Sar M, Petrusz P (1977) Autoradiographic studies of 3H-Dex uptake by immunoeytochemically characterized cells of the rat pituitary. Cell Tissue Res 182: 347 - 356

    PubMed  CAS  Google Scholar 

  • Rhees RW, Grosser BI, Stevens W (1975) Effect of Steroid competition and time on the uptake of [3H]-corticosterone in the rat brain; an autoradiographie study. Brain Res 83: 293–300

    PubMed  CAS  Google Scholar 

  • Rigter H, Crabbe JC (1979) Modulation of memory by pituitary hormones and related peptides. Vitam Horm 37: 153–241

    PubMed  CAS  Google Scholar 

  • Robustelli F, Geller A, JarvikME (1972) Systematic analysis of the detention phenomenon in mice. J Comp Physiol Psychol 81: 472–482

    Google Scholar 

  • Rossier J, French E, Gros C, Minick S, Guillemin R, Bloom FE (1979) Adrenalectomy, dexamethasone or stress alters peptide levels in rat anterior pituitary but not intermediate lobe or brain. Life Sci 25: 2105–2112

    PubMed  CAS  Google Scholar 

  • Roth GS (1976) Reduced glucocorticoid binding site concentration in cortical neuronal perikarya from senescent rats. Brain Res 107: 345–354

    PubMed  CAS  Google Scholar 

  • Rousseau GG, Baxter JD, Tomkins GM (1972) Glucocorticoid receptors: relations between Steroid binding and biologic effects. J Mol Biol 67: 99–107

    PubMed  CAS  Google Scholar 

  • Rousseau GG, Baxter JD, Higgins SJ, Tomkins GM (1978) Steroid induced nuclear binding of glucocorticoid receptors in intact hepatoma cells. J Mol Biol 79: 539–554

    Google Scholar 

  • Sakly M, Koch B (1981) Ontogenesis of glucocorticoid receptors in anterior pituitary gland: Transient dissociation among cytoplasmic density, nuclear uptake and regulation of corticotropic activity. Endocrinology 108: 591–596

    Google Scholar 

  • Samuels HH, Tomkins GM (1970) Relation of Steroid structure to enzyme induction in hepatoma tissue culture cells. J Mol Biol 52: 57–74

    PubMed  CAS  Google Scholar 

  • Schapiro S (1968) Some physiological, biochemical and behavioral consequences of neonatal hormone administration: cortisol and thyroxine. Gen Comp Endocrinol 10: 214–218

    PubMed  CAS  Google Scholar 

  • Selye H (1950) Stress. The physiology and pathology of exposure to stress. Acta Medica Publication, Montreal

    Google Scholar 

  • Sherman MR, Pickering LA, Rollwagen FM, Miller LK (1978) Mero-receptors: proteolytic fragments of receptors containing the steroid-binding site. Fed Proc 37:167 –173

    PubMed  CAS  Google Scholar 

  • Simantov R (1979) Glucocorticoid inhibits endorphin synthesis by pituitary cells. Nature 280: 684–685

    PubMed  CAS  Google Scholar 

  • Smelik PG, Papaikonomou E (1973) Steroid-feedback mechanisms in pituitary-adrenal function. Progr Brain Res 34: 99–110

    Google Scholar 

  • Squire LR, John SSt, Davis HP (1976) Inhibitors of protein synthesis and memory: dissociation of amnesic effects and effects on adrenal Steroid genesis. Brain Res 112: 200–206

    Google Scholar 

  • Stevens W, Reed DJ, Erickson S, Grosser BI (1973) The binding of corticosterone to brain proteins, diurnal Variation. Endocrinology 93: 1152–1156

    PubMed  CAS  Google Scholar 

  • Stewart J, Krebs WH, Kaczender E (1967) State-dependent learning produced with steroids. Nature 216: 1223–1224

    PubMed  CAS  Google Scholar 

  • Strum JM, Feldman D, Taggart B, Marver D, Edelman IS (1975) Autoradiographic localization of corticosterone receptors ( Type III) to the collecting tubule of the rat kidney. Endocrinology 97: 505–516

    PubMed  CAS  Google Scholar 

  • Stumpf WE, Sar M (1975) Anatomical distribution of corticosterone concentrating neurons in rat brain. In: Stumpf WE, Grant LD (eds) Anatomical neuroendocrinology. Karger, Basel, pp 254–261

    Google Scholar 

  • Svec F, Harrison RW (1979) The intracellular distribution of natural and synthetic glucocorticoids in the AtT-20 cell. Endocrinology 104: 1563–1568

    PubMed  CAS  Google Scholar 

  • Sze PY, Neckers L, Towle AC (1976) Glucocorticoids as a regulatory factor for brain tryptophan hydroxylase. J Neurochem 26: 169–173

    PubMed  CAS  Google Scholar 

  • Tang F, Philips JG (1978) Pituitary-adrenal response in male rats subjected to continuous ether stress and the effect of dexamethasone treatment. J Endocrinol 75: 325–326

    Google Scholar 

  • Turner BB (1978) Ontogeny of glucocorticoid binding in rodent brain. Am Zool 18: 461–475

    CAS  Google Scholar 

  • Turner BB, McEwen BS (1980) Hippocampal cytosol binding capacity of corticosterone: no depletion with nuclear loading. Brain Res 189: 169–182

    PubMed  CAS  Google Scholar 

  • Vale W, Rivier C, Yang L, Minick S, Guülemin R (1978) Effects of purified hypothalamic corticotropin-releasing factor and other substances on the secretion of adrenocortieotropin and ß-endorphin-like immunoactivities in vitro. Endocrinology 103: 1910–1915

