Skip to main content

Dynamic Instabilities Observed in the Belousov-Zhabotinsky System

  • Conference paper
Chaos and Order in Nature

Part of the book series: Springer Series in Synergetics ((SSSYN,volume 11))

Abstract

Since the work of RUELLE and TAKENS [l], which established that turbulence may occur in systems with few degrees of freedom, a lot of effort has been devoted to study the so-called weak turbulence. Theory and experimentation (numerical as well as bench experiments) have both contributed to a new insight into the onset of turbulence. Let me briefly recall some salient results of the experiments performed on real hydrodynamical systems. Two geometries have been more thoroughly studied than any others, namely the circular Couette flow [2] and the Rayleigh-Benard instability. The more comprehensive results belong to the latter, having given rise to a great number of observations. For large aspect ratios, turbulence occurs at, or very near to, the threshold of convective instability [3.a]. On the other hand, several bifurcations lead to turbulence when cells with a low aspect ratio are used. Amongst other factors, the detailed sequence of bifurcations depends on the Prandtl number of the fluid, i.e. on the ratio of its kinematic viscosity to its thermal diffusivity. Although the instabilities involved are not the same, there are strong similarities in the behaviour of liquid helium [3c], silicon oil [3b] and water [4]. On the different routes leading to turbulence, three phenomena may be encountered: a cascade of period doubling bifurcations (sometimes named the Feigenbaum cascade), a quasi-periodic regime involving 2 or even 3 independent frequencies which, eventually, “lock in”, and an intermittency phenomenon, that is to say, bursts of noise emerging from time to time in a coherent regime. In agreement with the basic prediction of RUELLE and TAKENS, it has been observed in all cases that the transition to chaotic flow always takes place through a small number of bifurcations. Other experiments on the circular Couette flow, and numerical integration of sets of differential equations, such as the celebrated Lorenz model, have also led to the same general conclusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Ruelle and F. Takens, Comm. Math. Phys. 20, 167 - 192 (1971).

    Article  Google Scholar 

  2. P.R. Fenstermacher, H.L. Swinney and J.P. Gollub, J. Fluid. Mech. 94 103–128 (1979).

    Article  Google Scholar 

  3. a G. Ahlhers, this volume, b P. Bergé, this volume. c A. Libchaber, this volume.

    Google Scholar 

  4. J.P. Gollub and S.V. Benson, J. Fluid. Mech. 100, 449–470 (1980).

    Article  Google Scholar 

  5. D. Ruelle, Trans. N.Y. Acad. Sci. 35, 66–71 (1973).

    CAS  Google Scholar 

  6. O.E. Rossler and K. Wegmann, Nature, 271, 5460–5461 (1978). K. Wegmann and O.E. Rossler, Z. Naturforsch. 33a, 1179–1183 (1978).

    Article  Google Scholar 

  7. R.A. Schmitz, K.R. Graziani and J.L. Hudson, J. Chem. Phys. 67, 3040–3044 (1977).

    Article  CAS  Google Scholar 

  8. J.L. Hudson, M. Hart and D. Marinko, J. Chem. Phys. 71, 1601–1606 (1979).

    Article  CAS  Google Scholar 

  9. C. Vidal, J.C. Roux, A. Rossi and S. Bachelart, C.R. Acad. Sci. Paris, serie C, 289, 73–76 (1979). C. Vidal, J.C. Roux, S. Bachelart and A. Rossi, Ann. N.Y. Acad. Sci. 357, 377–396 (1980).

    Google Scholar 

  10. J.C. Roux, A. Rossi, S. Bachelart and C. Vidal, Phys. Lett. 77A, 391–393 (1980).

    Article  Google Scholar 

  11. J.C. Roux, A. Rossi, S. Bachelart and C. Vidal, Physica D, in press.

    Google Scholar 

  12. R.J. Field and R.M. Noyes, J. Chem. Phys. 60, 1877–1884 (1974). R.J. Field and R.M. Noyes, J. Am. Chem. Soc., 96, 2001–2006 (1974). R.J. Field, J. Chem. Phys., 63, 2284–2296 (1975).

    Article  CAS  Google Scholar 

  13. R.J. Field, E. Koros and R.M. Noyes, J. Am. Chem. Soc., 94, 8649–8664 (1972).

    Article  CAS  Google Scholar 

  14. B. Belousov, “Sb. Ref. Radiat. Med.”, 145–147, Medgiz, Moscow (1959).

    Google Scholar 

  15. C. Yidal, J.C. Roux and A. Rossi, J. Am, Chem. Soc., 102, 1241–1245 (1980).

    Article  Google Scholar 

  16. R.K. Otnes and L. Enochson, “Digital time series analysis” Wiley New-York (1972).

    Google Scholar 

  17. J.P. Crutchfield, J.D. Farmer, N.H. Packard, R.S. Shaw, G. Jones and R.J. Donnelly, Phys. Lett. 76A, 1–4 (1980).

    Article  Google Scholar 

  18. M.J. Feigenbaum, Phys. Lett. 74A, 375–378 (1979); Comm. Math. Pfiys. 77, 65–86 (1980).

    Google Scholar 

  19. D. Ruelle, private communication.

    Google Scholar 

  20. N.H. Packard, J.P. Crutchfield, J.D. Farmer and R.S. Shaw, Phys. Rev. Lett., 45, 712–716 (1980).

    Article  Google Scholar 

  21. Y. Pomeau, J.C. Roux, S. Bachelart, A. Rossi and C. Vidal, submitted to J. Phys. Lett. C. Vidal, S. Bachelart and A. Rossi, to be published.

    Google Scholar 

  22. K. Tomita and I. Tsuda, Phys. Lett., 71A, 489–492 (1979).

    Article  Google Scholar 

  23. Y. Pomeau and P. Manneville, Commun. Math. Phys., 74, 189–197 (1980).

    Article  Google Scholar 

  24. P. de Kepper, A. Rossi and A. Pacault, C.R. Acad. Sci. Paris, Ser. C, 283, 371–376 (1976).

    Google Scholar 

  25. R.M. May, Nature, 261, 459–467 (1976).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vidal, C. (1981). Dynamic Instabilities Observed in the Belousov-Zhabotinsky System. In: Haken, H. (eds) Chaos and Order in Nature. Springer Series in Synergetics, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68304-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68304-6_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68306-0

  • Online ISBN: 978-3-642-68304-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics