Skip to main content

Endocrine and Peptide Functions in the Sleep-Waking Cycle

  • Conference paper
Sleep

Part of the book series: Current Topics in Neuroendocrinology ((CT NEUROENDOCRI,volume 1))

Abstract

Ever since the landmark discovery of Aserinsky and Kleitman (1953) that certain periods of sleep were accompanied by conjugate rapid eye movements (REM), which made it possible to distinguish between two phases of sleep, physiologists have been concerned with finding their neurohumoral counterparts. For many years this aspect was dominated by the monoamine theory of sleep, largely due to the very elegant series of experiments carried out by Jouvet and his group (1972). In recent years, partly due to some conflicting evidence bearing on the monoamine theory (Drucker-Colin and Spanis 1976; Gillin et al. 1978; Ramm 1979) and partly due to the enormous interest generated in the neurosciences by hormones and peptides, this theory has fallen slightly into disfavor. This state of affairs should not be taken to signify that the monoamines do not play a role in sleep, but rather that their role should no longer be conceived as being of central importance, since in all probability sleep depends on a number of systems.

This work was partially supported by Grant number PCCBNAL 790215 of the Consejo Nacional de Ciencia y Tecnologia

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe K, Kroning J, Greer MA, Critchlow V (1979) Effects of destruction of the supra-chiasmatic nuclei on the circadian rhythms in plasma corticosterone, body temperature, feeding and plasma thyrotropin. Neuroendocrinology 29: 119–131

    Article  PubMed  CAS  Google Scholar 

  • Adam, K, Oswald I (1977) Sleep is for tissue restoration. J Coll Physicians Lond 11: 376–388

    CAS  Google Scholar 

  • Amico JA, Stolc LT, Seif SM (1980) Mid-cycle elevation of oxytocin and oxytocin-neurophysin in women (Abstr 346). The Endocrine Society 62nd Annual Meeting. Endocrine Soc, Washington

    Google Scholar 

  • Annunziato L (1979) Regulation of the tuberoinfundibular and nigrostriatal system. Evidence for different kinds of dopaminergic neurons in the brain. Neuroendocrinology 29: 66–76

    Article  PubMed  CAS  Google Scholar 

  • Antunes JL, Carmel PW, Zimmerman EA (1977) Projections from the paraventricular nucleus to the zona externa of the median eminence of the rhesus monkey: an immunohistochemical study. Brain Res 137: 1–10

    Article  PubMed  CAS  Google Scholar 

  • Aschoff J (1979) Circadian rhythms: general features and endocrinological aspects. In: Krieger DT (ed) Endocrine rhythms. Raven, New York, pp 1–62

    Google Scholar 

  • Aserinsky E, Kleitman N (1953) Regularly occurring periods of eye motility, and concomitant phenomena during sleep. Science 118: 273–274

    Article  PubMed  CAS  Google Scholar 

  • Barnea A, Oliver C, Porter JC (1977) Subcellular compartmentalization by hypothalamic peptides: characteristics and ontogeny. Adv Exp Mèd Biol 87: 49–75

    PubMed  CAS  Google Scholar 

  • Baxter JD, Funder JW (1979) Hormone receptors. N Engl J Med 301: 1149–1161

    Article  PubMed  CAS  Google Scholar 

  • Baxter JD, Eberhardt NL, Apriletti JW, Johnson LK, Ivarie RD, Schachter BS, Morris JA, Seeburg PH, Goodman HM, Latham KR, Polansky JR, Martial JA (1979) Thyroid hormone receptors and responses. Recent Prog Horm Res 35: 95–153

    Google Scholar 

  • Beaumont A, Hughes J (1979) Biology of opiod peptides. Annu Rev Pharmacol Toxicol 19: 245–267

    Article  PubMed  CAS  Google Scholar 

  • Ben-Jonathan N, Oliver CH, Weiner HJ, Mical RS, Porter JC (1977) Dopamine in hypophysial portal plasma of the rat during the estrous cycle and throughout pregnancy. Endocrinology 100: 542

    Article  Google Scholar 

  • Bentley PJ (1976) Comparative vertebrate endocrinology. Cambridge University Press, Cambridge Melbourne New York

    Google Scholar 

  • Bergland RM, Page RB (1980) Pituitary-brain vascular relations: a new paradigm. Wislocki’s models for brain-pituitary relations emphasizing portal “veins” is reconsidered and revised. Science 204: 18–29

    Article  Google Scholar 

  • Bloom FE (to be published) Peptides: integrators of cell and tissue function. Soc Gen Physiol Ser 35

    Google Scholar 

  • Bowie EP, Herbert DC (1976) Immunocytochemical evidence for the presence of arginine vasotocin in rat pineal gland. Nature 261: 66

    Article  PubMed  CAS  Google Scholar 

  • Boyar RM (1978a) Control of the onset of puberty. Annu Rev Med 29: 509–528

    Article  PubMed  CAS  Google Scholar 

  • Boyar RM (1978b) Sleep related endocrine rhythms. In: Reichlin S, Baldessarini RJ, Martin JB The hypothalamus. Raven, New York, pp 373:386

    Google Scholar 

  • Brazeau P, Vale W, Burgus R, Ling N, Blutcher M, Rivier J, Guillemin R (1973) Hypothalamic peptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science 179: 77–79

    Article  PubMed  CAS  Google Scholar 

  • Brodskii V, Gusatinskii NV, Kogan AB, Mechaeva NV (1974) Variations in the intensity of 3H-leucine incorporation into proteins during slow wave and paradoxical phases of natural sleep in the cat associative cortex. Dokl Akad Nauk SSSR 215: 748–750

    PubMed  CAS  Google Scholar 

  • Brownfield MS, Kozlowsli GP (1977) The hypothalamo-choroidal tract I. iImmuno-histochemical demonstration of neurophysin pathways to telencephalic choroidal plexuses and cerebrospinal fluid. Cell Tissue Res 178: 111–127

    Article  PubMed  CAS  Google Scholar 

  • Brownstein MJ, Russel JT, Gainer H (1980) Synthesis, transport and release of posterior pituitary hormones. Science 207: 373–378

    Article  PubMed  CAS  Google Scholar 

  • Candland DK, Horowitz SH, Culbertson JL (1962) Acquisition and retention of acquired avoidance with gentling as reinforcement. J Comp Physiol Psychol 61: 50–58

    Google Scholar 

  • Chihara K, Arimura A, Schally AV (1979) Effect of intraventricular injection of dopamine, norepinephrine, acetylcholine and 5-hydroxitryptamine on immunoreactive somatostatin release into rat hypophyseal portal blood. Endocrinology 104: 1656–1662

    Article  PubMed  CAS  Google Scholar 

  • Cicero TJ (1980) Effects of exogenous and endogenous opiates on the hypothalamic-pituitary-gonadal axis in the male. Fed Proc 39: 2551–2554

    PubMed  CAS  Google Scholar 

  • Cohen DH, Cabot JB (1979) Toward a cardiovascular neurobiology. TINS 2: 273–276

    Google Scholar 

  • DeAndres I, Gutierrez-Rivas E, Nava E, Reinoso-Suarez F (1976) Independence of sleep-wakefulness cycle in an implanted head “encephale isolé”. Neurosci Lett 2: 13–18

    Article  CAS  Google Scholar 

  • Defendi R, Zimmermann EA (1978) The magnocellular neurosecretory system of the mammalian hypothalamus. In: Reichlin S, Baldessarini RJ, Martin JB (eds) The hypothalamus. Raven, New York, pp 137–152

    Google Scholar 

  • DeWeid D, Versteeg DH (1979) Neurohypolyseal rinciples and memory. Fed Proc 38: 2348–2354

    Google Scholar 

  • Dogterom J, Pevet P, Buijs RM, Snijdewint SM, Swaab DJ (1979) Vasopressin, oxytocin and vasotocin in pineal gland, subcommisural organ and foetal pituitary: failure to demonstrate vasotocin in mammals. Acta Endocrinol [Suppl] (Copenh) 225: 413

    Google Scholar 

  • Drucker-Colin RR (1973) Crossed perfusion of a sleep inducing brain tissue substance in conscious cats. Brain Res 56: 123–134

    Article  PubMed  CAS  Google Scholar 

  • Drucker-Colin RR, Benitez J (1977) REM sleep rebound during withdrawal from chronic amphetamine administration is blocked by chloramphenicol. Neurosci Lett 6: 267–271

    Article  Google Scholar 

  • Drucker-Colin RR, Gutiérrez MC (1976) Effects of forebrain lesions on release of proteins from the midbrain reticular formation during the sleep-wake cycle. Exp Neurol 52: 339–344

    Article  PubMed  CAS  Google Scholar 

  • Drucker-Colin RR, Spanis CW (1975) Neurohumoral correlates of sleep: increase of proteins during rapid eye movement sleep. Experientia 31: 551–552

    Article  PubMed  CAS  Google Scholar 

  • Drucker-Colin RR, Spanis CW (1976) Is there a sleep transmitter? Prog Neurobiol 6: 1–22

    Article  PubMed  CAS  Google Scholar 

  • Drucker-Colin RR, Rojas-Ramirez JA, Vera-Trueba J, Monroy-Ayala G, Hernández Peon R (1970) Effect of crossed-perfusion of the midbrain reticular formation upon sleep. Brain Res 23: 269–273

    Article  PubMed  CAS  Google Scholar 

  • Drucker-Colin RR, Spanis CW, Hunyadi J, Sassin JF, McGaugh JL (1975a) Growth hormone effects on sleep and wakefumess in the rat. Neuroendocrinology 18: 1–8

    Article  PubMed  CAS  Google Scholar 

  • Drucker-Colin RR, Spanis CW, Cotman CW, McGaugh JL (1975 b) Changes in protein in perfusates of freely moving cats: relation to behavioral state. Science 187: 963–965

    Article  PubMed  CAS  Google Scholar 

  • Drucker-Colin RR, Bernal-Pedraza JG, Diaz-Mitoma F, Zamora-Quezada J (1977) Oscillatory changes in multiple unit activity during rapid eye movement sleep. Exp Neurol 57: 331–341

    Article  PubMed  CAS  Google Scholar 

  • Drucker-Colin RR, Zamora J, Bernal-Pedraza J, Sosa B (1979a) Modification of REM sleep and associated phasic activities by protein synthesis inhibitors. Exp Neurol 63: 458–467

    Article  PubMed  CAS  Google Scholar 

  • Drucker-Colin RR, Dreyfus-Cortes G, Bernal-Pedraza JG (1979b) Differences in multiple unit activity discharge frequency during short and long REM sleep periods: effects of protein synthesis inhibition. Behav Neural Biol 26: 123–127

    Article  PubMed  CAS  Google Scholar 

  • Drucker-Colin RR, Tuena de Gomez-Puyou M, Gutierrez MC, Dreyfus-Cortes G (1980) Immunological approach to the study of neurohumoral sleep factors: effects on REM sleep of antibodies to brain stem proteins. Exp Neurol 69: 563–575

    Article  PubMed  CAS  Google Scholar 

  • Dupont A, Barden N, Cusan L, Merand Y, Labrie F, Veudry H (1980) β-endorphin and Met-enkephalins: their distribution, modulation by estrogens and haloperidol, and role in neuroendocrine control. Fed Proc 39: 2544-2550

    PubMed  CAS  Google Scholar 

  • Elde R, Hökfelt T (1978) Distribution of hypothalamic hormones and other peptides in the brain. In:Ganong WF, Martini L (eds) Frontiers in neuroendocrinology, vol 5. Raven, New York, pp 1–33

    Google Scholar 

  • Elde R, Hökfelt T (1979) Localization of hypophysiotropic peptides and other biologically active peptides within the brain. Annu Rev Physiol 41: 587–602

    Article  PubMed  CAS  Google Scholar 

  • Emanuele N, Kirsteins L, Lawrence AM (1979) Brain LH: localization, response to hypophysectomy and ovariectomy. Clin Res 27: 250

    Google Scholar 

  • Enright JT (1980) The timing of sleep and wakefulness. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Epstein AN (1978) The neuroendocrinology of thirst and salt peptides. In: Ganong WF, Martini L (eds) Frontiers in neuroendocrinology, vol 5. Raven, New York, pp 101–134

    Google Scholar 

  • Epstein AN (1980) Angiotensin induced water and salt intake. In: Valverde-R C, Aréchiga H (eds) Comparative aspects of neuroendocrine control and behavior. Karger, Basel Paris London New York, pp 104–119

    Google Scholar 

  • Fencl V, Koski G, Pappenheimer JR (1971) Factors in cerebrospinal fluid from goats that affect sleep and activity in rats. J Physiol (Lond) 216: 565–589

    CAS  Google Scholar 

  • Fisher LA, Spinderl ER, Fernstrom JD (1980) Nonapeptide content of the bovine pineal gland (Abstr 11). The Endocrine Society 62nd Annual Meeting. Endocrine Soc, Washington, p 103

    Google Scholar 

  • Fitzsimons JT (1980) Angiotension in the control of water and sodium intake. In: Bloom FE (ed) Peptides: integrators of cell and tissue functions. Raven, New York, pp 99–107

    Google Scholar 

  • Flerko B (1980) The hypophysial portal circulation today. Neuroendocrinology 30: 56–63

    Article  PubMed  CAS  Google Scholar 

  • Frantz AG (1979) Rhythms in prolactin secretion. In: Keirieger DT (ed) Endocrine rhythms. Raven, New York, pp 175–186

    Google Scholar 

  • Fuller RW, Wong DT (1977) Inhibition of serotonin reuptake. Fed Proc 36: 2154–2158

    PubMed  CAS  Google Scholar 

  • Fuxe K, Hökfelt T, Anderson K, Ferland L, Johansson O, Ganten D, Eneroth P, Gustafsson JA, Skett P, Said SI, Mutt V (1978 a) The transmitters of the hypothalamus. In: Cox B, Morris ID, Weston AH (eds) Pharmacology of the hypothalamus. University Park Press, Baltimore, pp 31–61

    Google Scholar 

  • Fuxe K, Ogren SO, Agnati L, Jonsson G (1978b) Further evidence that methergoline is a central 5-hydroxytryptamine receptor blocking agent. Neurosci Lett 9: 195–200

    Article  PubMed  CAS  Google Scholar 

  • Fuxe K, Anderson K, Hökfelt T, Mutt V, Ferland L, Agnati LF, Ganten D, Said S, Eneroth P, Gustafsson JA (1979) Localization and possible function of peptidergic neurons and their interactions with central catecholamine neurons, and the central actions of gut hormones. Fed Proc 38: 2333–2340

    PubMed  CAS  Google Scholar 

  • Gainer H (ed) (1977) Peptides in neurobiology. Plenum, New York London

    Google Scholar 

  • Gallo RV (1980) Neuroendocrine regulation of pulsatile luteirizing hormone release in the rat. Neuroendocrinology 30: 122–131

    Article  PubMed  CAS  Google Scholar 

  • Georg CPL, Messerli FH, Genest J, Nowaczynski W, Boucher R, Kuchel O, Ortega RO (1975) Diurnal variation of plasma vasopressin in man. J Clin Endocrinol Metab 41: 332–338

    Article  Google Scholar 

  • Gillin JC, Mendelson WB, Sitaram N, Wyatt RJ (1978) The neuropharmacology of sleep and wakefulness. Ann Rev Pharmacol Toxicol 18: 563–579

    Article  CAS  Google Scholar 

  • Golde DW (1980) Growth hormone. Ann Intern Med 92: 650–662

    Google Scholar 

  • Grave GD (1977) (ed) Thyroid hormones and brain development. Raven, New York

    Google Scholar 

  • Grossman MI (1979) Neural and hormonal regulation of gastrointestinal function: an overview. Ann Rev Physiol 41: 27–33

    Article  CAS  Google Scholar 

  • Guansing A, Hagen TC, Hojuat S, Lawrence AM (1977) Brain TSH: extra-pituitary localization of immuno and bioassayable TSH-like activity. Clin Res 25: 605A

    Google Scholar 

  • Gudelsky GA, Porter JC (1980) Release of dopamine from tubero infundibular neurons into pituitary stalk blood after prolactin or haloperidal administration. Endocrinology 106: 526–529

    Article  PubMed  CAS  Google Scholar 

  • Guillemin R (1978) Biochemical and physiological correlates of hypothalamic peptides. The new endocrinology of the neuron. In: Reichlin S, Baldessarini RJ, Martin JB (eds) The hypothalamus. Raven, New York, p 155

    Google Scholar 

  • Guy J, Leclerc R, Vaudry H, Pelletier G (1980) Identification of a second category of MSH-containing neurons in the rat brain (Abstr 117). The Endocrine Society 62 nd Annual Meeting. Endocrine Soc, Washington, p 104

    Google Scholar 

  • Havlicek V, Resek M, Friesen H (1976) Somatostatin and thyrotropin releasing hormone: central effect on sleep and motor system. Pharmacol Biochem Behav 4: 455–459

    Article  PubMed  CAS  Google Scholar 

  • Hendriksen SJ, Jacobs BJ, Dement WC (1972) Dependence of REM sleep PGO spikes on cholinergic mechanisms. Brain Res 48: 412–416

    Article  Google Scholar 

  • Heritage AS, Stumpf WE, Sar M, Grant LD (1980) Brainstem catecholamine neurons are target sites for sex steroid hormones. Science 207: 1377–1379

    PubMed  CAS  Google Scholar 

  • Hery F, Pujol JF, Lopez M, Macon J, Glowinski J (1970) Increased synthesis and utilization of serotonin in the central nervous system of the rat during paradoxical sleep deprivation. Brain Res 21: 391–403

    Article  PubMed  CAS  Google Scholar 

  • Hexum TD, Hanbauer I, Yang H-YT, Costa E (1980) Secretion of enkephalinlike peptides from dog adrenal gland (Abstr 1799). Fed Proc 39: 605

    Google Scholar 

  • Hobson JA, McCarley RW, Freedman R, Pivik RT (1974) Time course of discharge rate changes by cat pontine brain stem neurons during sleep cycle. J Neurophysiol 37: 1297–1309

    PubMed  CAS  Google Scholar 

  • Hökfelt T, Johansson O, Ljungdahl A, Lundberg J, Schultzberg M, Fuxe K, Goldstein M, Steinbusch H, Verhofstad A, Elde R (1978a) Neurotransmitters and neuropeptides: distribution patterns and cellular localization as revealed by immunocytochemistry. In: Fuxe K, Hökfelt T, Luft R (eds) Central regulation of the endocrine system. Plenum, New York London, pp 31–48

    Google Scholar 

  • Hökfelt T, Elde R, Fuxe K, Johansson O, Ljungdahl A, Goldstein M, Luft R, Nilsson G, Said S, Fraser H, Jeffcoate SL, White N, Ganten D, Rehfeld J (1978b) Aminergic and peptidergic pathways in the nervous system with special reference to the hypothalamus. In: Reichlin S, Baldessarini RJ, Martin JB (eds) The hypothalamus. Raven, New York, pp 69–135

    Google Scholar 

  • Ibata Y, Watanabe K, Kinoshita H, Kubo S, Sano Y (1979) The location of LHRH neurons in the rat hypothalamus and their pathways to the median eminence. Cell Tissue Res 198: 381–395

    Article  PubMed  CAS  Google Scholar 

  • Inouye SIT, Kawamura H (1979) Persistence of circadian rhythmicity in a mammalian hypothalamic “island” containing the suprachiasmatic nucleus. Proc Natl Acad Sci USA 76: 5962–5966

    Article  PubMed  CAS  Google Scholar 

  • Jackson IMD (1978) Extrahypothalamic and phylogenetic distribution of hypothalamic peptides. In: Reichlin S, Baldessarini RJ, Martin JB (eds) The hypothalamus. Raven, New York, pp 217–231

    Google Scholar 

  • Jackson IMD (1980) Distribution and evolutionary significance of the hypophysiotropic hormones of the hypothalamus. In: Valverde-R C, Arechiga H (eds) Comparative aspects of neuroendocrine control of behavior. Karger, Basel Paris London New York, pp 36–69

    Google Scholar 

  • Johnston CA, Demarest KT, More KE (1980) Involvement of protein synthesis in the delayed activation of dopamine synthesis in tuberoinfundibular nerves by prolactin. Fed Proc 39: 555

    Google Scholar 

  • Jouvet M (1972) The role of monoamines and acetylcholine in the regulation of the sleep-waking cycle. Ergb Physiol Biol Chem Exp Pharmakol 64: 166–307

    CAS  Google Scholar 

  • Jouvet M (1978) Does a genetic programming of the brain occur during paradoxical sleep. In: Buser H, Rougeul-Buser M (eds) Cerebral correlates of conscious experience. Elsevier, Amsterdam, pp 245–261

    Google Scholar 

  • Jurado JL, Rhodes JM, Fernández-Guardiola A, Valverde R-C (1979) Positive results in two cases of narcolepsy treated with thyrotropin-releasing hormone (TRH) (Abstr 2359). Society Neuroscience 9 th Annual Meeting. Soc for Neurosci, Atlanta, Georgia, p 696

    Google Scholar 

  • Kanamori N, Sakai K, Jouvet M (to be published) Neuronal activity specific to paradoxical sleep in the ventromedial medullary reticular formation of unrestrained cats. Brain Res

    Google Scholar 

  • Karacan I, Rosenbloom AL, Williams RL, Finley WW, Nursch CJ (1971) Slow wave sleep deprivation in relation to plasma growth hormone concentration. Behav Neuropsychiatry 2: 11–14

    PubMed  CAS  Google Scholar 

  • Kastin AJ, Nissen C, Schally AV, Coy DH (1978) Radioimmunoassay of DSIP-like material in rat brain. Brain Res Bull 3: 691–695

    Article  PubMed  CAS  Google Scholar 

  • Khachaturian H, Sladek JR Jr (1980) Simultaneous monoamine histofluorescence and neuropeptide immunocytochemistry. III. Ontogeny of catecholamine varicosities and neurophysin neurons in the rat supraoptic and paraventricular nuclei. Peptides 1: 77–95

    Article  PubMed  CAS  Google Scholar 

  • King JA (1979) Phylogenetic and anatomical distribution of somatostatin in vertebrates. Endocrinology 105: 1322–1329

    Article  PubMed  CAS  Google Scholar 

  • Kitahama K, Valatx JL (1975) Effet du chloramphenicol et du thiamphenicol sur le sommeil de la souris. Comptes rendues Soc Biol (Paris) 169: 1522–1525

    CAS  Google Scholar 

  • Knigge KM, Joseph SA, Hoffman GE (1978) Organization of LRF and SRIF neurons in the endocrine hypothalamus. In: Reichlin S, Baldessarini RJ, Martin JB (eds) Hypothalamus. Raven, New York, pp 49–68

    Google Scholar 

  • Kozlowski GA, Brownfield MS, Hostetter G (1978) Neurosecretory supply of extrahypothalamic structures: choroid plexus, circunventricular organs and limbic system. In: Bargman W, Oksche A, Polenov A, Scharrer B (eds) Neurosecretion and neuroendocrine activity. Springer, Berlin Heidelberg New York, pp 217–227

    Google Scholar 

  • Kozlowski GP, Chu L, Hostetter G, Kerdelhue B (1980) Cellular characteristics of immunolabeled luteinizing hormone releasing hormone (LHRH)-neurons. Peptides 1: 37–46

    Article  PubMed  CAS  Google Scholar 

  • Kroll FW (1933) Über das Vorkommen von übertragbaren schlaferzeugenden Stoffen im Hirn schlafender Tiere. Z Gesamte Neurol Psychiatr 146: 208–218

    Article  Google Scholar 

  • Krueger JM, Pappenheimer JR, Karnovsky ML (1978) Sleep promoting factor S: purification and properties. Proc Natl Acad Sci USA 75: 5235–5238

    Article  PubMed  CAS  Google Scholar 

  • Krulich L (1979) Central neurotransmitters and the secretion of prolactin, GH, LH, and TSH. Annu Rev Physiol 41: 603–615

    Article  PubMed  CAS  Google Scholar 

  • LeDourain N (1974) Cell recognition based on natural morphological nuclear makers. Med Biol 52: 281

    Google Scholar 

  • LeDourain N, Smith J, Teillet M-A, Le Lievre C, Ziller C (1980) The natural crest and its developmental analysis in avian embryo chimaeras. TINS 3: 39–42

    Google Scholar 

  • Legendre R, Pieron H (1910) Le probleme des facteurs du sommeil. Resultats d’injections vasculaires et intra-cerebrales des liquides insomniques. Crit Rev Soc Biol (Paris) 68: 1077–1078

    Google Scholar 

  • Legendre R, Pieron H (1911) Du developpement au cours de l’insomie expérimental, des propriétes hypnotoxiques des humeurs en relation avec le besoin croissant de sommeil. Comptes Rendues Soc Biol (Paris) 70: 190–192

    CAS  Google Scholar 

  • Legendre R, Pieron H (1912) De la propriéte hypnotoxique des humerus dévelopeés au cours d’une veille prolongée. Comptes Rendues Soc Biol 72: 210–212

    Google Scholar 

  • Leibson L (1979) Endocrinology evolution and evolutionary endocrinology. Perspect Biol Med 23: 25–43

    PubMed  CAS  Google Scholar 

  • Lenard HG, Schulte FJ (1972) Polygraphic sleep study in cramopagus twins. J Neurol Neurosurg Psychiatry 35: 756–760

    Article  PubMed  CAS  Google Scholar 

  • Leowy DD, McKellar S (1980) The neuroanatomical basis of central cardiovascular control. Fed Proc 39: 2495–2503

    Google Scholar 

  • Lewis RV, Kimura S, Stern A, Rossier J, Stein A, Udenfriend S (1980) Enkephalin precursors in bovine adrenal granules. Fed Proc 39: 385 A 613

    Google Scholar 

  • Liotta AS, Gilderslleve D, Brownstein MJ, Krieger DT (1979) Biosynthesis in vitro of immunoreactive 31,000-dalton corticitropin/-endorphinlike material by bovine hypothalamus. Proc Natl Acad Sci USA 76: 1448–1452

    Article  PubMed  CAS  Google Scholar 

  • Lucke C, Hoffken B, von zur Mullen A (1976) Studies on the postponed growth hormone secretion following the infusion of somatostatin. Acta Endocrinol (Copenh) 82: 460–466

    CAS  Google Scholar 

  • Magoun H, Rhines R (1946) An inhibitory mechanism in the bulbarreticular formation. J Neurophysiol 9: 165–171

    PubMed  CAS  Google Scholar 

  • Martin JB (1976) Brain regulation of growth hormone secretion. In: Martini L, Ganong WF (eds) Frontiers in neuroendocrinology, vol 4. Raven, New York, pp 129–168

    Google Scholar 

  • Matsumoto J, Sogabe K, Hori-Santiago Y (1972) Sleep in parabiosis. Experientia 28: 1043–1044

    Article  PubMed  CAS  Google Scholar 

  • McKelvy JF (1977) Biosynthesis of hypothalamic peptides. Adv Exp Med Biol 87: 77–98

    PubMed  CAS  Google Scholar 

  • McKelvy JF, Epelbaum J (1978) Biosynthesis, packing, transport, and release of brain peptides. In: Reichlin S, Baldessarini RJ, Martin JB (eds) The hypothalamus. Raven, New York, 195–211

    Google Scholar 

  • McKelvy JB, Charli JL, Joseph-Bravo P, Sherman T, Loudes C (to be published) Cellular biochemistry of brain peptides biosynthesis, degradation, packaging, transport, and release. In: Motta M (ed) The endocrine function of the brain. Raven, New York

    Google Scholar 

  • McNeill TH, Scott DE, Sladek JR Jr (1980) Simultaneous monoamine histofluorescence and neuropeptide immunocytochemistry: I. Localization of catecholamines and gonadotropin-releasing Hormone in the rat median eminence. Peptides 1: 59–68

    Article  PubMed  CAS  Google Scholar 

  • Mendelson WB, Gillin JC, Pisner G, Wyatt RJ (1980) Arginine Vasotocin and sleep in the rat. Brain Res 182: 246–249

    Article  PubMed  CAS  Google Scholar 

  • Mendelson WB, Slater S, Gold P, Gillin JC (1980) The effect of growth hormone administration on human sleep: a dose response study. Biol. Psychiatry 15: 613–618

    PubMed  CAS  Google Scholar 

  • Miselis RR, Shapiro RE, Hand PJ (1979) Subfornical organ efferents to neural systems for control of body water. Science 205: 1022–1025

    Article  PubMed  CAS  Google Scholar 

  • Monnier M, Hosli L (1964) Dialysis of sleep and waking factors in blood of the rabbit. Science 146: 797–798

    Article  Google Scholar 

  • Monnier M, Hosli L (1965) Humoral transmission of sleep and wakefulness. 11. Hemodialysis of a sleep inducing humor during stimulation of the thalamic somnogenic area. Pfluegers Arch 282: 60–75

    Article  CAS  Google Scholar 

  • Monnier M, Hatt AM (1971) Humoral transmission of sleep. V. New evidence from production of pure sleep hemodialyzate. Pfluegers Arch 329: 231–234

    Article  CAS  Google Scholar 

  • Monnier M, Koller T, Graber S (1963) Humoral influences of induced sleep and arousal upon electrical brain activity of animals with crossed circulation. Exp Neurol 8: 264–277

    Article  Google Scholar 

  • Monnier M, Hatt AM, Cueni LB, Schoenenberger GA (1972) Humoral transmission of sleep. VI. Purification and assessment of a hypnogenic fraction of “sleep dialyzate” (factor delta). Pfluegers Arch 331: 257–265

    Article  CAS  Google Scholar 

  • Monnier M, Dudler L, Schoenenberger GA (1973) Humoral transmission of sleep. VIII. Effects of the “sleep factor delta” on cerebral, motor, and visceral activities. Pfluegers Arch 345: 23–35

    Article  CAS  Google Scholar 

  • Monnier M, Dudler L, Gachter R, Maier PF, Tobler HJ, Schoenenberger GA (1977) The delta sleep inducing peptide (DSIP). Comparative properties of the original and synthetic nonapeptide. Experientia 33: 548–552

    Article  PubMed  CAS  Google Scholar 

  • Moore RY (1978) Central neural control of circadian rhythms. In: Ganong WF, Martini L (eds) Frontiers in neuroendocrinology, vol 5. Raven, New York, pp. 185–206

    Google Scholar 

  • Moore RY (1979) The anatomy of central neural mechanisms regulating endocrine rhythms. In: Krieger DT (ed) Endocrine rhythms. Raven, New York, pp 63–87

    Google Scholar 

  • Morin LP, Fitzgerald KM, Zucker I (1977) Estradiol shortens the period of hamster circadian rhythms. Science 196: 305–307

    Article  PubMed  CAS  Google Scholar 

  • Morrison A (1979) Brain stem regulation of behavior during sleep and wakefulnes. Prog Psychobiol 8: 91–131

    Google Scholar 

  • Moruzzi G (1972) The sleep-waking cycle. Ergb Physiol Biol Chem Exp Pharmakol 64: 1–165

    CAS  Google Scholar 

  • Moss RL (1979) Actions of hypothalamic hypophysiotropic hormones in the brain. Annu Rev Physiol 41: 617–631

    Article  PubMed  CAS  Google Scholar 

  • Moss RL, Riskind P, Dudley CA (1979) Effects of LHRH on sexual activities in animal and man. In: Collu R, Barbeau A, Ducharme JR, Rochefort VG (eds) Central nervous system effects of hypothalamic hormones and other peptides. Raven, New York, pp 345–366

    Google Scholar 

  • Mullen PE, Jeffcoate WJ, Linsell C, Howard R, Rees LH (1979) The circadian variation of immunoreactive lipotropin and its relationship to ACTH and growth hormone in man. Clin Endocrinol (Oxford) 11: 533–539

    Article  CAS  Google Scholar 

  • Nagasaki H, Iriki M, Indue S, Uchizono K (1974) The presence of a sleep promoting material in the brain of sleep-deprived rats. Proc Jap Acad 50: 241–246

    Google Scholar 

  • Nagasaki H, Iriki M, Uchizono K (1976) Inhibitory effect of the brain extract of sleep-deprived rats (BE-SDR) on the spontaneous discharges of crayfish abdominal ganglion. Brain Res 109: 202–205

    Article  PubMed  CAS  Google Scholar 

  • Neill JD (1980) LHRH and dopamine secretion into hypophyseal stalk blood. Effects of estrogen, mating, and nursing. In: Valverde-R C, Arechiga H (eds) Comparative aspects of neuroendocrine control of behavior. Karger, Basel Paris London New York, pp 192–217

    Google Scholar 

  • Negoro H, Visessuwan S, Holland DR (1973) Unit activity in the paraventricular nucleus of female rats at different stages of the reproductive cycle and after ovariectomy, with or without oestrogen or progesterone treatment. J Endocrinol 59: 545–558

    Article  PubMed  CAS  Google Scholar 

  • Negro-Vilar A, Sanchez-Franco F, Kwiatkowski M, Samson WK (1979) Failure to detect radioimmunoassayable arginine vasotocin in mammalian pineals. Brain Res Bull 4: 789–792

    Article  PubMed  CAS  Google Scholar 

  • Nicoll CS (1980) Ontogeny and evolution of prolactin’s functions. Fed Proc 39: 2563–2566

    PubMed  CAS  Google Scholar 

  • Nilaver G, Zimmerman EA, Wilkins J, Michaels J, Hoffman D, Silverman A-J (1980) Magnocellular hypothalamic projections to the lower brain stem and spinal cord of the rat. Neuroendocrinology 30: 150–158

    Article  PubMed  CAS  Google Scholar 

  • Ochs S (1977) Axoplasmic transport of peripheral nerve and hypothalamoneuro-hypophyseal systems. In: Porter JC (ed). Hypothalamic peptide hormones and pituitary regulation. Adv Exp Med Biol 87: 13-40

    Google Scholar 

  • O’Donohue TL, Miller RL, Pendleton RC, Jacobowitz DM (1979) A diurnal rhythm of immunoreactive-melanocyte-stimulating hormone in discrete regions of the rat brain. Neuroendocrinology 29: 281–287

    Article  PubMed  Google Scholar 

  • O’Malley BW, Roop DR, Lai EC, Nordstrom JL, Catteral JF, Swaneck GE, Colbert DA, Tsai M-J, Dugaiczyk A, Woo SLC (1979) The ovalbumin gene: organization, structure, transcription and regulation. Recent Progr Horm Res 35: 1–46

    PubMed  Google Scholar 

  • Oswald I (1969) Human brain protein, drugs and dreams. Nature 223: 893–897

    Article  PubMed  CAS  Google Scholar 

  • Pacold ST, Hojvat S, Kirstems L, Yarzagary L, Kisla J, Lawrence AM (1977) Brain growth hormone: evidence for the presence and production of biologically active GH-like immunoreactivity from the amygdaloid nucleus. Clin Res 25: 299

    Google Scholar 

  • Pappenheimer JR, Miller TB, Goodrich CA (1967) Sleep promoting effects of cerebrospinal fluid from sleep-deprived goats. Proc Nat Acad Sci 58: 513–517

    Article  PubMed  CAS  Google Scholar 

  • Pappenheimer JR, Koski G, Fencl V, Karnovsky ML, Krueger J (1975) Extraction of sleep promoting factor S from cerebrospinal fluid and from brains of sleep deprived animals. J Neurophysiol 38: 1299–1311

    PubMed  CAS  Google Scholar 

  • Parker DC, Rossman LG, Vanderlaan EF (1974) Relation of sleep-entrained human release to REM and non REM cycles. J Clin Endocrinol Metab 38: 646–651

    Article  PubMed  CAS  Google Scholar 

  • Parker DC, Rossman LG, Kripke DF, Gibson W, Wilson K (1979) Rhythmicities in human growth hormone concentrations in plasma. In: Krieger DT (ed) Endocrine rhythms. Raven, New York, pp 143–173

    Google Scholar 

  • Pavel S (1965) Evidence for the presence of lysive vasotocin in the pig pineal gland. Endocrinology 77: 812–817

    Article  PubMed  CAS  Google Scholar 

  • Pavel S (1979) Pineal vasotocin and sleep: involvement of serotonin containing neurons. Brain Res Bull 4: 731–734

    Article  PubMed  CAS  Google Scholar 

  • Pavel S, Matrescu L, Petrescu M (1973) Central corticotropin inhibition by arginine vasotocin. Neuroendocrinology 12: 371–375

    Article  PubMed  CAS  Google Scholar 

  • Pavel S, Goldstein E, Ghinea E, Calb M (1977a) Chromatographic evidence of vasotocin biosynthesis by cultures pineal ependymal cells from rat fetures. Endocrinology 100: 205–208

    Article  PubMed  CAS  Google Scholar 

  • Pavel S, Psatta, Goldstein R (1977b) Slow wave sleep induced in cats by extremely small amounts of synthetic and pineal vasotocin inyected into the third ventricle of the brain. Brain Res Bull 2: 251–254

    Article  PubMed  CAS  Google Scholar 

  • Pearse AGE (1976) Peptides in brain and intestine. Nature 262: 92

    Article  Google Scholar 

  • Pearse AGE (1977) The diffuse neuroendocrine system and the APUD concept. Related “endocrine” peptides in brain, intestine, pituitary, placenta and anurain cutaneous glands. Med Biol 55: 115

    PubMed  CAS  Google Scholar 

  • Pearse AGE, Takor-Takor T (1976) Neuroendocrine embryology and the APUD concept. Clin Endocrinol [Suppl] 5: 2295

    Article  Google Scholar 

  • Pegram V, Hammond D, Bridgers W (1973) The effects of protein synthesis inhibition on sleep in mice. Behav Biol 9: 377–382

    Article  PubMed  CAS  Google Scholar 

  • Pelletier G, Desy L (1979) Localization of ACTH in the human hipothalamus. Cell Tissue Res 196: 525–530

    Article  PubMed  CAS  Google Scholar 

  • Pelletier G, Leclerc R (1979) Immunohistochemical localization of adrenocorticotropin in the rat brain. Endocrinology 104: 1426–1433

    Article  PubMed  CAS  Google Scholar 

  • Perez-E B, Valverde-R C (to be published) The diffuse neuroendocrine system and its pathology: antecedents, present concepts, perspectives. Metabolism

    Google Scholar 

  • Peters JA, Santa-Cruz F, Rubin RT (1980) Neuroendocrine responses to TRH during REM and slow-wave sleep in man (Abstr 634). The Endocrine Society 62nd Annual Meeting. Endocrine Soc, Washington, p 233

    Google Scholar 

  • Petitjean F, Buda C, Janin M, David M, Jouvet M (1979) Effets du Chloramphenicol sur le sommeil du chat — Comparison avec le thiamphénicol, l’erythromycine et l’erytrhomycine et l’oxytétracycline. Psychopharmacologie 66: 147–153

    Article  CAS  Google Scholar 

  • Phillips MI, Weyhenmeyer J, Felix D, Ganten D, Hoffman WE (1979) Evidence for an endogenous brain renin-angiotensin system. Fec Proc 38: 226–266

    Google Scholar 

  • Pieron H (1913) Le probleme physiologique du sommeil. Masson, Paris

    Google Scholar 

  • Polak JM (1979) The diffuse neuroendocrine system. Studies of this newly discovered controlling system in health and disease. J Histochem Cytochem 27: 1398–1400

    Article  PubMed  CAS  Google Scholar 

  • Polc P, Schneeberger J, Haefely W (1978) Effect of the delta sleep inducing peptide (DSIP) on the sleep-wakefulness cycle of cats. Neurosci Lett 9: 33–36

    Article  PubMed  CAS  Google Scholar 

  • Polet RJ, Levey GS (1980) Principles of membrane receptor physiology and their application to clinical medicine. Ann Int Med 92: 663–680

    Google Scholar 

  • Purpura D (1956) A neurohumoral mechanism of reticular cortical action. Am J Physiol 186: 50–54

    Google Scholar 

  • Quabbe HJ (1977) Chronobiology of growth hormone secretion. Chronobiologia 4: 217–246

    PubMed  CAS  Google Scholar 

  • Ramirez G (1973) Synaptic plasma membrane protein synthesis: selective inhibition by chloramphenicol in vivo, Biochem Biophys Res Commun 50: 452–458

    Article  PubMed  CAS  Google Scholar 

  • Ramm P (1979) The locus coeruleus, catecholamines and REM sleep: a critical review. Behav Neural Biol 25: 415–448

    Article  PubMed  CAS  Google Scholar 

  • Reichlin S (1980) Peptides in neuroendocrine regulation. In: Bloom F (ed) Peptides: integrators of cell and tissue function. Raven, New York, pp 235–250

    Google Scholar 

  • Reichlin S, Connolly J, Greens GL, Jensen EV, Robbins RJ (1980) Histochemical localization of estrophilin-like immunoreactivity in rat hypothalamic cell cultures using anti-calf uterine estrophilin antibody (Abstr 121). The Endocrine Society 62nd Annual Meeting. Endocrine Soc, Washington, p 105

    Google Scholar 

  • Renaud LP, Pittman QJ, Blume HW (1978) Neurophysiology of hypothalamic peptidergic neurons. In: Fuxe K, Hökfelt T, Luft R(eds) Central regulation of the endocrine system. Plenum, New York London, pp 119–136

    Google Scholar 

  • Renaud LP, Blume HW, Pittman QJ, Lamour Y, Tan AT (1979 a) Thyrotropin releasing hormone selectively depresses glutamate excitation of cerebral cortical neurons. Science 205: 1275–1277

    Article  PubMed  CAS  Google Scholar 

  • Renaud LP, Pittman Q, Blume H, Lamour Y, Arnaud E (1979b) Effects of peptides on central neuronal excitability. In: Collu R, Barbeau A, Ducharme JR, Rochefor JC (eds) Central nervous system effects of hypothalamic hormones and other peptides. Raven, New York, pp 147–162

    Google Scholar 

  • Rezek M, Havlicek V, Hughes K, Friesen H (1976) Cortical administration of somatostatin (SRIF): effect on sleep and motor behavior. Pharmacol Biochem Behav 5: 73–77

    Article  PubMed  CAS  Google Scholar 

  • Rillema JA (1980) Mechanism of prolactin action. Fed Proc 39: 2593–2598

    PubMed  CAS  Google Scholar 

  • Ringle DA, Herndon BL (1968) Plasma dialyzates from sleep-deprived rabbits and their effect on the electrocorticogram of rats. Pfluegers Arch 303: 344–349

    Article  CAS  Google Scholar 

  • Ringle D, Herndon B (1969) Effects on rats of CSF from sleep deprived rabbits. Pfluegers Arch 30: 320–328