    PubMed  CAS  Google Scholar 

  • Valeri P, Angelucci L, Palmery M (1978) Specific 3H-corticosterone uptake in the hippocampus and septum varies with social settings in mice. Neurosci Lett 9: 249 - 254

    PubMed  CAS  Google Scholar 

  • Valtin H, Schroeder HA (1964) Familial hypothalamic diabetes insipidus in rats ( Brattleboro strain ). Am J Physiol 206: 425–530

    PubMed  CAS  Google Scholar 

  • Van Delft AML (1970) Conditioned avoidance behavior and the pituitary-adrenal system in the rat. Ph D Thesis, University of Utrecht

    Google Scholar 

  • Van Dijk AMA, Van Wimersma Greidanus TjB, Burbach JPH, De Kloet ER, De Wied D (1981) Brain adrenocorticotrophin after adrenalectomy and sham-operation of rats. J Endocrinolog 88: 243 - 253

    Google Scholar 

  • Van Wimersma Greidanus TjB (1970) Effects of steroids on extinction of an avoidance response in rats. A structure-activity relationship study. Progr Brain Res 32:185 –191

    Google Scholar 

  • Van Wimersma Greidanus TjB, De Wied D (1969) Effects of intracerebral implantation of corticosteroids on extinetion of an avoidance response in rats. Physiol Behav 4: 365–370

    Google Scholar 

  • Van Wimersma Greidanus TjB, De Wied D (1971) Effects of systemic and intracerebral administration of two opposite acting ACTH-related peptides on extinction of conditioned avoidance behavior. Neuroendocrinology 7: 291–301

    Google Scholar 

  • Van Wimersma Greidanus TjB, Wijnen H, Deurloo J, De Wied D (1973) Analysis of the effect of progesterone on avoidance behavior. Horm Behav 4: 19–30

    Google Scholar 

  • Van Wimersma Greidanus TjB, Bohus B, De Wied D (1974) Differential localization of the influence of lysine-vasopressin and of ACTH 4–10 on avoidance behavior: a study in rats bearing lesions in the parafascicular nuclei. Neuroendocrinology 14: 280288

    Google Scholar 

  • Veldhuis D, De Kloet ER (1981) Capacity of corticosterone receptor system in rat brain: Control by neuropeptides and hormones. In: Stark E, Makara GB, Acs Zs, Endröczi E (eds) Proceedings of the XXVIII Intern Congress of Physiological Sciences, vol 13. Akademiai Kiado, Budapest, pp 61–65

    Google Scholar 

  • Veldhuis HD, De Kloet ER (1982a) Significance of ACTH 4 –1 0 in the control of hippocampal corticosterone receptor capacity of hypophysectomized rats. Neuroendocrinology

    Google Scholar 

  • Veldhuis HD, De Kloet ER (1982b) Vasopressin-related peptides increase the hippocampal corticosterone receptor capacity of diabetes insipidus ( Brattleboro) rats. Endocrinology 110: 153–157

    Google Scholar 

  • Vermes I, Smelik PG, Mulder AH (1976) Effects of hypophysectomy, adrenalectomy and corticosterone treatment on uptake and release of putative central neurotransmitters by rat hypothalamic tissue in vitro. Life Sci 19: 1719–1726

    PubMed  CAS  Google Scholar 

  • Versteeg DHG, De Kloet ER, Van Wimersma Greidanus TjB, De Wied D (1979) Vasopressin modulates the activity of catecholamine containing neurons in specific brain regions. Neurosci Lett 11: 69–73

    Google Scholar 

  • Von Zerssen D (1976) Mood and behavioural changes under corticosteroid therapy. In: Itil TM, Laudahn G, Herrmann WM (eds) Psychotropic action of hormones. Spectrum Publ, New York, pp 195–222

    Google Scholar 

  • Warembourg M (1975) Radioautographic study of the rat brain after injection of [1,2-3H] corticosterone. Brain Res 89: 61–70

    PubMed  CAS  Google Scholar 

  • Watson SJ, Akil H (1981) On the multiplicity of active substances in Single neurons: j3-endorphin and a-MSH as a model system. In: De Wied D, van Keep PA (eds) Hormones and the brain. MTP Press, Lancaster, pp 73–86

    Google Scholar 

  • Watson S, Akil H, Richard CW, Barchs JD (1978) Evidence for two separate Opiate peptide neuronal systems. Science 275: 226–228

    CAS  Google Scholar 

  • Weiss JM, McEwen BS, Silva MT, Kalkut M (1970) Pituitary-adrenal alterations and fear responding. Am J Physiol 218: 864–868

    PubMed  CAS  Google Scholar 

  • Wertheim GA, Conner RL, Levine S (1967) Adrenocortical influences on free-operant avoidance behavior. J Exp Anal Behav 10: 555–563

    PubMed  CAS  Google Scholar 

  • Westphal U (1971) Steroid protein interaction. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Weijnen JAWM, Slangen JL (1970) Effects of ACTH-analogues on extinction of conditioned behavior. Progr Brain Res 32: 221–235

    CAS  Google Scholar 

  • Woodbury DM (1972) Biochemical effects of adrenocortical steroids on the central nervous system. In: Lajtha A (ed) Handbook of Neurochemistry, vol VII. Plenum Press, New York, pp 225–287

    Google Scholar 

  • Wränge O (1979) A comparison of the glucocorticoid receptor in cytosol from rat liver and hippocampus. Biochim Biophys Acta 582: 346–357

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bohus, B., De Kloet, E.R., Veldhuis, H.D. (1982). Adrenal Steroids and Behavioral Adaptation: Relationship to Brain Corticoid Receptors. In: Ganten, D., Pfaff, D. (eds) Adrenal Actions on Brain. Current Topics in Neuroendocrinology, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68336-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68336-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68338-1

  • Online ISBN: 978-3-642-68336-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics