Advertisement

Galvanic Cells with Solid Electrolytes for Kinetic Investigations

  • Hans Rickert
Part of the Inorganic Chemistry Concepts book series (INORGANIC, volume 7)

Abstract

Besides their use for thermodynamic measurements, galvanic cells with solid electrolytes have become increasingly important for kinetic studies in solids and at surfaces and phase boundaries of solids. As has been discussed in Chap. 8, thermodynamic measurements using such cells allow to determine Gibbs reaction energies ΔG or to obtain activities or chemical potentials in mixtures and chemical compounds. With the aid of polarization measurements on suitable galvanic cells, it is possible (see Sect. 6.3) to obtain information about partial conductivities in solids; this already represents an application of galvanic cells in kinetic studies. Other kinetic measurements with solid-state galvanic cells involve diffusion processes or diffusion-controlled reactions, reactions taking place at the phase boundary solid/gas, or solid/solid respectively. Kinetic investigations of this type are made possible because galvanic cells containing solid auxiliary electrolytes, which exhibit virtually pure ionic conductivity, not only provide thermodynamic information via the emf but also allow direct determination of reaction rates via measurements of the current flow within a suitably constructed cell. The combination of rate measurements (via electric currents) with measurements of thermodynamic quantities (via emf’s) often permits the analysis of kinetic processes. This will be discussed in the following for six typical examples:

  1. 1.

    Diffusion of oxygen in metals,

     
  2. 2.

    formation of nickel sulfide on nickel,

     
  3. 3.

    transfer of silver across the phase boundary silver/silver sulfide,

     
  4. 4.

    electrochemical studies of evaporation and condensation,

     
  5. 5.

    the electrochemical Knudsen cell,

     
  6. 6.

    chemical diffusion in metal oxides and sulfides.

     

Keywords

Phase Boundary Solid Electrolyte Nickel Sulfide Silver Iodide Kinetic Investigation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [11.1]
    Rickert, H., Steiner, R.: Naturwissenschaften 15, 451 (1965)CrossRefGoogle Scholar
  2. [11.2]
    Rickert, H., Steiner, R.: Z. phys. Chem. N.F. 49, 9 (1966)CrossRefGoogle Scholar
  3. [11.3]
    Rickert, H., El Miligy, A. A.: Z. Metallk. 59, 635 (1968)Google Scholar
  4. [11.4]
    Rickert, H., El Miligy, A. A.: Reactivity of Solids. Mitchell, J. W. (ed.), Vol. 17. New York: Wiley-Interscience, 1969Google Scholar
  5. [11.5]
    Burke, L. D., Rickert, H., Steiner, R.: Z. phys. Chem. N.F. 74, 146 (1971)CrossRefGoogle Scholar
  6. [11.5a]
    Patterson, J. W., Bogren, E. C., Rapp, R. A.: J. Electrochem. Soc. 114, 752 (1967)CrossRefGoogle Scholar
  7. [11.6]
    Pastorek, R. L., Rapp, R. A.: Trans. Met. Soc. AIME 245, 1711 (1969)Google Scholar
  8. [11.7]
    Masson, C. R., Whiteway, S. G.: Can. Met. Quart. 6, 199 (1967)Google Scholar
  9. [11.8]
    Ramanarayanan, T. A., Rapp, R. A.: Met. Trans. 3, 3239 (1972)CrossRefGoogle Scholar
  10. [11.9]
    Szwark, R., Oberg, K. E., Rapp, R. A.: High-Temp. Sci. 4, 347 (1972)Google Scholar
  11. [11.10]
    Oberg, K. E. et al.: J. Iron Steel Inst. 210, 359 (1972)Google Scholar
  12. [11.11]
    Ramana Rao, A. V., Tare, V. B.: Z. Metallk. 63, 70 (1972)Google Scholar
  13. [11.12]
    Sano, N., Honma, S., Matsushita, Y.: Met. Trans. 1, 301 (1970)CrossRefGoogle Scholar
  14. [11.13]
    Sano, N., Honma, S., Matsushita, Y.: Met. Trans. 2, 1494 (1971)Google Scholar
  15. [11.14]
    Otsuka, S., Kozuka, Z.: J. Japan Inst. Met. 37, 364 (1973)Google Scholar
  16. [11.15]
    Ramanarayanan, T. A., Worell, W. L.: Met. Trans. 5, 1773 (1974)CrossRefGoogle Scholar
  17. [11.16]
    Otsuka, S., Kozuka, Z.: Met. Trans. 6B, 389 (1975)Google Scholar
  18. [11.17]
    Otsuka, S., Kozuka, Z.: Met. Trans. 7B, 147 (1976)Google Scholar
  19. [11.18]
    Kawakami, M., Goto, K. S.: Trans. Iron Steel Inst. Jpn. 16, 204 (1976)Google Scholar
  20. [11.19]
    Heshmatpour, B., to be published in: J. Electroanal. Chem., Interf. Electrochem. (1981)Google Scholar
  21. [11.20]
    Crank, J.: The Mathematics of Diffusion. London, Oxford: Clarendon Press 1957Google Scholar
  22. [11.21]
    Eichenauer, W., Müller, G.: Z. Metallk. 53, 321 (1962)Google Scholar
  23. [11.22]
    Sand, H. J.: Phil. Mag. 1, 45 (1901); Z. phys. Chem. 35, 641 (1900)Google Scholar
  24. [11.23]
    Rickert, H., Wagner, H.: Electrochim. Acta 11, 83 (1966)CrossRefGoogle Scholar
  25. [11.24]
    Mrowec, S., Rickert, H.: Z. phys. Chem. N.F. 36, 329 (1963)CrossRefGoogle Scholar
  26. [11.25]
    Dravnieks, A.: J. Electrochem. Soc. 102, 435 (1955)CrossRefGoogle Scholar
  27. [11.26]
    Czerski, L., Mrowec, S., Werber, T.: J. Electrochem. Soc. 109, 273 (1962)CrossRefGoogle Scholar
  28. [11.27]
    Rickert, H.: Z. Electrochem. Ber. Bunsenges. phys. Chem. 65, 463 (1961)Google Scholar
  29. [11.28]
    Tammann, G.: Z. anorg. allg. Chem. 111, 78 (1920)CrossRefGoogle Scholar
  30. [11.29]
    Pilling, N. B., Bedworth, R. E.: J. Inst. Met. 29, 599 (1923)Google Scholar
  31. [11.30]
    Rickert, H., O'Brian, C.D.: Z. phys. Chem. N.F. 31, 71 (1962); Rickert, H., Wagner, C: Z. phys. Chem. N.F. 31, 32 (1962)CrossRefGoogle Scholar
  32. [11.31]
    Hebb, M. H.: J. Chem. Phys. 20, 185 (1952)CrossRefGoogle Scholar
  33. [11.32]
    Contreras, L., Rickert, H.: Ber. Bunsenges. phys. Chem. 82, 292 (1978)Google Scholar
  34. [11.33]
    Mizusaki, J., Fueki, K., Mukaibo, T.: Bull. Chem. Soc. Japan 47, 2851 (1974)CrossRefGoogle Scholar
  35. [11.34]
    Donner, D., Rickert, H.: Z. phys. Chem. N.F. 60, 11 (1968)CrossRefGoogle Scholar
  36. [11.35]
    Sasaki, J., Mizusaki, J., Fueki, K.: Bull. Chem. Soc. Japan 51, 1027 (1978)CrossRefGoogle Scholar
  37. [11.36]
    Rickert, H.: Z. Electrochem. 65, 463 (1961)Google Scholar
  38. [11.37]
    Hartmann, B., Rickert, H., Schendler, W.: Electrochim. Acta 21, 319 (1976)CrossRefGoogle Scholar
  39. [11.38]
    Detry, D. et al.: Z. phys. Chem. 55, 314 (1967)CrossRefGoogle Scholar
  40. [11.39]
    Birks, N., Rickert, H.: Ber. Bunsenges. phys. Chem. 67, 501 (1963)Google Scholar
  41. [11.40]
    Rickert, H., Tostmann, K.-H.: Werkstoffe, Korrosion 21, 965 (1970)CrossRefGoogle Scholar
  42. [11.41]
    Mrowec, S., Rickert, H.: Z. Elektrochem. 66, 14 (1962)Google Scholar
  43. [11.42]
    Kobayashi, H., Wagner, C.: J. Chem. Phys. 26, 1609 (1957)CrossRefGoogle Scholar
  44. [11.43]
    Roy, P., Schmalzried, H.: Ber. Bunsenges. phys. Chem. 71, 201 (1967)Google Scholar
  45. [11.44]
    Bechthold, E., Schwabe, U.: Z. phys. Chem. N.F. 81, 230 (1972)CrossRefGoogle Scholar
  46. [11.45]
    Knudsen, M.: Ann. Phys. (Leipzig) 29, 179 (1909)Google Scholar
  47. [11.46]
    Ratchford, R. J., Rickert, H.: Z. Elektrochem. 66, 497 (1962)Google Scholar
  48. [11.47]
    Detry, D. et al.: Z. phys. Chem. N.F. 55, 314 (1967)CrossRefGoogle Scholar
  49. [11.47a]
    Inghram, M. G., Drowart, J.: High-Temperature Technology, p. 219. New York: McGraw-Hill 1960Google Scholar
  50. [11.48]
    West, L. A., Menzies, A. W.: J. Phys. Chem. 33, 1880 (1929)CrossRefGoogle Scholar
  51. [11.49]
    Keller, H. et al.: Z. phys. Chem. N.F. 75, 273 (1971)CrossRefGoogle Scholar
  52. [11.50]
    Keller, H.: Dissertation, University of Dortmund 1970Google Scholar
  53. [11.51]
    Chu, W. F., Rickert, H., Weppner, W.: Proceedings of the Advanced Study Institute “Fast-ion transport in solids, solid-state batteries and devices” Belgirate September 5–15 1972, p. 181. Amsterdam: North-Holland Publ. Comp. 1973Google Scholar
  54. [11.52]
    Rickert, H., Weppner, W.: Z. Naturforsch. 29a, 1849 (1974)Google Scholar
  55. [11.53]
    Hauffe, K.: Reaktionen in und an festen Stoffen, p. 395. Berlin-Heidelberg-New York: Springer 1966Google Scholar
  56. [11.54]
    Rizzo, H. F., Gordon, R. S., Cutler, I. B.: Mass Transport in Oxides. Wachtman, J. B., Jr., Franklin, A. D. (eds.), p. 129. NBS Spec. Publ. 296, 1968Google Scholar
  57. [11.54a]
    Rizzo, H. F., Smith, J. V.: J. Phys. Chem. 72, 485 (1968)CrossRefGoogle Scholar
  58. [11.54b]
    Sockel, H. G., Schmalzried, H.: Ber. Bunsenges. phys. Chem. 72, 745 (1968)Google Scholar
  59. [11.55]
    Crank, J.: The Mathematics of Diffusion, p. 17. Oxford: Univ. Press London 1957Google Scholar
  60. [11.56]
    Himmel, L., Mehl, R. F., Birchenall, C. E.: Trans. AIME 197, 827 (1953)Google Scholar
  61. [11.57]
    Carslaw, H. S., Jaeger, J. C.: Conduction of Heat in Solids, p. 97. Oxford: Clarendon Press 1959Google Scholar
  62. [11.58]
    Rickert, H.: Z. phys. Chem. N.F. 23, 355 (1960)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1982

Authors and Affiliations

  • Hans Rickert
    • 1
  1. 1.Institute for Physical Chemistry IUniversity of DortmundDortmund 50Federal Republic of Germany

Personalised recommendations