    Google Scholar 

  • Roger LJ (1979) Evidence for T4-GH interaction during brain development. Nature 282: 414–415

    Article  PubMed  CAS  Google Scholar 

  • Rojas-Ramirez JA, Aguilar-Jimenez E, Posadas-Andrews A, Bernal-Pedraza J, Drucker-Colin RR (1977) The effects of various protein synthesis inhibitors on the sleep-wake cycle of rats. Psychopharmacol 53: 147–150

    Article  CAS  Google Scholar 

  • Rosenbloom AA, Fisher DA (1974) Radioimmunoassay of arginine vasotocin. Endocrinology 95: 1726–1732

    Article  PubMed  CAS  Google Scholar 

  • Rossier J, Pittman Q, Bloom F, Guillemin R (1980) Distribution of opiod peptides in the pituitary: a new hypothalamic-pars nervosa enkephalinergic pathway. Fed Proc 39: 2555–2560

    PubMed  CAS  Google Scholar 

  • Rubin RT, Poland RE, Ravessound F, Gouin PR, Tower BB (1975) Antidiuretic hormone: episodic nocturnal secretion in adult men. Endocr Res Commun 2: 461–469

    Article  Google Scholar 

  • Rusak B, Zucker I (1979) Neural regulation of circadian rhythms. Physiol Rev 59: 449–526

    PubMed  CAS  Google Scholar 

  • Sachs H, Pearson D, Nureddin H (1975) Guinea pig neurophysin: isolation, developmental aspects, biosynthesis in organ culture. Ann NY Acad Sci 248: 36–45

    Article  PubMed  CAS  Google Scholar 

  • Sakai K, Sastre JP, Salvert D, Touret M, Tohyama M, Jouvet M (1979) Tegmento reticular projections with special reference to the muscular otonia during paradoxical sleep: an HRP study. Brain Res 176: 233–254

    Article  PubMed  CAS  Google Scholar 

  • Sassin J, Parker DC, Johnson LC, Rossman LG, Male JW, Gotlin RW (1969) Effects of slow wave sleep deprivation in human growth hormone — release in sleep: preliminary study. Life Sci 8: 1299–1307

    Article  PubMed  CAS  Google Scholar 

  • Sastre JP (1978) Effects des lesions du tegmentum pontique sus l’organization des etats de sommeil dies la chat. PhD dissertation, Université Claude Bernard, Lyon

    Google Scholar 

  • Sastre JP, Jouvet M (1979) Le comportement oniseque du chiat. Physiol Behav 22: 979: 989

    Article  PubMed  CAS  Google Scholar 

  • Scharrer B (1978) Peptidergic neurons. Facts and trends. Gen Comp Endocrinol 34: 50–62

    Article  PubMed  CAS  Google Scholar 

  • Scherrer H, Seidah NG, Benjannet S, Crine P, Cretien M (1979) Biosynthese de beta-lipotropin dans le tissue cerebral in citro. Crit Rev Acad Sci (Paris) 288: 543–546

    CAS  Google Scholar 

  • Schnedorf JG, Ivy AC (1939) An examination of the hypnotoxin theory of sleep. Am J Physiol 125: 191–205

    Google Scholar 

  • Schnitzer SB, Ross S (1960) Effects of physiological saline injection on locomotor activity in C57 BL/6 mice. Psychol Rep 6: 351–354

    Google Scholar 

  • Schoenenberger GA, Monnier M (1977) Characterization of a delta-electroencephalogram (sleep) inducing peptide. Proc Nat Acad Sci USA 74: 1282: 1286

    Article  PubMed  CAS  Google Scholar 

  • Schoenenberger GA, Cueni LB, Monnier M, Hatt AM (1972) Humoral transmission of sleep. VII. Isolation and physico-chemical characterization of the “sleep inducing factor delta.” Pfluegers Arch 338: 1–17

    Article  CAS  Google Scholar 

  • Schoenenberger GA, Maier PF, Tobler JH, Monnier M (1977) A naturally occurring delta-EEG enhancing nonapeptide in rabbits. X. Final isolation characterization and activity test. Pfluegers Arch 369: 99–109

    Article  CAS  Google Scholar 

  • Schoenenberger GA, Manier PF, Tobler HJ, Wilson K, Monnier M (1978) The delta EEG (sleep) inducing peptide (DSIP). XI. Amino acid analysis, sequence, synthesis and activity of the nonapeptide. Pfluegers Arch 378: 119–129

    Google Scholar 

  • Schultz WJ, Bronfield MS, Kizlowski GP (1977) The hypothalamo-choroidal tract. 11. Ultrastructural response of the coroid plexus to vasopressin. Cell Tissue Res 178: 129–141

    Article  PubMed  CAS  Google Scholar 

  • Schwarz WJ, Gainer H (1977) Suprachiasmatic nucleus: use of 14 D-labeled deoxy-glucose uptake as a functional marker. Science 197: 1089–1091

    Article  Google Scholar 

  • Seif SM, Robinson AG (1979) Rhythms of the posterior pituitary. In: Krieger DT (ed) Endocrine rhythms. Raven, New York, pp 187–201

    Google Scholar 

  • Smith OA, Astley CL, DeVito JL, Stein JM, Walsh KE (1980) Functional analisis of hypothalamic control of the cardiovascular responses accompanying emotional behavior. Fed Proc 39: 2487–2494

    PubMed  CAS  Google Scholar 

  • Solis H, Fernandez-Guardiola A, Valverde-R C (1979) Neuropharmacologic and neuroendocrine interrelations of human sleep. In: Drucker-Colin R, Shkurovich M, Sterman MB (eds) The functions of sleep. Academic Press, New York, pp 147–170

    Google Scholar 

  • Spanis CW, Gutierrez MC, Drucker-Colin PR (1976) Neurohumoral correlates of sleep: further biochemical and physiological characterization of sleep perfusates, Pharmacol Biochem Behav 5: 165–173

    Article  PubMed  CAS  Google Scholar 

  • Stemberger LA, Hoffman GE (1978) Immunocytology of luteinizing hormone releasing hormone. Neuroendocrinology 25: 111–128

    Article  Google Scholar 

  • Steriade M, Hobson JA (1976) Neural activity during the sleep waking cycle. Prog Neurobiol 6: 155–376

    Article  PubMed  CAS  Google Scholar 

  • Stern WC, Morgane PJ (1977) Sleep and memory: effects of growth hormone on sleep, brain biochemistry and behavior. In: Drucker-Colin RR, McGaugh JL (eds) Neurobiology of sleep and memory. Academic Press, New York, pp 373–410

    Google Scholar 

  • Stern WC, Miller FP, Cox RH, Maickerl RP (1971) Brain norepinephrine and serotonin levels following REM sleep deprivation in the rat. Psychopharmacoly 22: 50–55

    Article  CAS  Google Scholar 

  • Stern WC, Morgane PJ, Panksepp J, Solovick AJ, Jalowiec JE (1972) Elevation of REM sleep following inhibition of protein synthesis. Brain Res 47: 254–258

    Article  PubMed  CAS  Google Scholar 

  • Stern WC, Jalowiec E, Shabshalowtiz H, Morgane PJ (1975) Effects of growth hormone on sleep-waking patterns in cats. Horm Behav 6: 189–196

    Article  PubMed  CAS  Google Scholar 

  • Stumpf WE (1970) Estrogen-neurons and estrogen-neuron systems in the periventricular brain. Am J Anat 129: 207–218

    Article  PubMed  CAS  Google Scholar 

  • Takahashi Y (1979) Growth hormone secretion related to the sleep and waking rhythm. In: Drucker-Colin R, Shkurovich M, Sterman MB (eds) The functions of sleep. Academic Press, New York, pp 113–145

    Google Scholar 

  • Takahashi Y, Kipnis DM, Daughaday WH (1968) Growth hormone secretion during sleep. J Clin Invest 47: 2079–2090

    Article  PubMed  CAS  Google Scholar 

  • Takahashi Y, Ebihaba S, Nakamura Y, Takahashi K (1978) Sleep related growth hormone secretion in dogs after 8 h forced wakefulness. In: Tsukahara N, Kubata K, Yagi K (eds) Integrative control functions of the brain. Elsevier, Amsterdam, pp 389–391

    Google Scholar 

  • Tata JR (1968) Hormonal regulation of growth and protein synthesis. Nature 219: 331–337

    Article  PubMed  CAS  Google Scholar 

  • Terry LC, Martin JB (1978) Hypothalamic hormones: subcellular distribution and mechanisms of release. Annu Rev Pharmacol Toxicol 18: 111–123

    Article  PubMed  CAS  Google Scholar 

  • Tobler I, Borbely A (1980) Effect of delta sleep inducing peptide (DSIP) and arginine vasotocyn (AVT) on sleep and motor activity in the rat. Waking Sleeping 4: 139–153

    PubMed  CAS  Google Scholar 

  • Toubeau G, Desclin J, Parmentier M, Pasteeis JL (1979a) Compared localizations of prolactin-like material and adrenocorticotropin immunoreactivities within the brain. Neuroendocrinology 29: 374–384

    Article  PubMed  CAS  Google Scholar 

  • Toubeau G, Desclin J, Parmentier M, Pasteels JL (1979b) Cellular localization of a prolactin-like antigen in the rat brain. J Endocrinol 83: 261–266

    Article  PubMed  CAS  Google Scholar 

  • Vale W, Rivier C, Brown M (1977) Regulatory peptides of the hypothalamus. Annu Rev Physiol 39: 473–528

    Article  PubMed  CAS  Google Scholar 

  • Valverde-R C (to be published) La integracion neuroendocrina y el binomio vigiliasueno como un sistema de intercomunicaciön. Rev Asoc Psiq Méx

    Google Scholar 

  • Valverde-R C, Jurado J, Ruiz-Primo E, Ruiz-Juvera A, Maisterrena JA, Fernandez-Guardiola A (1980) Hormones and sleep rhythms in endocrine dysfunction. Front Horm Res, pp 156-175

    Google Scholar 

  • Vanderleghen JJ, DeMey J, Lostra F, Giles C (1979) Localization of gastrin-cholecystokinin-like peptides in the brain and hypophysis of the rat. Acta Neurol Belg 79: 62–63

    Google Scholar 

  • Vandesande F, Dierickx K, DeMey J (1975) Identification of the vasopressin-neuro-physin producing neurons of the rat suprachiasmatic nuclei. Cell Tissue Res 156: 377–380

    PubMed  CAS  Google Scholar 

  • Van Houten M, Posner BI, Kopriwa B, Brawer JR (1980) Insulin binding sites localized to nerve termin als in rat median eminence and arcuate-nucleus. Science 207: 1081–1083

    Article  PubMed  Google Scholar 

  • Van Vugt DA, Meites J (1980) Influence of endogenous opiates on anterior pituitary function. Fed Proc 39: 2533–2538

    PubMed  Google Scholar 

  • Vijayan E, Samson WK, Said SI, McCann SM (1979) Vasoactive intestinal peptide: evidence for a hypothalamic site of action to release growth hormone, luteinizing hormone and prolactin in conscious ovariectomized rats. Endocrinology 104: 53–57

    Article  PubMed  CAS  Google Scholar 

  • Viveros OH, Diliberto EJ, Hazum E, Chang K-J (to be published) Enkephalins as possible adrenomedullary hormones: storage, secretion and regulation of synthesis. Adv Biochem Psychopharmacol

    Google Scholar 

  • Wagner DR, Weitzmann ED (1980) Neuroendocrine secretion and biological rhythms in man. Psychiatr Clin North Am 3: 223–250

    Google Scholar 

  • Watson SJ, Richard CW III, Ciaranello RD, Barchas JD (1980) Interactions of opiate peptide and noradrenalin systems: light microscopic studies. Peptides 1: 23–30

    Article  PubMed  CAS  Google Scholar 

  • Weindl A, Sofroniew MV (1976) Demonstration of extrahypothalamic peptide secreting neurons. A morphologic contribution to the investigation of psychotropic effects of neurohormones. Pharmakopsychiatr Neuropsychopharmakol 9: 226–234

    PubMed  CAS  Google Scholar 

  • Weiner RI, Ganong WF (1978) Role of brain monoamines and histamine in regulation of anterior pituitary secretion. Physiol Rev 58: 905–976

    PubMed  CAS  Google Scholar 

  • Weitzman ED (1980) Biological rhythms and hormonal secretion patterns. In: Krieger DT, Hughes JC (eds) Neuroendocrinology. Sunderland, Mass., Sinauer Associates, pp 85–92

    Google Scholar 

  • Weitzman ED, Czeisler CA, Moore-Ede MC (1979) Sleep-wake neuroendocrine and body temperature circadian rhythms under entrained and non-entrained (free running) conditions in man. In: Suda M, Hayaishi O, Nakagawa H (eds) Biological rhythms and their central mechanism. Elsevier/North-Holland Biomedical Press, Amsterdam Oxford New York, pp 199–227

    Google Scholar 

  • Zieglgansberger W (1980) Peptides in the regulation of neural function. In: Bloom F (ed) Peptides: integrators of cell and tissue function. Raven, New York, pp 219–234

    Google Scholar 

  • Zimmerman EA (1976) Localization of hypothalamic hormones by immunocytochemical techniques. In: Martin L, Ganong WF (eds) Frontier in neuroendocrinology. Raven, New York, pp 25–62

    Google Scholar 

  • Zimmerman EA, Antunes JL (1976) Organization of the hypothalamo-pituitary system: current concepts from immunohistochemical studies. J Histochem Cytochem 24: 807–815

    Article  PubMed  CAS  Google Scholar 

  • Zucker I, Cramer CP, Bittman EL (1980) Regulation by the pituitary gland of circadian rhythms in the momster. J Endocrinol 85: 17–25

    Article  PubMed  CAS  Google Scholar 

  • Zwick M (1977) Some analogies of hierarchical order in biology and linguistics. In: Klir GJ(ed) Applied general systems research. Plenum, New York London, pp 521–530

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Drucker-Colín, R., Valverde-R, C. (1982). Endocrine and Peptide Functions in the Sleep-Waking Cycle. In: Ganten, D., Pfaff, D. (eds) Sleep. Current Topics in Neuroendocrinology, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68333-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68333-6_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68335-0

  • Online ISBN: 978-3-642-68333-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics